
Heldenbrand et al. BMC Bioinformatics (2019) 20:557
https://doi.org/10.1186/s12859-019-3169-7

SOFTWARE Open Access

Recommendations for performance
optimizations when using GATK3.8 and
GATK4
Jacob R Heldenbrand1, Saurabh Baheti2, Matthew A Bockol3, Travis M Drucker3, Steven N Hart4, Matthew E
Hudson5,9, Ravishankar K Iyer6, Michael T Kalmbach3, Katherine I Kendig1, Eric W Klee4, Nathan R
Mattson3, Eric D Wieben7, Mathieu Wiepert3, Derek E Wildman8,9 and Liudmila S Mainzer1,9*

Abstract

Background: Use of the Genome Analysis Toolkit (GATK) continues to be the standard practice in genomic variant
calling in both research and the clinic. Recently the toolkit has been rapidly evolving. Significant computational
performance improvements have been introduced in GATK3.8 through collaboration with Intel in 2017. The first
release of GATK4 in early 2018 revealed rewrites in the code base, as the stepping stone toward a Spark
implementation. As the software continues to be a moving target for optimal deployment in highly productive
environments, we present a detailed analysis of these improvements, to help the community stay abreast with
changes in performance.

Results: We re-evaluated multiple options, such as threading, parallel garbage collection, I/O options and data-level
parallelization. Additionally, we considered the trade-offs of using GATK3.8 and GATK4. We found optimized parameter
values that reduce the time of executing the best practices variant calling procedure by 29.3% for GATK3.8 and 16.9%
for GATK4. Further speedups can be accomplished by splitting data for parallel analysis, resulting in run time of only a
few hours on whole human genome sequenced to the depth of 20X, for both versions of GATK. Nonetheless, GATK4 is
already much more cost-effective than GATK3.8. Thanks to significant rewrites of the algorithms, the same analysis can
be run largely in a single-threaded fashion, allowing users to process multiple samples on the same CPU.

Conclusions: In time-sensitive situations, when a patient has a critical or rapidly developing condition, it is useful to
minimize the time to process a single sample. In such cases we recommend using GATK3.8 by splitting the sample
into chunks and computing across multiple nodes. The resultant walltime will be nnn.4 hours at the cost of $41.60 on
4 c5.18xlarge instances of Amazon Cloud. For cost-effectiveness of routine analyses or for large population studies, it is
useful to maximize the number of samples processed per unit time. Thus we recommend GATK4, running multiple
samples on one node. The total walltime will be ∼34.1 hours on 40 samples, with 1.18 samples processed per hour at
the cost of $2.60 per sample on c5.18xlarge instance of Amazon Cloud.

Keywords: GATK, Genomic variant calling, Best practices, Computational performance, Cluster computing,
Parallelization

*Correspondence: lmainzer@illinois.edu
1 National Center for Supercomputing Applications, University of Illinois at
Urbana-Champaign, 1205 W. Clark St., Urbana, IL, USA
9 Institute for Genomic Biology, University of Illinois at Urbana-Champaign,
1206 W Gregory Dr., Urbana, IL, USA
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-3169-7&domain=pdf
http://orcid.org/0000-0001-7121-0214
mailto: lmainzer@illinois.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Heldenbrand et al. BMC Bioinformatics (2019) 20:557 Page 2 of 9

Background
The evolution of sequencing technologies [1, 2] encour-
aged many applications of Whole Genome Sequencing
(WGS) and Whole Exome Sequencing (WES) in genomic
research and the clinic [3, 4]. One of these applica-
tions is genomic variant calling, commonly performed
using the Genome Analysis Toolkit (GATK), maintained
by the Broad Institute [5–8]. As sequencing machines
become faster and cheaper [9], analysis must speed up as
well. Yet variant calling analysis using GATK still takes
many hours, or even days, on deeply sequenced samples
[10–13]. A number of proprietary solutions have emerged
in response to this over the last five years, such as Isaac
[14], Sentieon’s DNASeq [15, 16], Genalice [17] and Dra-
gen [18]. However, they are either closed-source or do not
follow the GATK Best Practices [7, 8]. Accelerating the
GATK open-source code itself is of tremendous interest
to the bioinformatics community, for the sake of repro-
ducibility and openness of biomedical research. To this
end the Broad Institute partnered with Intel to intro-
duce computational performance optimizations [19–21].
GATK3.8 is the latest release of the "traditional" Java-
based GATK designed to work on regular servers or
compute clusters, and was announced to contain signifi-
cant computational performance improvements through
the collaboration with Intel [22].
In addition to optimizations of the traditional variant

calling algorithms [10–13], the community also has been
calling for a variant calling toolkit that can take advan-
tage of dedicated MapReduce platforms, as Hadoop [23]
and especially Spark [24–26] are more appropriate for this
type of genomic data analysis compared to traditional high
performance computing (HPC). Thus GATK4, first offi-
cially released in January of 2018, is meant to be eventually
deployed on data analytics platforms. At present it con-
tains both Spark and non-Spark implementations of many
of the tools and is thus still runnable in traditional HPC
clusters. Yet even the non-Spark implementation has been
significantly rewritten relatively to the GATK3.x versions,
to improve maintainability and speed.
How do these changes affect the deployment prac-

tices of GATK-based variant calling workflows in pro-
duction clinical and research settings, and what are the
optimal patterns of deployment? We are the first to
have performed a detailed scalability analysis of these
new GATK versions to ascertain the advertised speedup.
Based on those results we have developed appropriate
sample-based parallelization techniques and deployment
recommendations for the end users. Because most of
the Spark tools were still in beta at the time of the ini-
tial release, we focused our testing on the non-Spark
implementations.
When optimizing a workflow, one can perform two

distinct optimizations, and we explore them both:

maximizing speed to minimize the time to process a
single sample; useful in time-critical situations, i.e. when a
patient has a critical or rapidly developing condition;
maximizing throughput to maximize the number of

samples processed per unit time; cost-effective for routine
analyses or large population studies.
Overall we did find that both GATK versions yield an

impressive walltime <4 hours (excluding alignment) on
a 20X WGS human data, with appropriate sample-level
parallelization.

Implementation
We implemented a battery of benchmarking scripts to
perform the testing of GATK3.8 and GATK4 tools, as
described below.

Software versions
GATK3.8 was downloaded from the Broad Institute’s
software download page, build GATK-3.8-0-ge9d806836.
Picard version 2.17.4 and GATK4.0.1.2 were downloaded
from GitHub as pre-compiled jar files.

Tools
Our benchmarking focused on the GATK Best Prac-
tices [7, 8] starting from the duplicate marking stage
through variant calling. The MarkDuplicates tool is
not part of GATK3 and was called from a sepa-
rate toolkit, Picard. MarkDuplicates is included directly
into GATK4. Realignment is no longer recommended,
and was not tested. The base recalibration process
consists of two tools, BaseRecalibrator and Print-
Reads(GATK3.8)/ApplyBQSR(GATK4). The final tool we
benchmarked was HaplotypeCaller, which is common to
both versions of GATK.

Data
A dataset corresponding to whole genome sequencing
(WGS) performed on NA12878 [27, 28] to ∼20X depth
was downloaded from Illumina BaseSpace on Dec 16,
2016. The paired-ended, 126 nt reads were aligned with
BWA MEM [29] against the hg38 human reference (Oct
2017 GATK Bundle) and sorted with Novosort [30] prior
to benchmarking. Some settings required multiple tests
and measurements; in those cases we only used the reads
that mapped to chromosome 21. For known sites, dbSNP
build 146 was used.

Hardware
All tests were conducted on Skylake Xeon Gold 6148 pro-
cessors with 40 cores, 2.40 GHz. Each node had 192 GB,
2666MHz RAM. The nodes were stateless, connected to a
network-attached IBMGPFS ver. 4.2.1 with custommeta-
data acceleration. The cluster used EDR InfiniBand with
100 Gb/sec bandwidth, 100 ns latency. Nodes ran Red Hat
Enterprise Linux 6.9.

https://github.com/ncsa/GATK_Benchmarking
https://software.broadinstitute.org/gatk/download/archive

Heldenbrand et al. BMC Bioinformatics (2019) 20:557 Page 3 of 9

Fig. 1 GATK3.8 Thread Scalability. a Scalability of BaseRecalibrator, PrintReads and HaplotypeCaller. Sample: NA12878 WGS. Fold change refers to
the fold difference in walltime between the new measurement when compared to the performance with a single thread
((newtime − baselinetime)/baselinetime). b Scalability of PrintReads, in more detail. Normally walltime should decrease with thread count, as the
computation is performed in parallel by multiple threads. However, in the case of PrintReads the opposite is observed. The increasing walltime as a
function of thread count therefore signifies poor scalability and explains the decreasing trend for PrintReads line on panel (a). Sample: NA12878 chr
21. Error bars denote 1 SD around the mean of three replicates

Results
GATK3.8 tool-level thread scalability
Threading is one way of implementing parallelization
to speed up a program. Data-level parallelization is fre-
quently used in bioinformatics, by subdividing the input
data into smaller chunks that can be worked on in par-
allel by the threads. It is useful to know how well a
program scales with thread count: ideally the run time
should decrease proportionately to the number of threads
used on the data The non-Spark GATK4 version is
entirely single-threaded, except for the PairHMM portion
of HaplotypeCaller (“PairHMM scalability in GATK4 hap-
lotypeCaller” section below). Picard’s MarkDuplicates is
also single-threaded. Thus, our thread scalability testing
focused on the GATK3.8 tools, which utilizes user-level
options (-nct and -nt) to control how many computer
cores should be engaged by the program, and how many
threads one should deploy per core. We measured the
walltime for each tool when invoked with a certain thread

count, in the range from 1 to 40. We kept nt at 1 and mod-
ified nct, aiming to engage multiple cores on our nodes
and varying the number of software threads running on
the multi-core CPU. When reporting one thread for Hap-
lotypeCaller, we mean that one thread of each type was
used. We tracked the number of cores engaged and the
number of threads spawned via the linux top command.
The tools respond differently to multithreading, and all

show suboptimal scalability: run time decreases less than
the increase factor of the thread count. Both BaseRecal-
ibrator and HaplotypeCaller experience a 5-fold speedup
compared to a single-threaded run when using 16 threads,
but do not scale beyond that (Fig. 1a). PrintReads gains
an initial improvement with 3 threads (the apparent opti-
mum for our dataset), and experiences degraded perfor-
mance at higher thread counts (Fig. 1b).
Suboptimal scalability can occur for a variety of reasons.

In the I/O-heavy bioinformatics applications, which fre-
quently have to repeatedly grab data from disk, do work

Fig. 2 GATK4 thread scalability for Java parallel garbage collection. Sample: NA12878 WGS. The measurements at 1 PGC thread represent the
default, meaning that PGC is not enabled. Error bars denote SD around the mean of three replicates. aMarkDuplicates. b BaseRecalibrator

Heldenbrand et al. BMC Bioinformatics (2019) 20:557 Page 4 of 9

in RAM, then write back to disk, the performance usu-
ally degrades due to disk access latency, network latency in
communicating to the filesystem, and thread contention
for RAMbandwidth. Thus, requestingmany threads is not
optimal for the GATK3.8 tools, and one has to balance
the number of tools running per-node vs. the number of
threads requested per-tool, to ensure full node utilization
without degraded performance. Performance gains could
be achieved by using internal SSDs on the compute nodes,
thus avoiding the network and spinning disk access issues
during the computation.

GATK4 parallel garbage collection
Garbage Collection in JAVA is a mechanism to automati-
cally remove from memory the variables and objects that
are no longer useful or necessary for computation. This
frees the developer from the need to worry about man-
ually destroying those objects in the code, thus reducing
the code base and eliminating the possibility of ”forget-
ting” to do this, which otherwise could result in out-of-
memory errors. This is a very useful feature in JAVA, and
worth paying attention to when optimizing runtime per-
formance inGATK, which is JAVA-based code. A previous
study [10] found that enabling Java parallel garbage collec-
tor (PGC) with up to 32 threads improved the walltime of
GATK3.7. We explored this effect in the GATK4 tools.
The flags enabling PGC are passed to the GATK4 launch

script via the “–java-options” flag:

/path/to/gatk --java-options \
"-XX:+UseParallelGC \
-XX:ParallelGCThreads=<value>"

We found that enabling PGC for either ApplyBQSR or
HaplotypeCaller had no impact or even degraded per-
formance, depending on the number of threads used
(data not shown). However, in MarkDuplicates using 2-4
PGC threads provided optimal performance (Fig. 2a). For
BaseRecalibrator, there is much more variability that we
could not link to the state of the cluster (Fig. 2b). The opti-
mal thread choice appears to be around 24 threads, but the
high walltimes at thread counts close to 24 suggest that it
may be more reliable for end users to 1) perform a similar
thread count sweep on one’s own system to find the opti-
mum, or 2) leave parallel garbage collection off to avoid
one of the sub-optimal thread counts.
We took a cursory look at PGC scalability in GATK3.8

and did not find significant improvements. In Picard’s
MarkDuplicates, the optimum lies at approximately 2
PGC threads.
It is not clear why GATK4 performance could not

be improved by using PGC multithreading to the same
extent as has been reported for GATK3.7, except that per-
haps GATK4 code was still relatively fresh at the time of
our testing, and further improvements would have been

Table 1 Effects of asynchronous I/O settings on walltime (hours)
in GATK4

Async I/O activated?

Tool Name no all only for samtools I/O

BaseRecalibrator 4.07 2.95 2.88

ApplyBQSR 2.38 2.07 2.08

HaplotypeCaller 17.25 17.31 17.08

Sample: NA12878 WGS.

made later. We recommend users to run a cursory PGC
thread scalability analysis on their systems to establish
how GATK4 tools behave on their specific hardware. The
extra human time spent doing this could buy substan-
tial walltime and therefore financial savings, if the facility
must provide high-throughput analysis of large volumes
of genomic data on a continuous basis.

Asynchronous i/O in GATK 4
GATK4 has two types of asynchronous read/write
options: Samtools I/O and Tribble I/O. “Tribble” is a
specialized data format, mainly used for index files.
To enable asynchronous I/O, one must edit the fol-
lowing variables in a gatk-properties file, located at
src/main/resources/org/broadinstitute/hellbender/utils/
config/GATKConfig.properties in the GATK GitHub
repository:

samjdk.use_async_io_read_samtools
samjdk.use_async_io_write_samtools
samjdk.use_async_io_write_tribble

Fig. 3 GATK4 thread scalability in HaplotypeCaller. Sample: NA12878
chr21. Error bars denote 1 SD around the mean of three replicates

Heldenbrand et al. BMC Bioinformatics (2019) 20:557 Page 5 of 9

Table 2 Splitting the genome by chromosomes

Chr Length Split 2 Split 3 Split 6 Split 12 Split 16

1 248,956,422

1,674,883,629

1,061,198,324

491,149,951
248,956,422 248,956,422

2 242,193,529 242,193,529 242,193,529

3 198,295,559

570,048,373

198,295,559 198,295,559

4 190,214,555 190,214,555 190,214,555

5 181,538,259
352,344,238

181,538,259

6 170,805,979

1,015,844,658

475,290,588

170,805,979

7 159,345,973
304,484,609

159,345,973

8 145,138,636 145,138,636

9 138,394,717

540,554,070

272,192,139
138,394,717

10 133,797,422

1,413,386,203

133,797,422

11 135,086,622
268,361,931

135,086,622

12 133,275,309
247,639,637

13 114,364,328

1,011,226,850

496,995,021

323,399,23514 107,043,718
209,034,907

15 101,991,189

16 90,338,345

253,969,071 253,969,07117 83,257,441

18 80,373,285

514,231,829

19 58,617,616

220,590,234 220,590,234
20 64,444,167

21 46,709,983

22 50,818,468

X 156,040,895
213,268,310 213,268,310

Y 57,227,415

Horizontal lines segregate the chunks. Numbers indicate the total number of nucleotides in each resultant chunk of data.

Each of these variables can be either “true” or
“false”. The properties file is passed to GATK with
the “–gatk-config-file” flag. Because GATK4 MarkDu-
plicates is just a port of Picard’s tool of the same
name, it does not accept a configuration file. We ran

HaplotypeCaller with a single thread for this series
of tests.
We found it best to enable asynchronous I/O for Sam-

tools reading and writing and disable it for Tribble I/O
(Table 1).

Fig. 4 Effects of data-level parallelization in GATK3.8. Sample: NA12878 WGS. The “Baseline” was a naive approach where we gave each tool 40
threads (1 thread per core). The “Baseline Optimized” gave each tool 40 threads, except for PrintReads, which utilized 3 threads. MarkDuplicates and
BaseRecalibrator were given 2 and 20 parallel garbage collection threads, respectively. “Split 2,” “Split 3,” etc. means that the aligned sorted BAM was
split into 2, 3, etc. chunks, as shown in Table 2. Panel (a) shows experiments with chunks computing on the same node. In panel (b) computation
was spread across nodes in groups of 3 chunks per node

Heldenbrand et al. BMC Bioinformatics (2019) 20:557 Page 6 of 9

Fig. 5 Effects of data-level parallelization in GATK 4. All compute was
kept within the same node. Sample: NA12878 WGS. “Split 2,” “Split 3,”
etc. means that the aligned sorted BAM was split into 2, 3, etc. chunks,
as shown in Table 2

PairHMM scalability in GATK4 haplotypeCaller
Intel partnered up with the Broad Institute to create the
Genomics Kernel Library (GKL), which includes key opti-
mizations to the HaplotypeCaller algorithm. The library
introduces AVX optimized versions of the PairHMM and
Smith-Waterman algorithms. Additionally, OpenMP sup-
port was added to the PairHMM algorithm to enable mul-
tithreading. While the library was developed to be used
in GATK4, the AVX capabilities were back propagated to
GATK3.8 as well.
The pre-built GATK4 that we downloaded from the

repository was already configured to automatically detect
hardware support for AVX. On our Skylake architecture,
AVX-512 was utilized automatically.
The multi-threaded implementation of the PairHMM

algorithm can be enabled with the following flags:

--pairHMM AVX_LOGLESS_CACHING_OMP

and

--native-pair-hmm-threads <thread num>.

The optimum for GATK4 HaplotypeCaller seems to be
around 10 threads (Fig. 3).

Splitting by chromosome
To achieve the greatest speedup, it is often efficient to
split data by chromosome and process each interval in
parallel. Here, we split the aligned sorted BAM into vary-
ing numbers of roughly equal-size chunks (Table 2) by
using the GATK interval flag (-L) to observe how split-
ting affected walltime. The chunks were either kept on the
same node for maximal utilization of cores (“within-node”
parallelization) or spilled to more nodes for even shorter
walltime (“across-node” parallelization).
The previously discussed optimizations were applied in

these experiments for both GATK3.8 and GATK4. For
“within-node splitting,” we strove to optimally fill up our
40-core Skylake nodes by adjusting optimization param-
eters based on the number of chunks being processed in
parallel within the node. For example, in GATK3.8 the
optimal thread count for a tool may be around 10 threads,
but we set the thread count for each chunk to 3 when
the input is split into 12 chunks, while keeping all com-
putations on the same node. Parallel garbage collection
degrades the performance of BaseRecalibrator at lower
thread counts and was therefore not used in the splitting
experiments. Parallel GC was used with MarkDuplicates,
but with only 2 threads, as that was optimal.

GATK3.8 results For within-node parallelization beyond
three chunks, the benefit of splitting the data begins
to be counteracted by the degradation in performance
caused by decreasing the thread count of each tool
(Fig. 4a). Thus it makes sense to spread execution

Fig. 6 GATK4 throughput testing. Total walltime was benchmarked while running multiple samples simultaneously on the same node. As more
samples are placed on the node, the threads given to HaplotypeCaller were reduced accordingly. Sample: NA12878 WGS. a Total walltime for
running a batch of many samples on the same node. b Number of samples effectively processed per hour

Heldenbrand et al. BMC Bioinformatics (2019) 20:557 Page 7 of 9

Table 3 Summary of optimized parameter values

Tool name GATK3.8 GATK4

PGC Tool threads PGC Async AVX threads

MarkDuplicates 2 threads 1 2 threads N/A N/A

BaseRecalibrator 20 threads -nct 40 20 threads
Yes for Samtools, No
for Tribble

N/A

ApplyBQSR off -nct 3 off N/A

HaplotypeCaller off -nt 1 -nct 39 off 8

over multiple nodes. We tested processing 6 chunks
on 2 nodes, and 12 chunks on 4 nodes - thus keep-
ing to 3 chunks per node (Fig. 4b). This further
reduced the total walltime, although perhaps at a higher
compute cost.

GATK4 results Splitting the aligned sorted BAM into
chunks is simple in GATK4, as the only multithreaded
tool is HaplotypeCaller. We again split into 2, 3,
6, and 16 chunks, which were kept on the same
node, and the PairHMM thread count for Haplotype-
Caller was adjusted accordingly (Fig. 5). In contrast
to the results we observed for GATK3.8, the walltime
keeps improving when splitting all the way down to
16 chunks.

Throughput
When optimizing throughput, one is maximizing the
number of samples processed per unit time, albeit at the
cost of higher walltime per sample. Because GATK4 is at
present single-threaded by design, it lends itself extremely
well to this kind of optimization. We created 40 copies
of the NA12878 aligned sorted BAM file and processed
them in parallel on a single 40-core node (Fig. 6). The
overall walltime does increase as one adds more samples
to a node, probably due to contention for memory access
and possibly disk I/O. However, the overall throughput
increases substantially up until around 20 samples per
node. Placing more than 20 samples on a 40-core Skylake
node is probably not cost-effective.

Discussion
The tested optimizations intended to speed up com-
putation in individual GATK tools are summarized in
Table 3. When applied together, these optimizations sig-
nificantly reduce the walltime on NA12878 WGS 20X
(no splitting by chromosome). In GATK3.8 the MarkDu-
plicates → BaseRecalibrator → PrintReads → Haplo-
typeCaller walltime went from 21.7 hours down to 15.3
hours (29.3% improvement). In GATK4 the MarkDu-
plicates → BaseRecalibrator → ApplyBQSR → Haplo-
typeCaller walltime went from 24.9 hours to 20.7 hours
(16.9% improvement). Note that the walltime is fairly
comparable between the two GATK versions despite
the single-threaded nature of GATK4, highlighting the
performance optimizations introduced into that new
release due to complete rewrite of many portions of
the code.
Further walltime improvement can be achieved via split-

ting the aligned sorted BAMby chromosome. In GATK3.8
the walltime is reduced down to 5 hours when BAM is
split into 16 chunks running on the same node – a 76.9%
improvement relative to the unoptimized, unsplit config-
uration. Further benefit can be achieved by splitting into
12 chunks across 4 nodes: down to 3.4 hours (84.3% total
improvement). A similar walltime of 3.6 hours is accom-
plished in GATK4 by splitting into 16 chunks running on
the same node – potentially a very cost-effective solution.
To assess the financial costs and benefits resulting from

the various configurations of the pipeline, we calculated
the dollar amount for our runs based on AWS pricing.

Table 4 Financial costs per sample when running an optimized pipeline, based on AWS on-demand pricing as of August 2019:
c5.9xlarge at $1.53 per hour and c5.18xlarge at $3.06 per hour

GATK version Splitting Samples Nodes Walltime, hrs c5.9xlarge c5.18xlarge

GATK 4.0.1.2 no splitting 1 1 20.7 $31.7 $63.3

GATK 3.8 no splitting 1 1 15.3 $23.4 $46.8

GATK 3.8 12 chunks 1 4 3.4 $20.8 $41.6

GATK 3.8 6 chunks 1 2 4.7 $14.4 $28.8

GATK 3.8 16 chunks 1 1 5.0 $7.7 $15.3

GATK 4.0.1.2 16 chunks 1 1 3.6 $5.5 $11.0

GATK 4.0.1.2 no splitting 40 1 34.1 $1.3 $2.6

Configurations are sorted by cost.

Heldenbrand et al. BMC Bioinformatics (2019) 20:557 Page 8 of 9

All our nodes are built with 40-core Skylake CPUs and
192 GB of RAM. This does not exactly match any of the
AWS Skylake instances: c5.9xlarge gives 36 cores and 72
GB of RAM, and c5.18xlarge gives 72 cores and 144 GB
of RAM. Our optimizations do aim to maximally pack
our nodes with processes, but 72 GB of RAM would
probably be insufficient for some high-throughput config-
urations. Thus Table 4 gives cost estimates for both types
of instances, with the understanding that true values are
somewhere in between. The Google cloud provides n1-
standard-32 instances with 32 cores and 120 GB of RAM,
which are more similar to our nodes and therefore provide
a closer benchmark. Their cost is $1.51 per hour, which
is very close to the AWS c5.9xlarge at $1.52 per hour, and
therefore the same dollar estimates apply.
The data emphasize the trade-off between speed and

per-sample cost of the analysis. One could achieve the
two types of optimizations outlined in the Background
section, using our recommendations as follows.

Maximizing speed: to minimize the time to process a
single sample, useful in time-critical situations, i.e.
when a patient has a critical or rapidly develop-
ing condition, use GATK3.8 by splitting the sample
into 12 chunks and computing across 4 nodes; resul-
tant walltime is 3.4 hours at the cost of $41.60 on
c5.18xlarge.

Maximizing throughput: to maximize the number of
samples processed per unit time, cost-effective for
routine analyses or large population studies, use
GATK4.0.1.2 by running 40 samples on one node;
total walltime is 34.1 hours with 1.18 samples pro-
cessed per hour at the cost of $2.60 per sample.

Our study does not encompass the performance issues
of Spark code in GATK4, because that functionality was
not ready for use as of the time of this writing.

Conclusions
In this paper, we presented efficient methodology for
running the Best Practices variant calling pipeline in a
time-sensitive manner by employing run-time optimizing
software parameters and data-level parallelizations. We
showed a significant improvement in run time on whole
human genome data, compared to previous benchmark-
ing efforts. Both GATK3.8 and GATK4 are still useful, for
different purposes. The Spark functionality of GATK4 is
expected to bring still further speedups to this widely used
and valuable code base.

Abbreviations
AVX: Advanced vector extensions; AWS: Amazon web services; BQSR: Base
quality score recalibration; CPU: Central processing unit; GATK: Genome
analysis toolkit; GC: Garbage collection; GKL: Genomics kernel library; HPC: High
performance computing; I/O: input-output; PGC: Parallel garbage collector;
RAM: Random access memory; SNP: Single nucleotide polymorphism; WES:
Whole exome sequencing; WGS: Whole genome sequencing

Acknowledgments
We thank Dr. Neil Cohen at Interdisciplinary Health Sciences Institute, as well
as the UIUC Institute for Genomic Biology and the National Center for
Supercomputing Applications for their generous support and access to
resources. We particularly acknowledge the support of Keith Stewart, M.B.,
Ch.B., Mayo Clinic/Illinois Grand Challenge Sponsor and Director of the Mayo
Clinic Center for Individualized Medicine. Many thanks to the GATK team at
the Broad Institute for their consultation and advice on the internals of GATK.
Special gratitude to Gay Reed and Amy Weckle for outstanding project
management.

Authors’ contributions
JRH designed the performance metrics, measured walltime improvements,
analyzed the results and wrote the manuscript. SB, MAB, TMD, SNH, MEH, RKI,
MTK, EWK, NRM, EDW, MW, DEW, LSM conceived of the work and consulted on
the various bioinformatics aspects of the project. KIK managed the project and
prepared the manuscript. LSM supervised the project, designed experiments,
interpreted the results and prepared the manuscript. All authors read and
approved the final manuscript.

Funding
This work was a product of the Mayo Clinic and Illinois Strategic Alliance for
Technology-Based Healthcare. Major funding was provided by the Mayo Clinic
Center for Individualized Medicine and the Todd and Karen Wanek Program for
Hypoplastic Left Heart Syndrome. LSM is an H3ABioNet member and is partly
supported by the National Institutes of Health Common Fund under grant
number U41HG006941. The content is solely the responsibility of the author
and does not necessarily represent the official views of the National Institutes
of Health. The funding bodies played no role in the design of the study and
collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data andmaterials
The sequencing reads for NA12878 were downloaded from Illumina
BaseSpace using a process that requires creation of account as described on
their website. The dbSNP build 146 was downloaded from the NCBI FTP site

Ethics approval and consent to participate
Not Applicable

Consent for publication
Not Applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1 National Center for Supercomputing Applications, University of Illinois at
Urbana-Champaign, 1205 W. Clark St., Urbana, IL, USA. 2 Mayo Clinic,
Department of Research Services, 200 1st St. SW, Rochester, MN, USA. 3 Mayo
Clinic, Department of IT Executive Administration, 200 1st St. SW, Rochester,
MN, USA. 4 Mayo Clinic, Department of Health Sciences Research, 200 1st St.
SW, Rochester, MN, USA. 5 Department of Crop Sciences, University of Illinois
at Urbana-Champaign, 1102 S. Goodwin Ave., Urbana, IL, USA. 6 Department
of Electrical and Computer Engineering, University of Illinois at
Urbana-Champaign, 306 N. Wright St., Urbana, IL, USA. 7 Mayo Clinic,
Department of Biochemistry and Molecular Biology, 200 1st St. SW, Rochester,
MN, USA. 8 Department of Molecular and Integrative Physiology, University of
Illinois at Urbana-Champaign, 407 S. Goodwin Ave., Urbana, IL, USA. 9 Institute
for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W
Gregory Dr., Urbana, IL, USA.

Received: 25 March 2019 Accepted: 22 October 2019

References
1. Metzker ML. Sequencing technologies - the next generation. Nat Rev

Genet. 2010;11(1):31–46. https://doi.org/10.1038/nrg2626. Accessed
2017-09-19.

2. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of
next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):
333–51. https://doi.org/10.1038/nrg.2016.49.

https://www.illumina.com/platinumgenomes.html
ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606/?__xts__5B05D=68.ARAC2IGn1OC-HSLWFaLsbUW34gEju8t8NsCWAcmVJmbUISXJoEqmUNFs3A9fuEqtS8LL0hPbqcuAsixNoycHk6oq0EFJQ-bo7R7N2t6nl7LqwpoROJzC54kCkDHTCjpCGNZ9ummnaVzza6Wns6ItvsJwynlwhZIqwxA-11ed7sV1hC0bwBaoJoa5s4Ijk00kIc1EjElXMOPlTEAkJG00n5301HqB1uL_CTxc0pwZ9ACrBSgGLImWE0W3KzQJ5WKmM0QSFHSOrh9Die7UweQT1XMzn06LoWQogXu27XziZK6KcDh-4R6FU8kzX6IU-PJ_2r3qyazeWsee7Rcx0zDc&__tn__=-UK-R
https://doi.org/10.1038/nrg2626
https://doi.org/10.1038/nrg.2016.49

Heldenbrand et al. BMC Bioinformatics (2019) 20:557 Page 9 of 9

3. Rabbani B, Tekin M, Mahdieh N. The promise of whole-exome
sequencing in medical genetics. J Hum Genet. 2014;59(1):5–15. https://
doi.org/10.1038/jhg.2013.114. Accessed 2017-09-19.

4. Allard MW. The future of whole-genome sequencing for public health
and the clinic. J Clin Microbiol. 2016;54(8):1946–8. https://doi.org/10.
1128/JCM.01082-16. Accessed 2017-09-19.

5. The Broad Institute. GATK |Best Practices. 2017. https://software.
broadinstitute.org/gatk/best-practices/. Accessed 2017-08-12.

6. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome
Analysis Toolkit: A MapReduce framework for analyzing next-generation
DNA sequencing data. Genome Res. 2010;20(9):1297–303. https://doi.
org/10.1101/gr.107524.110.

7. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C,
Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ,
Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly
MJ. A framework for variation discovery and genotyping using
next-generation dna sequencing data. Nat Genet. 2011;43(5):491–8.
https://doi.org/10.1038/ng.806. Accessed 2017-09-19.

8. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G,
Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E,
Garimella KV, Altshuler D, Gabriel S, DePristo MA. From fastq data to
high confidence variant calls: the genome analysis toolkit best practices
pipeline. Curr Protoc Bioinformatics. 2013;11(1110):11–101111033.
https://doi.org/10.1002/0471250953.bi1110s43. Accessed 2017-09-19.

9. Illumina. Illumina sequencing platforms. 2018. https://www.illumina.com/
systems/sequencing-platforms.html. Accessed 17 Jun 2018.

10. Kathiresan N, Temanni R, Almabrazi H, Syed N, Jithesh PV, Al-Ali R.
Accelerating next generation sequencing data analysis with system level
optimizations. Sci Rep. 2017;7(1):9058.

11. Costa CH, Misale C, Liu F, Silva M, Franke H, Crumley P, D’Amora B.
Optimization of genomics analysis pipeline for scalable performance in a
cloud environment. In: 2018 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM). Piscataway: IEEE; 2018. p.
1147–54.

12. Liu S-M, Lin Z-Y, Ju J-L, Chen S-J. Acceleration of variant discovery tool in
gatk. In: 2018 IEEE 23rd International Conference on Digital Signal
Processing (DSP). Piscataway: IEEE; 2018. p. 1–4.

13. Banerjee SS, Athreya AP, Mainzer LS, Jongeneel CV, Hwu W-M,
Kalbarczyk ZT, Iyer RK. Efficient and scalable workflows for genomic
analyses. In: Proceedings of the ACM International Workshop on
Data-Intensive Distributed Computing; 2016. p. 27–36. https://doi.org/10.
1145/2912152.2912156.

14. Raczy C, Petrovski R, Saunders CT, Chorny I, Kruglyak S, Margulies EH,
Chuang H-Y, Källberg M, Kumar SA, Liao A, Little KM, Strömberg MP,
Tanner SW. Isaac: ultra-fast whole-genome secondary analysis on illumina
sequencing platforms. Bioinformatics. 2013;29(16):2041–3. https://doi.
org/10.1093/bioinformatics/btt314. Accessed 2017-09-19.

15. Freed DN, Aldana R, Weber JA, Edwards JS. The sentieon genomics
tools-a fast and accurate solution to variant calling from next-generation
sequence data. BioRxiv. 2017115717. https://doi.org/10.1101/115717.

16. Weber JA, Aldana R, Gallagher BD, Edwards JS. Sentieon dna pipeline for
variant detection-software-only solution, over 20× faster than gatk 3.3
with identical results. PeerJ PrePrints 4:e1672v2; 2016. https://doi.org/10.
7287/peerj.preprints.1672v2.

17. Plüss M, Kopps AM, Keller I, Meienberg J, Caspar SM, Dubacher N,
Bruggmann R, Vogel M, Matyas G. Need for speed in accurate whole-
genome data analysis: Genalice map challenges bwa/gatk more than
pemapper/pecaller and isaac. Proc Nat Acad Sci. 2017;114(40):8320–2.

18. Miller NA, Farrow EG, Gibson M, Willig LK, Twist G, Yoo B, Marrs T,
Corder S, Krivohlavek L, Walter A, et al. A 26-hour system of highly
sensitive whole genome sequencing for emergency management of
genetic diseases. Genome Med. 2015;7(1):100.

19. Intel, Broad Institute Announce Breakthrough Genomics Analytics Stack.
https://www.hpcwire.com/off-the-wire/intel-broad-institute-announce-
breakthrough-genomics-analytics-stack/. Accessed 17 Jun 2018.

20. Genomic Research by Intel and Broad Institute. https://www.intel.com/
content/www/us/en/healthcare-it/solutions/genomics-broad-data.html.
Accessed 17 Jun 2018.

21. GATK: We’re Officially BFFs with Intel Now. https://gatkforums.
broadinstitute.org/gatk/discussion/8605/were-officially-bffs-with-intel-
now. Accessed 17 Jun 2018.

22. Version Highlights for GATK Version 3.8. https://gatkforums.
broadinstitute.org/gatk/discussion/10063/version-highlights-for-gatk-
version-3-8. Accessed 17 Jun 2018.

23. Decap D, Reumers J, Herzeel C, Costanza P, Fostier J. Halvade: scalable
sequence analysis with mapreduce. Bioinformatics. 2015;31(15):2482–8.

24. Mushtaq H, Al-Ars Z. Cluster-based apache spark implementation of the
gatk dna analysis pipeline. In: 2015 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM). Piscataway: IEEE; 2015. p. 1471–7.

25. Deng L, Huang G, Zhuang Y, Wei J, Yan Y. Higene: A high-performance
platform for genomic data analysis. In: 2016 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM). Piscataway: IEEE; 2016. p.
576–83.

26. Massie M, Nothaft F, Hartl C, Kozanitis C, Schumacher A, Joseph AD,
Patterson DA. Adam: Genomics formats and processing patterns for
cloud scale computing. Univ Cali, Berkeley Tech Rep, No. UCB/EECS-2013.
2013;207:2013.

27. Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, Salit
M. Integrating human sequence data sets provides a resource of
benchmark SNP and indel genotype calls. Nat Biotechnol. 2014;32(3):246.

28. Zook J, McDaniel J, Parikh H, Heaton H, Irvine SA, Trigg L, Truty R,
McLean CY, De La Vega FM, Xiao C, Sherry S, Salit M. Reproducible
integration of multiple sequencing datasets to form high-confidence
SNP, indel, and reference calls for five human genome reference
materials. bioRxiv. 2018. https://doi.org/10.1101/281006.

29. Li H. Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM. 2013. http://arxiv.org/abs/1303.3997v2.

30. NOVOCRAFT TECHNOLOGIES SDN BHD. Novocraft. 2014. http://www.
novocraft.com/. Accessed 2017-06-27.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1038/jhg.2013.114
https://doi.org/10.1038/jhg.2013.114
https://doi.org/10.1128/JCM.01082-16
https://doi.org/10.1128/JCM.01082-16
https://software.broadinstitute.org/gatk/best-practices/
https://software.broadinstitute.org/gatk/best-practices/
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1038/ng.806
https://doi.org/10.1002/0471250953.bi1110s43
https://www.illumina.com/systems/sequencing-platforms.html
https://www.illumina.com/systems/sequencing-platforms.html
https://doi.org/10.1145/2912152.2912156
https://doi.org/10.1145/2912152.2912156
https://doi.org/10.1093/bioinformatics/btt314
https://doi.org/10.1093/bioinformatics/btt314
https://doi.org/10.1101/115717
https://doi.org/10.7287/peerj.preprints.1672v2
https://doi.org/10.7287/peerj.preprints.1672v2
https://www.hpcwire.com/off-the-wire/intel-broad-institute-announce-breakthrough-genomics-analytics-stack/
https://www.hpcwire.com/off-the-wire/intel-broad-institute-announce-breakthrough-genomics-analytics-stack/
https://www.intel.com/content/www/us/en/healthcare-it/solutions/genomics-broad-data.html
https://www.intel.com/content/www/us/en/healthcare-it/solutions/genomics-broad-data.html
https://gatkforums.broadinstitute.org/gatk/discussion/8605/were-officially-bffs-with-intel-now
https://gatkforums.broadinstitute.org/gatk/discussion/8605/were-officially-bffs-with-intel-now
https://gatkforums.broadinstitute.org/gatk/discussion/8605/were-officially-bffs-with-intel-now
https://gatkforums.broadinstitute.org/gatk/discussion/10063/version-highlights-for-gatk-version-3-8
https://gatkforums.broadinstitute.org/gatk/discussion/10063/version-highlights-for-gatk-version-3-8
https://gatkforums.broadinstitute.org/gatk/discussion/10063/version-highlights-for-gatk-version-3-8
https://doi.org/10.1101/281006
http://arxiv.org/abs/1303.3997v2
http://www.novocraft.com/
http://www.novocraft.com/

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Software versions
	Tools
	Data
	Hardware

	Results
	GATK3.8 tool-level thread scalability
	GATK4 parallel garbage collection
	Asynchronous i/O in GATK 4
	PairHMM scalability in GATK4 haplotypeCaller
	Splitting by chromosome
	GATK3.8 results
	GATK4 results

	Throughput

	Discussion
	Conclusions
	Abbreviations
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

