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Abstract: In this work, the development of an electrochemical sensor for melatonin determination is
presented. The sensor was based on Sonogel-Carbon electrode material (SNGCE) and Au nanopar-
ticles (AuNPs). The low-cost and environmentally friendly SNGCE material was prepared by the
ultrasound-assisted sonogel method. AuNPs were prepared by a chemical route and narrow size
distribution was obtained. The electrochemical characterization of the SNGCE/AuNP sensor was
carried out by cyclic voltammetry in the presence of a redox probe. The analytical performance of
the SNGCE/AuNP sensor in terms of linear response range, repeatability, selectivity, and limit of
detection was investigated. The optimized SNGCE/AuNP sensor displayed a low detection limit
of 8.4 nM melatonin in synthetic samples assessed by means of the amperometry technique. The
potential use of the proposed sensor in real sample analysis and the anti-matrix capability were
assessed by a recovery study of melatonin detection in human peripheral blood serum with good
accuracy.

Keywords: Sonogel-Carbon electrode material; Au nanoparticles; poly(3,4-ethylenedioxythiophene);
electrochemical sensor; melatonin

1. Introduction

Melatonin (N-acetyl-5-methoxytryptamine, MEL) belongs to the organic compound
class known as 3-alkylindoles. This compound is an endogenous lipophilic hormone
secreted by the pineal gland in mammalian brain. Due to its antioxidant capacity, MEL
helps to regulate the sleep–wake cycle and the production of other hormones [1–3]. It
has been used in the treatment of several gastrointestinal diseases such as irritable bowel
system and ulcerative colitis as well as in neurodegenerative diseases such as Alzheimer’s
and Parkinson’s [4]. MEL is also recognized for its influence in the aging process, sleep
efficiency, seasonal affective disorder, retinal physiology, mood regulation, dreaming,
pubertal development in some species, and modulates blood pressure [5,6]. Furthermore,
MEL is a critical free radical scavenger and upregulates the immune response [7]. Due
to its important roles in numerous pathological, physiological, and biological processes,
unsuitable levels of melatonin in our bodies can lead to different diseases. For this reason,
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the development of a sensitive and selective method for MEL determination is highly
worthwhile for biomedical analysis and diagnosis.

Several analytical methodologies have been reported in the literature for melatonin
quantitation such as high-performance liquid chromatography [8–10], chemilumines-
cence [11], spectrofluorimetry [12,13], and enzyme-linked immunosorbent assays [14].
These methods provide accurate and reliable results, but these strategies are complex and
require high cost equipment and trained personnel. On the other hand, electrochemical
methods have attracted great attention due to their simplicity, low cost, reliability, and
fast analytical response [15]. Electrochemical methods have been exploited in the devel-
opment of various electrochemical sensors for the determination of melatonin [16]. The
electrochemical sensors based on carbon electrode materials have attracted great interest
due to their low cost, sensitivity, chemical inertness, and easy modification. Consequently,
carbon paste electrodes [17,18], waterproof paper [19], reduced graphene oxide [20], carbon
nanofibers embedded with FeCo alloy nanoparticles [21], and glassy carbon modified with
several compounds such as carbon black dispersion [22], palladium nanoparticles [23], and
multiwalled carbon nanotube-dihexadecyl hydrogen phosphate film [24], among others,
have been investigated.

As a cost effective and environmentally friendly alternative, Sonogel-Carbon electrodes
have been obtained by a sonocatalysis method based on the sol–gel route. In this way,
ultrasonic cavitation is achieved, promoting hydrolysis and polycondensation steps in
the absence of any kind of organic solvent. The Sonogel-Carbon based material has been
used in sensing and biosensing purposes due to its outstanding properties such as wide
operational potential window, low residual current, good mechanical properties, and good
stability in different solvents. In addition, it is easily modified by the incorporation of
several compounds such as enzymes [25–27] and metallic nanoparticles [28,29].

In this work, Sonogel-Carbon (SNGCE) and Sonogel-Carbon-modified with gold
nanoparticles (SNGCE/AuNPs) are proposed as sensing elements of an electrochemical
sensor for melatonin determination. The affordable cost and eco-friendly preparation of the
SNGCE material support its investigation as a sensing element in the development of an
electrochemical sensor for melatonin. The tailoring and design of the proposed electrochem-
ical sensor was achieved by exploring the well-known properties of gold nanoparticles for
electrochemical sensing applications [30,31]. The prepared sensing materials were further
investigated in terms of their electrochemical and electroanalytical properties and perfor-
mance toward melatonin determination. The morphology and the optical properties of the
prepared materials were studied by dynamic light scattering and UV–Vis spectroscopy. The
sensing materials were applied in the determination of melatonin in synthetic samples. The
analytical performance of the proposed sensor was assessed, and its potential applicability
was demonstrated by recovery studies in real samples such as human peripheral blood
serum.

2. Materials and Methods
2.1. Reagents and Solutions

Methyltrimethoxysilane (MTMOS) was obtained from Merck (Darmstadt, Germany)
and hydrochloric acid from Panreac (Barcelona, Spain). Sodium citrate trihydrate was pur-
chased from Scharlau (Scharlab, Barcelona, Spain) and potassium tetrachloroaurate(III) and
melatonine from Sigma–Aldrich (Sigma, Steinheim, Germany). Graphite powder natural,
high purity −200 mesh, 99.9999% (metal basis), was from Alfa-Aesar (Johnson Matthey
GmbH, Sulzbach, Germany). Sodium acetate (Sigma-Aldrich, Steinheim, Germany), glacial
acetic acid (Sigma-Aldrich, Steinheim, Germany), potassium hexacyanoferrate(III) (Sigma-
Aldrich, Steinheim, Germany), potassium hexacyanoferrate(II) trihydrate (Sigma-Aldrich,
Steinheim, Germany), monobasic potassium phosphate (Sigma-Aldrich, Steinheim, Ger-
many), and dibasic potassium phosphate (Sigma-Aldrich, Steinheim, Germany) were of
analytical grade. Standard melatonin was purchased from Sigma-Aldrich. Stock solution
of melatonin with concentrations of 1.0 × 10−2 M for cyclic voltammetry measurements
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and 1.0 × 10−4 M for analytical applications studies, respectively, were prepared in ethanol
due to its low solubility in water. Double distilled water was used for the preparation of
all aqueous solutions. Glass capillary tubes, i.d. 1.15 mm, were used as the bodies of the
sonogel composite electrodes. Nitrogen N-55 type was used to obtain inert atmospheres
and deaerating solutions in the measuring cell. All reagents were of analytical grade and
used as received without further purification.

2.2. Instrumentation

The synthesis of the SNGCE material as well as the ultrasonic synthesis of AuNPs
were carried out sonicating with a high-power ultrasound generator, SONICATOR 3000,
from MISONIX (MISONIX, Inc., Farmingdale, NY, USA) equipped with a 13-mm titanium
tip, which provides a maximum power of 600 W. UV–Visible spectra were recorded using a
Jasco V-550 (Easton, MD, USA) UV–Visible spectrophotometer.

The electrochemical measurements were performed using a three-electrode electro-
chemical cell connected to an Autolab potentiotstat/galvanostat 302 N (Ecochemie, The
Netherlands). A glassy carbon rod (Metrohm), a Ag/AgCl/KCl (3 M) electrode (Metrohm),
and an unmodified/modified SNGCE electrode were used as the auxiliary, reference, and
working electrodes, respectively. The pX1000-pH module of the potentiostat was used
for pH measurements. This module allows for recording of the temperature during the
experiments through a combined pH/Pt1000 sensor. The temperature measurement allows
for automatic pH corrections.

2.3. Preparation of Working Electrodes and Sensing Materials
2.3.1. Sonogel-Carbon Synthesis

A precursor mixture containing 500 µL MTMOS and 100 µL 0.2 M HCl solutions was
sonicated for 10 s, providing 10 W total power. After that, 500 mg of graphite powder was
added and homogeneously dispersed into the sonosol. Capillary tubes were used as the
bodies of the electrodes. After 24 h, the electrodes were finally polished, being ready to use
by inserting a copper wire as the electrical contact (see Schemes 1 and 2) [32].
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2.3.2. Preparation of Gold Nanoparticle Solution (AuNPs)

A total of 1.25 mL of 1.5 mM potassium tetrachloroaurate solution was sonicated
for 90 s. Afterward, 250 µL of 38.8 mM sodium citrate was added and the mixture was
sonicated for 4 min until the formation of red wine like solution. The total time of the
synthesis was 5 min and 30 s according to the literature [33].

Nanoparticle size was measured by using dynamic light scattering (DLS). UV–Vis
spectrophotometry was used in order to confirm the formation of gold nanoparticles. A
band located at 520 nm confirmed the formation of gold nanoparticles. Moreover, the mean
diameter of the AuNPs was measured and a value of a 12.3 (±3.9) nm obtained.

2.3.3. Sonogel-Carbon Modified with Gold Nanoparticles

The Sonogel-Carbon surface was modified by the drop casting of 4.1 µL gold nanopar-
ticle solution on the electrode surface and kept in the dark at room temperature for at least
24 h. Afterward, the modified electrodes were stored at 4 ◦C in the absence of light. The
obtained electrodes are referred to as SNGCE/AuNPs. In order to assess the deposition of
AuNPs, the prepared SNGCE/AuNP was characterized in cyclic voltammetry (CV) using
a ferrocyanide/ferricyanide redox couple.

2.4. Electrochemical Tests and Analytical Applications

The electrochemical features of SNGCE and SNGCE/AuNPs were explored by cyclic
voltammetry (CV) using the redox probe potassium hexacyanoferrate(III) [K3Fe(CN)6]. The
electrochemical impedance spectroscopy (EIS) measurements were performed in 0.5 M
KNO3 solution containing 5 mM K3Fe(CN)6/K4Fe(CN)6 as the redox probe at a bias
potential equal to the open circuit potential. The OCP value was +0.24 V vs. Ag/AgCl/KCl
(3 M) reference electrode. The EIS spectra were recorded over the frequency range from
100 kHz to 0.05 Hz using an excitation sin wave with amplitude of 5 mV (rms) superimposed
on the OCP. Following the first characterization step, CV and chronoamperometry (CA)
techniques were used in the investigation of the voltammetric and amperometric responses
of melatonin at the SNGCE and SNGCE/AuNP. Subsequently, the optimization of the
analytical performance of the prepared sensors toward melatonin determination was
performed by assessing the optimum working detection potential and pH values of the
solutions. Based on the optimal experimental conditions, the analytical calibration curves
for melatonin were built according to the multiple standard addition protocol by successive
additions of aliquots of melatonin stock solutions in the electrochemical cell containing a
supporting electrolyte solution (0.1 M PBS of pH 7). Analytical parameters such as linear
response range, repeatability, sensitivity, selectivity, and limit of detection for melatonin
electrochemical sensing were evaluated. The application of the proposed sensor in human
peripheral blood serum for melatonin determination was performed in order to assess
its potential applicability in a real sample analysis. The tests were carried out using the
standard addition protocol by spiking the serum sample with a known amount of melatonin
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and recording the chronoamperometric response of the sensor. The recovery values were
assessed from the measured current signals.

2.5. Blood Sample Collection and Processing

Fasting blood specimens were collected by venipuncture into BD Vacutainer SSTTM II
Advance tubes with a clot activator. Serum samples were obtained by blood clotting for 30
min at room temperature and centrifugation at 1000× g for 15 min at 4 ◦C. Lipemic, icteric,
or hemolytic specimens were excluded from this study. Serum samples were immediately
aliquoted into labeled cryo-vials and stored at −70 ◦C for further analyses. The study
was conducted following the principles outlined in the Declaration of Helsinki. The blood
specimens were collected according to protocol no. 15140/10.09.2019 approved by the
Institute of Oncology Bucharest Medical Ethics Committee. Signed informed consent was
obtained from all patients.

3. Results
3.1. Electrochemical Characterization of Sensing Materials

The modification of SNGCE with Au nanoparticles (AuNPs) was systematically inves-
tigated. The properties of the synthesized AuNPs were investigated by DLS and UV–Vis
spectroscopy. The size of the AuNPs is a key point for their applications because it might
influence the electrical, chemical, biological, and optical properties. All Au nanoparticle so-
lutions were investigated in the wavelength range from 350 to 750 nm, with a resolution of
1 nm. In Figure 1a, a well-defined band at 530 nm can be observed, which is a conventional
plasmon band for spherical nanoparticles. The average size of AuNPs was 12.3 (±3.9) nm
and the distribution of the AuNPs’ size is displayed in Figure 1b. The small size of AuNPs
could be beneficial for the development of a sensitive electrochemical sensor by an increase
in catalytic sites brought by the nanoparticles dispersed onto the electrode surface by drop
casting.
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Figure 1. (a) UV–Vis spectrum of the gold nanoparticle solution. (b) Size distribution of the gold
nanoparticles.

The prepared SNGCE/AuNPs was also characterized by CV in 0.5 M KNO3 solution
containing 5 mM K4Fe(CN)6 as a redox probe. Figure 2a depicts the CV traces recorded at
both SNGCE and SNGCE/AuNPs. There was an increase by ca. 24% in both anodic and
cathodic peak currents for SNGCE/AuNPs compared to unmodified SNGCE, attesting
to the good electrocatalytic properties and increased electron transfer capability of the
AuNPs. This behavior was confirmed by the EIS measurements. The inset of Figure 2a
exhibited a lowered Rct value when the electrode was covered with AuNPs. This finding
was attributed to the presence of AuNPs onto the SNGCE surface, which increased the
electron transfer capability toward the redox probe.
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(b) Equivalent electrical circuit used in the fitting of the EIS data.

The EIS data were fitted using an equivalent electrical circuit (EEC). The elements of
the EEC were as follows (see Figure 2b): the solution resistance, (Rs); the charge transfer
resistance (Rct); the infinite-length Warburg diffusion impedance, (ZW); and the constant
phase element (CPE, Q). The following fitted values were obtained: Rs = 130.3 Ω, Rct =
10,450.0 Ω, Q/Y0 = 2.8 × 10−6 Ω−1 s-n, n = 0.78, and ZW = 2.9 × 10−3 Ω, for SNGCE; Rs =
354.9 Ω, Rct = 4750.0 Ω, Q/Y0 = 6.5 × 10−6 Ω−1 s-n, n = 0.75, and ZW = 1.5 × 10−4 Ω, for
SNGCE/AuNPs, respectively.

The Nyquist plots for both electrodes exhibited a semicircular part at high frequencies
corresponding to the electron transfer process and a linear part corresponding to the
diffusion at low frequencies. At high frequencies, the diameter of the semicircle represents
the charge transfer resistance of the electrode interface. The SNGCE/AuNPs had a charge
transfer resistance of 4750 Ω, which was lower than SNGCE (i.e., 10,450 Ω), indicating that
AuNPs increased the electrical conductivity and the electron transfer capability. On the
lower frequency domain, the straight line indicates that the electron transfer process on
both electrodes of the redox probe is mainly controlled by diffusion.

3.2. Analytical Applications of Sensing Materials
3.2.1. Electrochemical Behavior of Melatonin

Considering the literature data devoted to the melatonin electrochemical determina-
tion, SNGCE has never been used for the manufacture of an electrochemical sensor.

The electrochemical behavior of melatonin was investigated at the SNGCE and
SNGCE/AuNPs in aqueous buffered solution. Figure 3 depicts the CVs recorded in
0.1 M PBS of pH 7 containing 20 µM MEL. The electrochemical oxidation of melatonin is
an irreversible process and occurs at a potential value of 0.60 V at the SNGCE/AuNPs,
which was less positive by 50 mV than the anodic oxidation peak observed at the SNGCE.
It is worth noting that the peak current for SNGCE/AuNPs increased for almost four
times compared with SNGCE demonstrating the advantages of AuNPs in the sensor’s
construction.
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For a proper understanding of the melatonin oxidation mechanism, the dependence
of the peak current versus the potential scan rate was analyzed. The effect of the potential
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of 20 µM melatonin. A linear dependence was obtained, suggesting a surface-controlled
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logarithm of the potential scan rate gives a slope value of 0.80 (close to 1), pointing out
that the melatonin oxidation is a surface-controlled irreversible electrochemical oxidation
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For an irreversible electrode process, the dependence of the peak potential (Ep) on the
scan rate (ν) is described by the Laviron equation [34]:

Ep = E0 + (2.3 RT/αnF) log (RTk0/αnF) + (2.3 RT/αnF) log (ν) (2)
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Laviron’s equation describes a linear relationship between the oxidation/reduction
peak potential and the logarithm of the scan rate, which is valid for an irreversible adsorp-
tion process, where Ep is the oxidation peak potential, E0 is the formal potential, n is the
electron number involved in the oxidation/reduction process, K0 is the electrochemical
rate constant, α is the transfer coefficient, T is the temperature (298 K), R is the universal
gas constant (8.314 J mol−1 K−1), and F is the Faraday constant (96,485 C mol−1). Generally,
α is assumed to be 0.5 in totally irreversible electrode processes. The number of electrons
was calculated as 2.23 (n ≈ 2) from the slope of the Ep versus log ν plot (see Figure 4b). The
obtained result agrees with the oxidation mechanism proposed in the literature [24,35,36].

Since the AuNPs proved to enhance the electron transfer capability toward a model
redox probe and increased electrocatalytic activity toward melatonin compared to unmodi-
fied SNGCE, the sensor based on the SNGCE/AuNPs configuration was systematically
investigated to assess the analytical figures of merit of the analytical performance. Conse-
quently, the optimization of the experimental parameters, the assessment of the analytical
performance, and the analytical applications were further focused on the SNGCE/AuNPs
sensor configuration.

3.2.2. Optimization of Experimental Parameters

Amperometry was used in the melatonin determination due to its high analytical
sensitivity. The optimization of the experimental parameters was performed in order to
achieve the best electroanalytical response, and hence, the best analytical sensitivity. The
chronoamperograms (CAs) were recorded in the presence of melatonin at various concen-
trations ranging from 0.02 to 20.00 µM. The optimization of the experimental parameters
was carried out at a concentration of melatonin of 10 µM, as described below.

Effect of pH Supporting Electrolyte

The electrochemical behavior of melatonin is pH dependent. The selection of the
proper supporting electrolyte and buffer is a significant step in electroanalytical studies
in light of the fact that the electrolyte composition and pH influence the properties of
the solution as well as the electrode/solution interface, modifying the kinetics and ther-
modynamics of the charge transfer process, and the adsorption at the electrode surface.
Therefore, the pH influence on the electrochemical oxidation of melatonin using CA as a
detection technique was investigated. It was observed that the oxidation current for an
applied working potential of 0.70 V increased for pH values between 5 and 7, while for pH
values of 4 and 8, lower currents were recorded (see Figure 5). Moreover, the dependence
of the oxidation peak potential on pH was linear (see inset of Figure 5). The slope of the
Ep vs. pH dependence suggests that the melatonin oxidation proceeds via the transfer of
two electrons accompanied by the transfer of one proton (see Figure 5). Consequently, the
melatonin oxidation pathway can be depicted according to Scheme 3 [35]. The selected
working potential value of +0.70 V was located after the peak potential value observed
for MEL at the SNGCE/AuNP electrode in order to ensure a complete electrochemical
oxidation of the analyte. Thus, 0.1 M PBS of pH 7 was selected as the supporting electrolyte
in the following analytical studies.
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Effect of Working Potential

The influence of the working potential in the electrochemical determination of mela-
tonin was also studied. Potential values in the range from 0.50 V to 0.70 V were investigated.
All measurements were performed in 0.1 M PBS of pH 7. The experimental results dis-
played in Figure 6 demonstrate a better analytical signal at higher working potential value.
Therefore, the value of 0.70 V was chosen in the following analytical studies.
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3.3. Analytical Performances of Sensing Materials

The analytical performances of the prepared sensing materials SNGCE and SNGCE/AuNPs
toward melatonin determination were investigated by using the chronoamperometry technique.
The figures of merit of the analytical performance in terms of linear response range, sensitivity,
limits of detection, and quantification were assessed for the SNGCE and SNGCE-AuNP sensing
materials. The chronoamperograms recorded at the SNGCE and SNGCE/AuNP sensors in
0.1 M PBS of pH 7 containing different melatonin concentrations are depicted in Figure 7.
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The current increased after each melatonin addition, attesting to the fast response
of the SNGCE/AuNP sensor. A similar response was observed for SNGCE. At higher
melatonin concentrations (i.e., 15 and 20 µM), the analytical signal recorded for SNGCE
displayed a quite large noise, which could be due to the fouling of the electrode surface
with the oxidation product. In the case of the SNGCE/AuNP sensor, the noise was almost
absent, suggesting the good antifouling properties of AuNPs. Consequently, the analytical
performance and applications were studied considering the SNGCE and SNGCE/AuNP
sensors for a proper comparison. The chronoamperometry technique was used in the
assessment of the analytical performance of the proposed SNGCE/AuNP sensor in terms
of the limits of detection and quantification, linear response range, repeatability, sensitivity,
and response time.

The repeatability, expressed as relative standard deviation (RSD%, n = 3) of the slope
of the calibration plot, was determined by measuring the analytical signal of melatonin
over the concentration range from 0.5 to 20 µM using the same electrodes SNGCE and
SNGCE/AuNPs, respectively, three times,. The RSD% values of 5.3% and 1.9% for SNGCE
and SNGCE/AuNPs, respectively, were obtained. The limit of detection (LOD) was as-
sessed by using the following criterion: 3*SD/m, where SD is the standard deviation of the
blank (n = 3) and m is the slope of the calibration plot. The limit of quantification (LOQ) was
assessed by using the criterion 10*SD/m. The SNGCE displayed a linear response toward
melatonin oxidation over the concentration range from 0.5 to 20 µM and a detection limit
of 100.2 nM, respectively.

In order to assess the possibility of applying the sensors in the melatonin determination
in real samples, the responses of the sensors over lower concentration range below 0.5 µM
MEL were investigated. The SNGCE sensor did not show a linear response over the lower
concentration range. The SNGCE/AuNP sensor displayed two linear response ranges,
the first one from 0.02 to 0.3 µM, and a second one from 0.5 to 20 µM. The calibration
plots for the SNGCE/AuNP sensor applied in the melatonin detection including the error
bars is depicted in Figure 8. From this figure, it can be observed that the oxidation peak
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current increased linearly with the melatonin concentration from 0.5 to 20 µM according
to the linear regression equation: Ip (µA) = 0.05 + 0.019 [MEL] (µM) (r = 0.9956). The
sensitivity of the SNGCE/AuNP sensor was 19 µA/mM, computed from the calibration
plot. The detection limit was 8.4 nM considering the first linear range comprised between
0.02 and 0.3 µM (inset of Figure 8) with the following linear regression equation Ip (nA) =
7.37 + 0.043 [MEL] (nM) (r = 0.9994), and the corresponding sensitivity of 43 nA/µM. The
LOQ value of 27.9 nM was obtained for the SNGCE/AuNP sensor considering the lower
concentration range. The response time of the SNGCE and SNGCE/AuNP sensors was
estimated as the time required to achieve a 95% level from the steady state current when
the melatonin concentration was increased from 3 to 5 µM. Consequently, the response
time for the SNGCE/AuNP sensor was 5 s. The response time of the SNGCE sensor was
assessed similarly and a value of 4 s was obtained. Despite the close response time values,
the SNGCE sensor displayed a lower analytical response for melatonin concentrations
higher than 10 µM.

Sensors 2022, 22, 120 11 of 17 
 

 

ranges, the first one from 0.02 to 0.3 µM, and a second one from 0.5 to 20 µM. The calibra-
tion plots for the SNGCE/AuNP sensor applied in the melatonin detection including the 
error bars is depicted in Figure 8. From this figure, it can be observed that the oxidation 
peak current increased linearly with the melatonin concentration from 0.5 to 20 µM ac-
cording to the linear regression equation: Ip (µA) = 0.05 + 0.019 [MEL] (µM) (r = 0.9956). 
The sensitivity of the SNGCE/AuNP sensor was 19 µA/mM, computed from the calibra-
tion plot. The detection limit was 8.4 nM considering the first linear range comprised be-
tween 0.02 and 0.3 µM (inset of Figure 8) with the following linear regression equation Ip 
(nA) = 7.37 + 0.043 [MEL] (nM) (r =0.9994), and the corresponding sensitivity of 43 nA/µM. 
The LOQ value of 27.9 nM was obtained for the SNGCE/AuNP sensor considering the 
lower concentration range. The response time of the SNGCE and SNGCE/AuNP sensors 
was estimated as the time required to achieve a 95% level from the steady state current 
when the melatonin concentration was increased from 3 to 5 µM. Consequently, the re-
sponse time for the SNGCE/AuNP sensor was 5 s. The response time of the SNGCE sensor 
was assessed similarly and a value of 4 s was obtained. Despite the close response time 
values, the SNGCE sensor displayed a lower analytical response for melatonin concentra-
tions higher than 10 µM. 

It is worth noting that the detection limit obtained for the SNGCE/AuNPs sensor was 
lower than those previously reported on other sensors for melatonin detection (Table 1). 
This finding opens the way to potential applications of the SNGCE/AuNP sensor in the 
analysis of real samples with low melatonin levels. 

0 5 10 15 20

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3

0.008

0.012

0.016

0.020

I /
 μ

A

MEL concentration / μM

I /
 μ

A

MEL concentration / μM  
Figure 8. The calibration plot for the SNGCE/AuNP sensor including error bars for melatonin con-
centrations ranging from 0.5 to 20 µM. Inset: calibration plot for the concentration range from 0.02 
to 0.3 µM. 

The analytical performance of the SNGCE/AuNP sensor is comparable to that of 
other sensors for melatonin reported in the literature both in terms of linear response 
range and low detection limit (see Table 1). The cost-effective and environmentally 
friendly sensing materials used in the sensor construction, alongside its simple build and 
the competitive figures of merit of analytical performance such as linear response range, 
sensitivity, and detection limit demonstrate the usefulness of the proposed SNGCE/AuNP 
sensor in the electrochemical sensing of melatonin. 

  

Figure 8. The calibration plot for the SNGCE/AuNP sensor including error bars for melatonin
concentrations ranging from 0.5 to 20 µM. Inset: calibration plot for the concentration range from
0.02 to 0.3 µM.

It is worth noting that the detection limit obtained for the SNGCE/AuNPs sensor was
lower than those previously reported on other sensors for melatonin detection (Table 1).
This finding opens the way to potential applications of the SNGCE/AuNP sensor in the
analysis of real samples with low melatonin levels.

The analytical performance of the SNGCE/AuNP sensor is comparable to that of other
sensors for melatonin reported in the literature both in terms of linear response range and
low detection limit (see Table 1). The cost-effective and environmentally friendly sensing
materials used in the sensor construction, alongside its simple build and the competitive
figures of merit of analytical performance such as linear response range, sensitivity, and
detection limit demonstrate the usefulness of the proposed SNGCE/AuNP sensor in the
electrochemical sensing of melatonin.
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Table 1. Comparison of the analytical performance of SNGCE/AuNPs with other electrochemical
sensors.

Sensor Linear Response
Range (µM)

Detection Limit
(nM) Ref.

SnO2-Co3O4@rGO/IL/CPE 0.02–6 4.1 [17]

3.4′AAZCPE 0.3–10 56 [18]

WP 0.8–100 32.5 [19]

B-RGO 2.3–2000 700 [20]

GBGC 0.0028–12 19 [22]

MIP 10–80 140 [37]

Au-MoS2/GCE 0.033–10 15.7 [38]

Gr-Fe3O4/CPE 0.02–5.80 8.4 [39]

GPH-CSPE 1–300 870 [40]

Gr-AV 10–100 490 [41]

GCE/MagNPs/Cdots 0.05–13.50 4.4 [42]

FSCV 0.05–10 24 [43]

CFEs 0.1–5 38.1 [44]

SNGCE 0.5–20 100.2 This work

SNGCE-AuNPs 0.02–0.3 8.4 This work
SnO2-Co3O4@rGO/IL/CPE-ionic liquid carbon paste electrode modified with reduced graphene oxides decorated
with SnO2-Co3O4 NPs; 3,4’AAZCPE is an electrode composed of ZnO nanorods carbon paste electrode (ZCPE)
modified with 3-(4′-amino-3′-hydroxy-biphenyl-4-yl)-acrylic acid; WP—waterproof paper; B-RGO-paper electrode
realized through the dispersion of B2O3 in GO; MIP—molecular imprinted polymer; Gr-Fe3O4/CPE-graphene
decorated with Fe3O4 magnetic NPs on a C paste electrode; GPH-CSPE—graphene-carbon screen-printed elec-
trode; Gr-AV—graphite/automotive varnish ink; GBGC—carbon black suspended in dimethylformamide on
glassy carbon electrode; GCE/MagNPs/Cdots—GCE coated with Fe3O4 nanoparticles and carbon quantum dots
(MagNPs/Cdots); FSCV—fast scan cyclic voltammetry. CFEs—carbon fiber microelectrodes.

It should be noted that other analytical methodologies such as fast-scan cyclic voltam-
metry in connection with the carbon fiber microelectrode-based implantable sensor provide
real-time monitoring and selective determination of melatonin with a low detection limit
value of 24 nM [43]. The use of electrochemical methods such as square wave voltammetry
and carbon fiber microelectrodes proves to be a very efficient approach for the selective
detection of melatonin both in vitro and in vivo [44]. The monitoring of melatonin in vivo
and its quantification in real samples is challenging and the role of many factors such as
sampling protocol, sample treatment, and method sensitivity should be considered for
a proper comparison of the results [45]. The proposed SNGCE/AuNPs displayed a low
detection limit comparable with the previously reported sensors and analytical method-
ologies, thus this finding underpins the further investigation and prospect for potential
applications in real sample analysis.

Interference Study

The major criterion in the assessment of the effectiveness of a sensor is the selectivity.
The presence of various interfering species such as uric acid (UA), dopamine (DA), and
ascorbic acid (AA) in the human blood can influence the voltammetric response of the
developed sensor and can also affect its selectivity. UA is the major interfering specie in
the melatonin determination in blood samples because it is present in high concentration
levels ranging from ca. 140 to 400 µM. Moreover, the oxidation potential of uric acid
is close to that of melatonin and the resolution of the peak potentials of melatonin and
uric acid is of paramount importance in light of the real sample analysis. The selectivity
study was performed by means of differential pulse voltammetry in order to assess the
peak potential separation of various interfering species with respect to melatonin. To
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this purpose, the differential pulse voltammograms were recorded at the SNGCE/AuNP
sensors in the presence of fixed concentrations of interfering species such as 100 and 200 µM
UA, 50 µM DA, and at different MEL concentrations of 1 and 2 µM (see Figure 9a). A
peak potential separation of 330 mV between the oxidation potentials of MEL and UA was
obtained. This peak potential separation ensures the proper determination of MEL in the
presence of UA. Similar behavior was obtained in the case of DA. It can be observed that
the oxidation peak potential and the peak current response of MEL were not affected by
the presence of DA. There was a peak potential separation among MEL and DA of more
than 460 mV, which ensures the reliable quantification of MEL in the presence of DA. The
presence of AA was revealed by an anodic oxidation peak at ca. 0.07 V, which merged and
overlapped with that of DA at ca. 0.18 V after subsequent potential scanning or increase
in AA concentration. The small peak at ca. 0.07 V was visible in the blank PBS after the
removal of the SNGCE/AuNPs from the test solution containing MEL and the interfering
species. However, the overlap of DA and AA peaks did not affect the MEL oxidation
potential value. The peak current related to MEL oxidation was not affected by the presence
of these interfering species, mainly UA, whose concentration was significantly larger than
that of MEL in the biological samples. Therefore, the use of the SNGCE/AuNP sensor in
the MEL electroanalysis in real samples with complex compositions such as blood serum
samples can be envisaged. In contrast, the use of SNGCE in the interference study revealed
a poorer selectivity toward MEL in the presence of UA (inset of Figure 9a). The oxidation
wave of UA overlapped that of MEL. Consequently, there is no possibility of quantifying
MEL in the presence of UA, despite the small effect of DA contemporary present in the
solution.
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of pH 7 containing 200 µM UA, 5 µM DA, and 2 µM MEL. (b) DPVs recorded at SNGCE/AuNPs in
diluted serum sample spiked with various MEL concentrations ranging from 1 to 4 µM.

3.4. Recovery Studies

The SNGCE/AuNP sensor was tested in human peripheral blood serum for melatonin
determination in order to assess its potential applicability in real sample analysis. To this
purpose, the blood serum diluted 20 times with PBS was spiked with 200 nM melatonin and
the chronoamperometric response of the sensor was recorded. The obtained concentration
value was 198.2 nM and the corresponding recovery was 99.1%. This result attests to
the good accuracy of the sensor and its applicability to real samples with a complex
composition. The DPVs were also recorded in the serum sample after 20 times dilution with
PBS and followed by spiking with various MEL concentrations (see Figure 9b). The DPV
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traces demonstrate that the SNGCE/AuNP sensor can discriminate MEL in the presence
of UA, this being ascribed to the anodic wave located at ca. 0.3 V, similar to the data
displayed in Figure 9a. There was a small shift in MEL oxidation potential from 0.64 to
0.68 V compared to the interference data in synthetic samples from Figure 9a, which could
be due to the matrix effect of the real sample. However, this potential shift of ca. 40 mV was
relatively small. Therefore, the proposed SNGCE/AuNPs displayed overall good analytical
performance successfully demonstrated in both synthetic and real sample analysis with
complex chemical composition.

4. Conclusions

The preparation and characterization of various sensing materials based on Sonogel-
Carbon and Au nanoparticles were carried out. The sonochemical synthesis of AuNPs
provided a narrow size distribution of the obtained nanoparticles with a small average
size diameter less than 15 nm. The prepared materials displayed good electrochemical
properties tested by means of cyclic voltammetry in the presence of a redox probe. The
use of AuNPs improved electron transfer capability by ca. 25% and enhanced analytical
sensitivity compared to SNGCE. The best analytical performance toward melatonin was
obtained for the SNGCE/AuNP sensor with a wide linear response range, low detection
limit, and good accuracy in real sample analysis. The SNGCE/AuNP sensor displayed
two linear response ranges, the first one from 0.02 to 0.3 µM, and a second one from
0.5 to 20 µM, respectively. A very low detection limit of 8.4 nM, considering the lower
concentration range, was obtained. The selective detection of melatonin in the presence
of interfering species such as uric acid, ascorbic acid, and dopamine was successfully
achieved. The SNGCE/AuNP sensor displayed good anti-interference capability in human
peripheral blood serum sample analysis and overall analytical performance comparable
with that of other sensors reported in the literature. The matrix influence study in real
samples revealed a recovery value of 99.1%, demonstrating the good accuracy of the
proposed sensor. The affordable cost of the sensing material, the eco-friendly preparation
procedure, and the simple construction of the SNGCE/AuNP sensor, alongside the good
analytical performance demonstrate the usefulness of the proposed sensing material and
analytical strategy for melatonin determination. The obtained results point out the potential
applications of the proposed sensor in the electroanalysis of samples with complex matrix
composition for melatonin detection. The proposed methodology could be further extended
to the study of other metal nanoparticles as sensing elements together with the Sonogel-
Carbon electrode material in the development of electrochemical sensors for relevant
biologically active compounds such as neurotransmitters and antioxidants.
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