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Abstract

Introduction: Sex-dependent risk factors may underlie sex differences in Alzheimer’s

disease (AD).

Methods: Using sex-stratified genome-wide association studies (GWAS) of AD, we

evaluated associations of 12 traits with AD through polygenic risk scores (PRS) and

Mendelian randomization (MR), and explored joint genetic architecture among signifi-

cant traits by genomic structural equationmodeling and network analysis.

Results: AD was associated with lower PRS for premorbid cognitive performance,

intelligence, and educational attainment. MR showed a causal role for the cognition-

related traits in AD, particularly among females. Their joint genetic components

encompassed RNA processing, neuron projection development, and cell cycle path-

ways that overlapwith cellular senescence. Cholesterol andC-reactive protein showed

pleiotropy but no causality with AD.

Discussion: Lower cognitive reserve is causally related to AD. The stronger causal link

between cognitive performance andAD in females, despite similar PRS between sexes,

suggest these differences may result from gene–environmental interactions accumu-

lated over the lifespan.
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1 INTRODUCTION

Late-onset Alzheimer’s disease (AD) is a neurodegenerative disorder

with high genetic heritability.1 A growing literature demonstrates sex

differences in multiple aspects of AD, including clinical manifesta-

tion, neuroimaging changes, biomarker levels, effects of apolipopro-

tein E (APOE), and other risk factors.2 As a complex polygenic dis-

ease, AD etiology reflects combined effects of multiple risk and pro-

tective factors, many of which may differ between sexes.3 Recent evi-

dence on AD genetic architecture suggests sex-related variation in

the effects of genes along the APOE and neurotrophic signaling path-

ways in AD.3 Although several sex-specific genomic loci were reported,

more studies focused on genome-wide analysis on sex differences are

needed.3

We applied a three-pronged approach to investigate the genetic

underpinnings of AD in the context of sex differences, including

through genetic correlation, causality, and joint genetic architecture of

traits found to be causally linked to AD.

In our genetic correlation analyses, we examined AD associations of

polygenic risk scores (PRS) for 12 selected traits that represent vari-

ous aspects of ADetiology, and examined sex differences in those asso-

ciations. Because the nature of any observed associations is unclear,

which may reflect pleiotropy, consequences of disease, or confound-

ing, we next performed Mendelian randomization (MR). MR estimates

the causal effect of an exposure on an outcome using genetic variants

as instruments, akin to randomized controlled trials. MR analysis has

been applied to examine causal effects of metabolic, vascular, inflam-

matory, andneurocognitive traits onAD.4–6 Here,weextended thisMR

approach to the above factors using sex-stratified genome-wide asso-

ciation studies (GWAS).7

Finally,weexplored thebiological pathways throughwhich the iden-

tified causal traits may influence AD risk. We applied genomic struc-

tural equationmodelling (SEM) to extract a common genetic latent fac-

tor among the identified traits, and hierarchical network analysis to

elucidate the framework of the common biological pathways.

2 METHODS

2.1 Samples

The two-phaseADGC (Alzheimer’sDiseaseGeneticsConsortium) data

were used for sex-stratified GWAS and calculation of AD polygenic

risk scores. The data include a total of 24,186 participants of European

ancestry in 26 cohorts. The institutional review boards of all partici-

pating institutions approved the procedures for all ADGC substudies.

Written informed consent was obtained from all participants or surro-

gates. Additional details of theADGCdatasets canbe found in previous

publications.8,9

Published GWAS summary statistics from previously published

papers and UK Biobank data (http://www.ukbiobank.ac.uk) were used

to calculate polygenic risk scores for the 12 AD-related traits (Table S1

in supporting information).

Research in Context

1. Systemic review: We reviewed recent literature and evi-

dence of genetic architecture underlying phenotypic sex

differences in Alzheimer’s disease (AD).

2. Interpretation: Results of this study support protective

effects of educational attainment, premorbid intelligence,

and premorbid cognitive performance on AD risk, par-

ticularly in females. Functional enrichment analysis sug-

gested multiple mechanisms including RNA processing,

neuron projection development, and cell cycle pathways

that overlap with cellular senescence pathways that may

underlie these effects.

3. Future directions: Sex-stratified AD genome-wide asso-

ciation studies with large sample sizes and bidirectional

Mendelian randomization analyses with adequate statis-

tical power on a broader set of AD-related traits are

needed to verify our findings, to elucidate more of the

genetic contributors toAD, and to identify sexdifferences

in genetic risk factors, as well as the interactions among

risk factors.

2.2 Exploratory sex-stratified AD GWAS

We previously performed sex-stratified GWAS of 38,043,163 single

nucleotide polymorphisms (SNPs) in 8682 males (4010 AD cases and

4672 controls) and 12,772 females (5705 cases and 7067 controls)

from both phases of ADGC, using logistic regressions implemented in

PLINK1.9 (supporting information).7 As unequal sample sizes between

sexes leads to discrepancy in power andmight bias sex difference find-

ings, a female subcohort with matched numbers of cases and con-

trols as the male cohort was generated by random sampling. Summary

statistics of these sex-stratified GWASwere used forMR.

2.3 AD-related traits

We selected 12 AD-related traits reflecting different aspects of AD

etiology, based on literature review10 and the availability of GWAS

summary statistics. These traits include comorbidities (total choles-

terol [TC],11 type 2 diabetes [T2D],12 blood pressure,13 body mass

index [BMI],14 and inflammation [C-reactive protein (CRP)]15), psy-

chosocial factors (educational attainment [EA],16 premorbid intelli-

gence [INT],17 premorbid cognitive performance [COG],18 and overall

subjectivewell-being [SWB]19), and neuroimaging features (hippocam-

pal volume, susceptibility-weighted T1 imaging [SWI] linked to age-

related iron deposition in the brain; Table S1).

The GWAS summary statistics of these traits underwent quality

control steps (supporting information) and were used for PRS calcu-

lation, MR, and genomic SEM. We flipped alleles when necessary to

http://www.ukbiobank.ac.uk
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ensure that positive effect sizes for each SNP related to greater likeli-

hood of possessing the trait for ease of interpretation for PRS analyses.

2.4 Polygenic risk scores

Using the GWAS statistics of AD-related traits and the ADGC samples,

we generated PRS of each trait using a Bayesian regression approach

and continuous shrinkage priors, PRS-CS, with the default parameters

(supporting information).20

Linear mixed effects (LME) modeling was performed with the stan-

dardized trait PRS (z-score) as the dependent variable; diagnosis of AD,

sex, a sex x AD interaction term, age at disease onset (or at data col-

lection for the control group), and the top 10 genetic principal compo-

nents (PCs) as independent variables, and cohort indicators as random

effects. Effect sizes (Cohen’s d) of the PRS from each trait were cal-

culated from the LME results by the lme.dscore function of EMAtools

(version 0.1.3) package for R, and compared between AD and control

groups.

The effective number of independent traits (te) was determined as

11 byMatrix Spectral Deposition (matSpD).21 Significancewas defined

as P-value < 4.55×10–3, derived by dividing alpha (0.05) by te using

Bonferroni correction.

2.5 Mendelian randomization

We performed generalized summary-based MR (GSMR)22 to evalu-

ate causal effects of the 12 traits on AD, using statistics from the

sex-stratified GWAS of AD and from the GWAS of each trait. Link-

age disequilibrium-independent (r2 < 0.05, 1Mb) significant SNPs

(P < 5×10–8, except for SWI and SWB where P < 1×10–5 due to insuf-

ficient number of SNPs after clumping) were included as candidate

instrumental variables. The results were validated by alternative MR

methods, including the inverse-varianceweighted (IVW) estimator and

MR-Egger regression implemented in radial MR andMR-PRESSO test.

Significance was defined as P-value < 4.55×10–3 as described

above. MR power was evaluated and is shown in Table S2 in support-

ing information. Although our sex-stratified AD GWAS lacked statisti-

cal power for gene discovery,7 they had adequate MR power (≥ 70%)

for 8 of the 12 traits (Table S2).We repeated the analysis on the female

subcohort thatmatched themale sample size to evaluatewhether find-

ings of sex difference were due to the power discrepancy.

2.6 Genomic SEM, gene mapping, and network
analysis

The joint genetic architecture of the traits found to be causally related

toAD in theMRanalyseswas studied under a common factormodel by

genomic SEM, using their GWAS statistics.23 Genome-wide SNPs sig-

nificantly associatedwith the common factorweremapped to genes by

FUMA v1.3.6a using positional, expression quantitative trait loci, and

chromatin interactionmapping, and byMAGMA v1.08 implemented in

FUMA (Table S8-9 in supporting information). FUMA-mapped genes

were further annotated by the GENE2FUNC procedure in FUMA

(Table S10 in supporting information).24 We also mapped significant

SNPs to genes from each original GWAS of these three traits using the

same strategies in FUMA.

To investigate the commonbiological pathways underlying the puta-

tive causal traits, we built a hierarchical map of systems, integrating

the FUMA-mapped genes of the common factor from the genomic

SEM results, with the STRING high-confidence interactome. Clusters

of densely interconnected genes were identified by the HiDeF algo-

rithm of Community Detection Application and Service (CDAPS) in

Cytoscape, and labeled according to functional enrichment by gProfiler

in CDAPS.25 We also compared the proportion of overlapping FUMA-

mapped genes between each cluster and trait.

3 RESULTS

3.1 PRS for case-control comparison and sex
differences in AD

Significant effect sizes were observed with lower PRS for EA (d = –

0.071, P = 3.21×10–8), INT (d = –0.088, P = 7.97×10–12), COG (d = –

0.062, P = 1.33×10–6), and CRP (d = –0.156, P = 1.38×10–33), and

higher PRS for TC (d = 0.184, P = 3.59×10–46) in AD patients (Fig-

ure 1A). Associations of TC and CRP with AD likely reflect pleiotropy

within the APOE region because effects were no longer significant

after excluding this region (TC: d = 0.027, P = .037; CRP: d = 0.023,

P = .079). In contrast, effects remained significant for EA (d = –0.072,

P = 2.23×10–8), INT (d = –0.090, P = 2.68×10–12), and COG (d = –

0.063, P= 1.13×10–6; Figure S1 in supporting information).

We did not observe a significant AD-by-sex interaction in the LME

model with or without the APOE region (Figure S2-3 in supporting

information), using PRS calculated from combined or sex-stratified

GWAS (Figure S4 in supporting information), suggesting no significant

sex differences in PRS for these traits.

Because most existing GWAS use sex-combined samples, we

repeated the above analyses on two available sex-stratified GWAS of

two phenotypes (BMI26 and EA16) as a sensitivity analysis, to test if

results differ between using PRS derived from sex-combined or sex-

stratified GWAS. The results for these two tested traits remained the

same, suggesting that our finding of no significant sex differences in

PRS may not be primarily due to using sex-combined GWAS to derive

PRS (Table S1).

3.2 MR for causal effects of AD-related traits on
AD

After correction for outliers, significant causal effects on AD were

seen for low EA (bxy = –0.416, P = 4.52×10–4), INT (bxy = –0.298,

P = 3.78×10–6), and COG (bxy = –0.299, P = 3.08×10–3), in the

sex-combined AD GWAS (Figure 1B, Table S3 in supporting informa-

tion). In the sex-stratified AD GWAS, significant causal effects of low

INT and COG on AD were observed in females (INT: bxy = –0.622,
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F IGURE 1 Associations and causal effects of 12 traits and AD. A, Cohen’s d of trait PRS between cases and controls. Bonferroni-corrected
significant (regression coefficient P< 4.55×10–3) traits are labeled with asterisks and highlighted in red. B, Standardized estimated causal effects
(bxy) fromGSMR based on sex-stratified and combined ADGWAS. Traits with significant (P< 4.55×10–3) or nominal (P< .05) causality consistent
across radial MR (IVW andMR-Egger) andMR-PRESSO after correction for outliers are labeled with P-values fromGSMR in parentheses. bxy
values of four traits with underpowered analyses are in italics (DBP, SBP, SWI, and SWB). AD, Alzheimer’s disease; GSMR, generalized
summary-basedMendelian randomization; GWAS, genome-wide association studies; IVW, inverse-variance weighted;MR,Mendelian
randomization; PRS, polygenic risk scores

P = 1.22×10–5; COG: bxy = –0.698, P = 3.83×10–4), with nominal

effects in males (INT: bxy = –0.459, P = .011; COG: bxy = –0.554,

P= .026). A nominal causal effect of low EA on ADwas seen in females

(bxy = –0.560, P = .013) but not in males (bxy = 0.082, P = .775; Fig-

ure 1B).

Causal effects of COG (bxy = –0.676, P= 4.52×10–3) were observed

in the female subcohort, which had matched sample size to the male

cohort (Table S3), implying that the sex difference in this trait was

not due to power discrepancy. In contrast, causal effects of INT were

reduced to nominal significance in the female subcohort (P = .008), as

in themale sample.

Outlier SNPs identified in GSMR and verified by radial MR or MR-

PRESSO were reported and likely contribute to horizontal pleiotropy

(Table S5 in supporting information). Significant horizontal pleiotropy

was seen in TC, BMI, SWB, and CRP on AD with the identified

outlier SNPs showing close association with the APOE region, lipid

metabolism, or T2D (Table S5). Horizontal pleiotropy occurs when a

genetic variant affects the outcome variable through pathways other

than or in addition to the exposure variable.27

3.3 Genomic SEM, gene mapping, and network
analysis

Because theMRanalyses identified significant causal effects ofEA, INT,

and COG on AD, we evaluated the common and unique genetic bases

of EA, INT, and COG. We observed high correlation among the three

traits under a common factor model (Figure 2A) with excellent model

fit (confirmatory fit index = 1, standardized root mean squared resid-

ual = 4.5×10–11). Based on estimated effects of individual SNPs in

the common factor model (Figure S5 in supporting information), 651

genome-wide significant (P < 2.7×10–6) protein-coding genes were

annotated by MAGMA (Figure 2B), and 1557 genes including non-

coding RNA and pseudogenes by FUMA (Table S8). These genes are

involved in biological processes such as RNA processing, neuron pro-

jection development, and mitotic cell cycle pathways that overlap with

cellular senescence (e.g., PBRM1, NEK4, FOXO3, CDK2AP1; Figure 2C,

S6 in supporting information). The proportion of overlapping FUMA-

mapped genes between the common factor and individual trait are

shown in pie charts (Figure 2C).

4 DISCUSSION

This investigation of genetic associations of AD-related traits showed

that lower PRS for CRP and cognition-related factors (EA, INT, and

COG), and higher PRS for TCwere significantly associated with AD for

both males and females. MR analysis indicated that low EA, INT, and

COG were causally associated with AD, with suggestion of stronger

effects among females than males. Shared genetic components among

cognition-related traits were identified with annotated hierarchical

pathways.
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F IGURE 2 Genomic structural equationmodelling, genemapping, and network analysis on educational attainment (EA), premorbid
intelligence (INT), and premorbid cognitive performance (COG). A, Path diagram of common factor model. Values denote standardized estimates
with standard errors in parentheses. B, Manhattan plot ofMAGMA-annotated genes based on effects of individual single nucleotide
polymorphisms associated with the common factor. The red line denotes genome-wide significance (2.7×10–6). C, Hierarchical network of
enriched biological processes based on FUMA-annotated 818 protein-coding genes in the common factor model as well as 454 genes of EA, 901 of
INT, and 869 of COG. Proportion of overlapping genes between the common factor and individual trait are shown in pie charts

Consistent with published observational and MR studies,4–6,28 our

PRS andMR results demonstrate protective effects of three cognition-

related traits against AD (Figure 1B). Both EA and INT are recog-

nized contributors to cognitive reserve, while COG is a direct reflec-

tion of cognitive reserve.28 The observed protective effects of these

three traits are consistentwith the cognitive reserve hypothesis, which

states that higher cognitive reserve protects against the clinical mani-

festation of AD pathology.29

Although EA, INT, and COG have been consistently associated with

lower risk of AD, pathways through which they are linked to AD

remain underexplored. The association between low cognitive reserve

and dementia likely involves multiple mechanisms including genetic

effects related to low intelligence, inefficient brain metabolism and

function, increased mutation load and oxidative stress, and increased

exposure to environmental risk factors.29 Our analyses of the joint

genetic architecture among EA, INT, and COG, which revealed a com-
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mon latent factor underlying these highly interconnected traits, sup-

port the above proposedmechanisms. The top annotated genes associ-

ated with the common factor (Figure 2B) encompass oxidative stress

response (GPX1), neuron development (NEGR1, DCC), and exocytosis

(CALN1, EXOC4). Network analysis also showed significant enrichment

in these biological processes (Figure 2C). Furthermore, cellular senes-

cence may contribute to both aging and neurodevelopment across the

lifespan,30 and we found overlapping cell cycle and senescence genes

in the annotated pathways.31

Results from the present study further support putative sex dif-

ferences in the causal effects of cognitive reserve on AD. Our sex-

stratified MR revealed a stronger protective effect of higher COG in

females than in males. A similar trend was also observed in EA and

INT, although the analyses were likely underpowered to detect signif-

icant effects among males, leaving the presence of sex differences in

these measures of cognitive reserve inconclusive. As the majority of

ADGC participants were enrolled at 60 years of age and above, the

observed sex differences in effect of COG on AD may reflect gender

norms in earlier generations, which resulted in disparities of education,

occupation, physical activities, and exposure to environmental factors

between sexes.28 TheMRestimate reflects the phenotypic effect (with

both genetic and environmental components) of an exposure on an

outcome, whereas PRS analysis focuses on genetic risk. Intriguingly,

our PRS analysis did not identify significant AD-by-sex interaction for

any of the AD related traits, including COG, which showed sex differ-

ences in causality from theMRanalysis even aftermatching the sample

sizes of both sexes. Although this discrepancy might be due to power

issues in the different methods, an alternative explanation could be

that the subtle, statistically insignificant sex differences in genetic risk

of the COG trait become amplified through gene–environmental inter-

actions accumulatedover the lifespan.With theongoing changeof gen-

der norms,modernization, and life expectancy, future investigations on

the impact of the generational differences on AD-related factors will

extend our knowledge of their sex differences.

Previous findings demonstrated overall genetic overlap among AD,

plasma lipids, and CRP levels.32 We further showed the directions

of significant horizontal pleiotropy between elevated TC levels and

increased AD risk, as well as between decreased CRP levels and

increased AD risk. The observation suggests genetic variants with

effects on both AD and TC/CRP, which are predominantly from the

APOE region. CRP levels are related to immune dysregulation, an

important etiologyofAD.33 Thereare repeatedobservationsof inverse

association between risk of AD and cancer,34 as well as higher CRP

and cancer.35 Although survival bias and confounders should be con-

sidered, the shared genetic mechanisms among AD and CRP in lipid

metabolism and immune dysregulation are worth further exploration.

The present study is limited by the power. Therefore, our sex-

stratified GWAS were not suitable for bidirectional MR, although

reverse causality might be unlikely for certain traits. A report sup-

ported this possibility showing absence of reverse causality between

INT andAD.17 Moreover, while the present study attempted to include

traits representative of various AD risk factors and etiological path-

ways, it could not cover all the AD-related traits. Future studies on

an expanded collection of traits are needed. In addition, inclusion of

other approaches such as colocalization analysis that takes account of

LD structure,may provide converging evidence to verify the findings of

network analysis.

The strengths of our study include the three-pronged approach

for examining the genetic association and their sex-differences, and

the use of sex-stratified GWAS. Our results suggest a role of com-

plex gene–environmental interaction in sex-related heterogeneity of

AD risk, which may imply opportunities for prevention and interven-

tion of AD by improving access to factors that are related to cognitive

reserve.5,28
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