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INTRODUCTION

Neurodegeneration is the ultimate manifestation of various neurodegenerative, neurovascular, and
neuroinflammatory diseases, brain traumatisms, and aging. However, viewing neurodegeneration
as the pathological/clinical epiphenomenon of numerous specific pathogeneticmechanisms has not
provided a unitary neurodegenerative model nor a cure.

It is emerging that neurodegeneration is related to failure of the glymphatic-lymphatic
system(G-Ls) (Nedergaard and Goldman, 2020). This system represents a functionally integrated
unit regulating solute trafficking and immune-surveillance in the CNS (Louveau et al., 2018;
Nedergaard and Goldman, 2020). The G-Ls sub-serves CSF’s flow from the subarachnoid spaces
into the perivascular spaces and subsequently into the interstitium, and the aquaporin-4 water
channels drive it. The cerebrospinal-interstitial fluid then passes to the venous perivascular and
perineural spaces, lastly draining toxic molecules and immune cells from the brain into meninges
and deep lymph nodes.

If we think of G-Ls dysfunction as the common final pathway to neurodegeneration (Nedergaard
and Goldman, 2020), we can no longer consider the heterogeneous clinical cases where
neurodegeneration manifests distinctively as diseases per se, but pathologies of G-Ls where noxae
and symptoms are centered on a unique physiopathology. We propose a systematic vision of the
events leading to the “G-Ls pathology” and, according to the relevant G-Ls dysfunctions, introduce
a new categorization of diseases manifesting with neurodegeneration.

OPINION

Primary or secondary noxae may affect the G-Ls. Primary noxae are the genetic aquaporin-4
channelopathies (Rainey-Smith et al., 2018) or auto-antibodies that directly damage aquaporin-
4 (Papadopoulos and Verkman, 2013). Secondary noxae are the derangements of the intra-extra
cranial hydrodynamic at various levels leading to CSF circulation alterations (Wilson, 2016;
Tuovinen et al., 2020; Rajna et al., 2021). CSF flow waves, hemodynamic, and neuronal electrical
activity oscillations connect in sleep (Fultz et al., 2019). CSF flow failure follows a reduction of
arterial pulsatility (Mestre et al., 2018; Daversin-Catty et al., 2020) and an increase in intracranial
venous pressure due to the restriction of intracranial veins or increased extracranial venous
pressure transmitted to the brain (Wilson, 2016). CSF flow suppress during breath-holding (Dreha-
Kulaczewski et al., 2015, 2017). Moreover, debris in the CSF spaces or their obstruction for
congenital, inflammatory, infectious, haemorrhagic, neoplastic, and traumatic processes impairs
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CSF circulation, see Table 2 in Williams et al. (2019).
Failure of the CSF dynamic interacts with G-Ls flow processes

and triggers the “G-Ls pathology.“ If CSF does not flow
efficiently, it stagnates and accumulates in the perivascular
spaces, expanding and becoming visible at imaging, as observed
in neurodegeneration conditions (Wardlaw et al., 2020).
Also, minor changes in CSF pressure, tissue pressure, or
vascular function may alter the shape of perivascular spaces,
leading to an altered flow dynamic in perivascular spaces
and secondary flow impairment (Wardlaw et al., 2020).
Arteriolar hypopulsatility also hampers perivascular CSF
outflow (Mestre et al., 2018), as hypothesized when global
CSF circulation stops (Gallina et al., 2019a). Experimental
evidence supports this mechanism, since decreasing plasma
osmolality, functionally simulating perivascular spaces
congestion, leads to slowed G-Ls inflow (Plog et al., 2018).
Furthermore, impairment of respiratory motion might reduce
perivascular spaces flushing (Wardlaw et al., 2020) and
failure of the perivascular CSF outflow leads to ”perivascular
spaces damage.“

Perivenular involvement may also occur (Wilson, 2016).
Therefore, cerebrospinal-interstitial fluid might also stagnate in
the interstitium due to the rise of resistance on the venous
side of perivascular spaces from decreased fluid efflux (Jiang
et al., 2017). The interstitial spaces are then engulfed, interstitial
bulk flow blocked, and interstitial and likely intracranial
pressures increase (Lenck et al., 2018). Disturbances at the
interstitium level may, in addition, damage the perivascular
astrocyte endfeet, with injury of aquaporin-4 water channels, a
further slowing down of interstitial fluid flow, and self-sustained
interstitial congestion (Simon and Iliff, 2016). The events at the
level of interstitial spaces configure the ”interstitial damage.“
Neuroinflammation and reactive gliosis perpetuate the noxae
by reverberating the above-mentioned pathological steps in a
vicious circle.

DISCUSSION

Considering how G-Ls functions (Louveau et al., 2018;
Nedergaard and Goldman, 2020), its chronic failure may
lead to dysregulation of brain waste molecule clearance,

intra-extracellular water, ion homeostasis, and CNS immune
response alterations. Moreover, since aquaporin-4 is involved

in ependymal development and physiology (Kahle et al., 2016),
G-Ls damage may disrupt the anatomy and function of

CSF spaces.
We categorize disorders culminating in neurodegeneration

with a new path: (1) proteinopathies; (2) interstitial/cellular
water accumulation and neural hyperexcitation pathologies; (3)
autoimmune brain pathologies; and (4) CSF resorption and
flow disturbances.

In the “G-Ls pathology” model, therapies to prevent
neurodegeneration should target aquaporin-4 polymorphisms

and alterations; therapies aimed at preventing aquaporin-4-
specific IgG binding are under investigation (Papadopoulos and
Verkman, 2013). Moreover, the prevention of hydrodynamic
disturbances related to arterial circulation can follow treatment
indications for cerebrovascular disease (Smith et al., 2017). The
efficiency of systemic arterial flow may avoid CSF stagnation
at the perivascular spaces, while implantable pump methods
can regulate the CSF pulsatility by volume changes in low
blood flow situations in the canine (Luciano et al., 2017). On
the venous side, the search and correction of possible causes
of intracranial venous hypertension (Wilson, 2016), including
hepatic (Gallina et al., 2019b; Hadjihambi et al., 2019) and
pulmonary dysfunctions (Gallina et al., 2020; Kananen et al.,
2020; Russ et al., 2020; Tuovinen et al., 2020), may prevent
or restore a reduction of the blood brain flow and facilitate
CSF circulation. Moreover, CSF drainage may reverse venous
hypertension, restoring interstitial fluid circulation (Wilson,
2016). Yet, CSF cleaning by shunting can minimize the alteration
of the anatomy of subarachnoid spaces at the time of the injury
(Abolfazli et al., 2016). At the same time, endothelial growth
factor treatments promise to correct meningeal lymphatic vessel
dysfunctions (Da Mesquita et al., 2018). Overall, interventions
at the intra-extracranial hydrodynamic system level may prevent
CSF circulation failure and “perivascular space damage.” In
parallel, intervening on the CSF circulation dynamic by shunting
can target “interstitial damage,“ creating more room for the
interstitial space (Graff-Radford, 2014). The quality of night’s
sleep guards neurotoxic proteins’ clearance, and therapies
targeting molecular mechanisms might promote G-Ls repair
(Boland et al., 2018). Finally, since inflammation plays a role at
all of the proposed cascade levels, anti-inflammatory treatment
might be helpful in various steps of the process. It would be
crucial to understand the time-course of the sequence of events in
the “G-Ls pathology” and the threshold of possible reversibility in
any of its steps to plot new therapeutic strategies. To this end, the
possibility of using dynamicmagnetic resonance imaging to track
G-Ls, in small laboratory animals (Xue et al., 2020) and humans
(Rajna et al., 2021), at various steps, might prove instrumental in
achieving this goal.

CONCLUSION

In our opinion, neurodegeneration is no longer the result
of several heterogeneous brain diseases but the ultimate
clinical/pathological expression of the unique ”G-Ls pathology,"
as the consequence of multiple factors classifiable in the frame of
cerebral hydrodynamic disturbances.
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