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Abstract

Over the last decades, the importance of cerebellar processing for cortical functions has

been acknowledged and consensus was reached on the strict functional and structural cor-

tico-cerebellar interrelations. From an anatomical point of view strictly contralateral intercon-

nections link the cerebellum to the cerebral cortex mainly through the middle and superior

cerebellar peduncle. Diffusion MRI (dMRI) based tractography has already been applied to

address cortico-cerebellar-cortical loops in healthy subjects and to detect diffusivity alter-

ation patterns in patients with neurodegenerative pathologies of the cerebellum. In the

present study we used dMRI-based tractography to determine the degree and pattern of

pathological changes of cerebellar white matter microstructure in patients with focal cerebel-

lar lesions. Diffusion imaging and high-resolution volumes were obtained in patients with left

cerebellar lesions and in normal controls. Middle cerebellar peduncles and superior cerebel-

lar peduncles were reconstructed by multi fiber diffusion tractography. From each tract,

measures of microscopic damage were assessed, and despite the presence of unilateral

lesions, bilateral diffusivity differences in white matter tracts were found comparing patients

with normal controls. Consistently, bilateral alterations were also evidenced in specific brain

regions linked to the cerebellum and involved in higher-level functions. This could be in line

with the evidence that in the presence of unilateral cerebellar lesions, different cognitive

functions can be affected and they are not strictly linked to the side of the cerebellar lesion.

1. Introduction

Over the past two decades, the role of the cerebellum in cognition has been widely demon-

strated [1–4]. Anatomically, cerebello-cortical-cerebellar connections are known to be strictly

controlateral and to be spatially and functionally organized in distinct parallel loops [5–6]. The
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afferent system consists of cortico-pontine fibers projecting from cerebral cortex areas to the

pontine nuclei and of ponto-cerebellar fibers, crossing the midline to enter the cerebellum by

means of the contralateral Middle Cerebellar Peduncle (MCP) [7]. Conversely, the Superior

Cerebellar Peduncle (SCP) is well known to be the efferent fibers system from the cerebellum

[8–9] decussating at the level of the midbrain and projecting to motor and associative cortices

via the thalamus [5–6, 10]. This complex neural system allows the cerebellum to receive, opti-

mize and send back the information that it receives from cerebral cortex regions to accomplish

motor and cognitive functions successfully. Functional studies with healthy subjects also sup-

port the anatomical evidence of functionally related parallel cortico-cerebellar loops [11].

Based on recent evidence from a Voxel Based Morphometry (VBM) study, the clinical alter-

ations consequent to a focal cerebellar lesion are associated with specific structural modifica-

tions in cerebello-related areas of the cerebral cortex [12]. The interruption of cerebello-

thalamo-cortical pathways has been reported as the mechanism responsible for crossed cere-

bello-cerebral diaschisis (CCCD) [13– 15]. In this context, the functional impairment in the

cerebral regions contralateral to the cerebellar lesion has been explained as a functional depres-

sion of cerebello-ponto-thalamo-cerebral pathways [13]. Thus, it is possible to hypothesize

that a disruption of this pathway is responsible for the functional depression of those cerebral

regions from where a motor or cognitive command originates, to reach the cerebellum which

in turn redistributes new cerebellar-processed information back to the same cerebral regions.

Since MCP and SCP are the feedback and feedforward limbs of the cerebello-cortical system it

is reasonable to think that cerebellar white matter (WM) alterations, secondary to the presence

of cerebellar damage, may affect the cerebello-cortical interaction and result in hypoactivity of

supratentorial brain regions accounting for the various clinical dysfunctions typically observed

[16–17]. It follows that investigating cerebellar white matter microstructure is required to

understand the cerebello-cortical alterations subtending the complex cerebellar cognitive

affective syndrome [3]. Diffusion Tensor Imaging (DTI) has proven to be a valuable tool for

investigating brain white matter since it can probe tissue microstructure by assessing the dis-

placement of water molecules within specific WM tracts [18]. Although diffusion-derived indi-

ces provide a very indirect measure of microstructural properties, they have been associated

with specific white matter abnormalities. Among them, Radial Diffusivity (RD) has been

shown to be positively correlated with fiber disruption [19–20]. Thanks to its ability to recon-

struct 3-dimensional fiber bundles (a process known as tractography), DTI also appears rele-

vant in providing a model of brain connectivity through which brain disconnection can be

studied. Recently, the ability of DTI tractography to map and quantify the whole trajectory of

different cortico-cerebellar pathways has been demonstrated in normal adult brain [8, 21–22]

as well as in patients with ataxia and cerebellar tremor [23]. A probabilistic atlas of cerebellar

WM has been recently proposed contributing to a better understanding of cerebellar WM

architecture [17]. One well-known limitation of DTI tractography is the inherent assumption

of a single fiber direction per voxel, which limits its applicability to white matter areas of cross-

ing-fibers. In order to compensate for this limitation a number of higher order models of diffu-

sion have been introduced (see Alexander, 2005 for a review[24]), and applied recently to

reconstruct cerebellar peduncles [25].

The microstructural organization of cerebellar WM tracts has never been investigated in

patients affected by focal cerebellar damage. Isolated cerebellar lesions have been reported to

produce an impairment of cognitive performances. Verbal, executive and visuospatial abilities

can be selectively affected based on lesion lateralization and distribution [4]. In light of these

assumptions, patients with isolated cerebellar lesions represent an interesting model to study

alteration of the white matter network and cerebello-cerebral disconnection that might

account for cognitive impairments. The aim of this study was to reconstruct cerebellar WM
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tracts and to assess the sensitivity of diffusion parameters in detecting the sub-voxel organiza-

tion of cerebellar afferent and efferent WM fibers associated with unilateral focal cerebellar

damage. According to this model, we expect that a degeneration of the cerebellar white matter

tracts may ultimately damage the related cerebral GM areas. In order to validate this model,

cerebral GM patterns were also investigated to assess the impact of unilateral cerebellar lesion

on brain structures. Altogether, these analyses may provide in vivo information about the

pathological processes that affect the cortico-cerebellar interaction mechanisms and account

for functional alterations observed in cerebellar patients.

2. Materials and methods

2.1 Subjects

Nine patients with a unilateral cerebellar lesion attending the Specialist Rehabilitation Clinic

of Santa Lucia Foundation (Rome, Italy) were recruited for the current study between 2012

and 2016. All patients suffered from an isolated event (ischemic or surgical) which selectively

involved the cerebellar parenchyma. The patients were enrolled at least 30 days after the acute

event [26] and their neurological symptomatology was fully stabilized. Information about

the lesion location (ensuring that patients met the inclusion criteria) was available from previ-

ous clinical scans. Nevertheless, in order to minimize any potential bias, the anatomical distri-

bution of tissue damage in terms of unilaterality, cerebellar structures involved, and the

absence of any extra-cerebellar pathology were further investigated by an expert neuro-radiol-

ogist and performed by visual inspection of the T2-weighted MRI scans acquired as part of

this research study. All patients had a unilateral lesion in the left side (Cb-L) [F/M = 4/5; mean

age ± SD = 44,8± 13.3 years]. With respect to lesion etiology, 3 patients suffered from a post-

surgical lesion (Cb-4; Cb-7; Cb-8), while the remaining ones were diagnosed with an ischemic

or hemorrhagic cerebellar stroke. All patients underwent a comprehensive neurological exami-

nation, and motor deficits were assessed using the International Cooperative Ataxia Rating

Scale (ICARS) [27] whose global score ranges from 0 (absence of any motor deficit) to 100

(presence of motor deficits at the highest degree). Main demographic and clinical characteris-

tics of the patients are reported in Table 1.

A group of 25 healthy subjects (HS) [F/M = 19/6] ranging from 40 to 60 years of age [mean

age ± SD = 53.8 ± 5.9 years] with no history of neurological or psychiatric illness were also

recruited for the study as controls.

Table 1. Main demographic and clinical characteristics of the patients.

Case Code Age Gender Lesion Type ICARS TOTAL SCORES

Cb-1 38 F Ischemic 31.5

Cb-2 58 M Ischemic 9.5

Cb-3 52 F Ischemic 3

Cb-4 53 M Surgical 28

Cb-5 44 M Ischemic 16.5

Cb-6 36 M Ischemic 2

Cb-7 62 M Surgical 7

Cb-8 18 F Surgical 3

Cb-9 43 F Ischemic 46

The table reports for each patient age, gender, lesion etiology and the motor total scores as assessed by the International Cooperative Ataxia Rating Scale

(ICARS)

https://doi.org/10.1371/journal.pone.0180439.t001
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This research study was approved by the Ethics Committee of Santa Lucia Foundation,

according to the principles expressed in the Declaration of Helsinki. Written informed consent

was obtained from each subject before study initiation.

2.2 MRI acquisition protocol

All subjects underwent an MRI examination at 3T (Magnetom Allegra, Siemens, Erlangen,

Germany), including the following acquisitions: 1) dual-echo turbo spin echo [TSE]

(TR = 6190 ms, TE = 12/109 ms; Matrix = 192 × 256×48, in-plane FOV = 154×205 mm2,

slice thickness = 3 mm); 2) fast-FLAIR (TR = 8170 ms, 204TE = 96 ms, TI = 2100 ms;

Matrix = 192 × 256×48, in-plane FOV = 154×205 mm2, slice thickness = 3 mm); 3) 3D

T1-weighted Modified Driven Equilibrium Fourier Transform (MDEFT) scan (TR = 1338 ms,

TE = 2.4 ms, Matrix = 256 × 224×176, in-plane FOV = 250×250mm2, slice thickness = 1 mm);

4) diffusion weighted Spin-Echo Echo Planar Imaging (SE EPI) along 61 non-collinear direc-

tions (TR = 7 s, TE = 85 ms, b factor = 1000 s.mm-2, 45 contiguous slices volumes with a

2.3mm3 isotropic reconstructed voxel size). TSE scans were reviewed to exclude the presence

of macroscopic brain abnormalities.

2.3 Lesion assessment

For each patient, a detailed assessment of the macroscopic cerebellar lesion was performed on

high-resolution T1-weighted images. The cerebellum was normalized separately to the Spa-

tially Unbiased Atlas Template of the cerebellum and brainstem (SUIT) [28]. Each lesion was

manually outlined using the FSL view image viewer from the FMRIB software library (FSL,

www.fmrib.ox.ac.uk/fsl/) and anatomically localized with reference to the SUIT atlas.

2.4 MRI imaging and data analyses

2.4.1 DTI processing. Due to the fact that the cerebellum is notorious for having pulsatile

artifacts from nearby pulsating blood vessels, we first examined visually the raw diffusion data

(and subsequently also the DTI maps) for any such degradation and found the data quality not

to be noticeably affected by this kind of artifacts.

Correction for eddy currents and small head movements was done on DTI volumes by

means of affine registration to the first non-diffusion weighted volume using FSL [29]. After

brain segmentation with the Brain Extraction Tool (BET) utility [30], the diffusion tensor

(DT) coefficients were computed in Camino [31] to generate whole brain maps of the DTI

metrics including fractional anisotropy (FA), radial diffusivity (RD), mean diffusivity (MD)

and axial diffusivity (AD). Each FA volume was registered to the native space MDEFT volume

with a linear registration first, followed by a non-linear transformation. The target for the lin-

ear registration was the skull-stripped MDEFT, while the original volume (including skull)

was the target for the non-linear transformation. The registration was achieved using the tools

FLIRT [32] and FNIRT [33] from FSL. This “FA to T1” transformation was combined with

each individual “T1 to MNI” transformation, obtained by non-linear registration of the T1 vol-

ume to the ICBM152 MNI template. This resulted in the final transformation from each par-

ticipant’s DTI space to the ICBM152 MNI template.

2.4.2 DTI based tractography. MCP and SCP were reconstructed using tractography

based on two multi-fiber models implemented in Camino [24]. Q-Ball imaging [34] was used

for MCP, as it provides less false positive fiber components. Persistent angular structure (PAS)

MRI [35] was used for SCP, due to its ability to describe crossing fibers. Once the multi-fiber

directions were estimated, probabilistic tractography was carried out based on the data using
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the PICo algorithm. N = 10000 tracking iterations were performed from each voxel of the seed

Region of Interest (ROI) with stopping criteria of FA� 0:1 and curving angle� 80˚. Five

ROIs were manually drawn on the FA map images for MCP tracking. A seed ROI was placed

bilaterally on a single coronal section anteriorly to the dentate nucleus of each cerebellar hemi-

sphere, and two coronal waypoint ROIs were located bilaterally and anteriorly to each seed

ROIs. Finally an exclusion ROI was placed in the axial plane above the pons to prevent fibers

not belonging to the middle cerebellar peduncle from being tracked. Left (L-) and right (R-)

SCPs were separately reconstructed. For L-SCP, originating from the left cerebellar hemi-

sphere, five ROIs were drawn: one ROI (i.e., “seed” region for tractography) was drawn on a

single coronal slice in the dentate nucleus, while two endpoint ROIs were drawn as target

points. The first was located posteriorly to the seed to select all extremities going posteriorly,

while the second one controlaterally to include the red nucleus and its medial area, where SCP

decussates before terminating in the contralateral ventrolateral (VL) nucleus of the thalamus

[36–37]. Finally, in order to exclude fibers not belonging to the L-SCP, two ROIs were drawn

as exclusion masks and located as follows: the first one was placed immediately superiorly to

the second endpoint ROI on the whole coronal slice, and the second one in a sagittal plane to

extend superiorly up to a few voxels below the known SCP decussation. The same procedure

was followed for the R-SCP, swapping right and left hemispheres. Cerebellar ROIs for recon-

struction of MCP and SCP are illustrated in Fig 1. In order to obtain a binary map of the “aver-

age tract”, every subject’s reconstructed MCP, L-SCP and R-SCP maps were binarized using a

probability threshold for probability index of connectivity (PICo) maps computed by in-house

software to minimize the amount of tract volume variation with PICo threshold. These images

were then warped into standard space using the FA to ICBM152 MNI space transformation

previously calculated, and averaged. Finally, a threshold value has been then applied to the

resulting maps in order to retain only those voxels that were common to at least 50% of

subjects.

2.5 Statistical analysis

2.5.1 Voxel-wise analysis of white matter. A voxel-wise analysis was performed in order

to compare diffusivity white matter changes between patients and healthy controls, restricting

the comparison to the voxels of the MCP and SCP, based on the average tract masks obtained

as described above and similarly to [25]. T-contrasts were evaluated with voxel significance set

at p< 0.0001 and corrected for family-wise error (FWE) at cluster level with significance level

chosen for p< 0.05. Multiple diffusion tensor measures were used in order to better character-

ize the tissue microstructure [38]. To remove the effect of confounding variables, the analysis

was adjusted for age, since statistically significant differences was found between patients and

controls (p = .01). Although there was no difference in gender distribution between groups

(X2 = 3,01, df = 1, p = 0.08), sex was also set as covariate.

2.5.2 Voxel-wise analysis of cerebral GM. T1 volumes were segmented into grey matter

(GM) maps and registered to MNI space by means of the “New Segment” and “DARTEL” rou-

tines in SPM8 (http://www.fil.ion.ucl.ac.uk/spm/), Wellcome Trust Centre for Neuroimaging,

Institute of Neurology, University College London, UK) [39]. VBM statistical analysis was per-

formed to compare the GM maps between the group of patients and healthy subjects entered

as independent groups. The analysis excluded voxels in the cerebellum and was restricted to

the cerebrum entered as explicit mask. As described above, age, gender and intracranial vol-

ume (ICV) were set as covariates of no interest.

T-contrasts were evaluated with voxel significance set at p< 0.0001 and corrected for fam-

ily-wise error (FWE) at cluster level with significance level chosen for p< 0.05.
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3.Results

3.1 Cerebellar lesion assessment

The cerebellar lesion distribution is summarized, for each patient, in Table 2 (case code as in

Table 1). Left Cerebellar hemisphere was affected in most of the patients (8/9) while 6 out of 9

patients presented an involvement of the peduncles: MCP was damaged in Cb-2, Cb-5 and

Cb-9, SCP in Cb-3 and Cb-4, and both MCP and SCP were damaged in Cb-1.

Specifically, cerebellar lesion distribution for each patient is illustrated in Fig 2 and summa-

rized in Table 2. Note that, lobules I, II, III, and IV are combined in the SUIT atlas and they

are referred to as Lobules I–IV.

Additionally, the overall white matter difference was assessed between patients and con-

trols. As showed by the t-test analysis, no differences between groups were detected in terms of

total cerebral white matter volume (p = .99).

3.2 White matter tract analysis

MCP and SCP were successfully reconstructed in patients and HS (See S1 File). Fig 3 shows

the fiber reconstruction for the average MCP and SCP of both groups of subjects. Voxel-wise

Fig 1. Anatomical localization of cerebellar ROIs for tractography of MCP and SCP. Cerebellar ROIs manually drawn on the FA map

images for MCP (A) and SCP (B) tracking. For MCP, the coronal seed ROIs (in red) are illustrated. In the axial slice, cerebellar seed and

waypoint ROIs are indicated by the white arrows. For the left SCP the seed region (coronal slice) and the endpoint ROI (axial slice) are

illustrated (white arrows). Note that for the right SCP the same ROIs were used swapping right and left hemispheres (ROIs not shown).

https://doi.org/10.1371/journal.pone.0180439.g001
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Table 2. Characteristics of the cerebellar lesion in studied patients.

Case code Hem Lobules DN vermis MPC SCP

I-IV V VI Crus I Crus II VIIB VIIIA VIIIB IX X

Cb-1 x x x x x x

Cb-2 x x x x x

Cb-3 x

Cb-4 x x x x x x

Cb-5 x x x

Cb-6 x x x x

Cb-7 x x x x

Cb-8 x x x x x

Cb-9 x x x x x x x

The extension of the lesion (X) as depicted in the MRI reports is here summarized for each patient. Case code as in Table 1. Table Legend: Hem: cerebellar

hemispheres; DN: dentate nucleus; MCP: middle cerebellar peduncle; SCP: superior cerebellar peduncle.

https://doi.org/10.1371/journal.pone.0180439.t002

Fig 2. Lesion reconstruction and distribution in patients. Each individual lesion is presented and superimposed on coronal (= y),

sagittal (= x) and axial (= z) slices of the SUIT atlas template (Diedrichsen et al., 2009) after spatial normalization. Patients codes as in

Tables 1 and 2. The bottom left of the figure shows the SUIT atlas.

https://doi.org/10.1371/journal.pone.0180439.g002
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comparisons between patients and HS were performed for each diffusion metric separately.

WM analysis showed RD and MD to increase both in ipsilateral MCP and SCP of patients

compared to HS, while FA to decrease only in ipsilateral MCP. Interestingly, contralateral

MCP and SCP were also found to show an increase of RD and MD, while no significant effect

on FA was observed. Finally, AD appeared to be not significantly affected either ipsilaterally or

controlaterally. Results are illustrated in Fig 4.(See also S1 File). Detailed statistics of cerebellar

white-matter voxel-wise comparisons are summarized in Table 3.

3.3 VBM analysis across groups

None of the considered T1 volume scans were affected by macroscopic artifacts as assessed by

visual examination. Comparisons were performed between patient group and HS. Compared

to HS, patients showed a widespread pattern of regional GM loss, which involved both cerebral

hemispheres. Specifically, a pattern of GM loss was found to affect the contralateral thalamus,

caudate, orbitofrontal and paracingulate cortices. Additionally, ipsilateral caudate and puta-

men were found to show a pattern of GM loss. These results are illustrated in Fig 5 (See also S2

File). Detailed statistics of the whole brain voxel-wise comparisons are summarized in Table 4.

4. Discussion

In the present study we aimed at reconstructing MCP and SCP and describing the pattern of

white matter alterations associated with unilateral cerebellar lesions. We performed diffusion-

based tractography to assess the sub-voxel organization/disruption of these tracts. Previous

DTI studies have identified and isolated the cerebellar projections to prefrontal and parietal

cortices in healthy subjects [20–22], and have shown specific RD changes in the cerebellar

peduncles of patients with hereditary or sporadic cerebellar ataxia [40–41, 25]. To our knowl-

edge, this is the first study to examine the structural pattern of MCP and SCP in patients with

unilateral cerebellar lesions. In terms of integrity, white matter architecture of MCP and SCP

showed a specific pattern of diffusion changes. The most intriguing finding was that, in spite

of the unilaterality of the lesion, microstructural changes (where by microstructural we mean

with no corresponding abnormalities visible on conventional scan) were present bilaterally in

MCP and SCP at least at group level. This is more interesting taking into account that macro-

scopic abnormalities (i.e., visible lesions) were present only unilaterally on MRI scans of all

subjects. Multiple diffusion parameters were analyzed and selective diffusivity changes were

Fig 3. DTI-based tractography of middle and superior cerebellar peduncles. DTI-based tractography of the average tract of MCP (red),

L-SCP (blue) and R-SCP (green) with voxels belonging to at least 50% of the subjects.

https://doi.org/10.1371/journal.pone.0180439.g003
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detected. Overall, an increase of RD and MD without significant changes in AD was found in

both MCP and SCP bilaterally with FA significantly decreased only in the ipsilesional MCP.

Increased MD and decreased FA have been typically reported in chronic ischemic lesions (> 2

weeks) [38, 42]. This is consistent with our sample; 6 out of 9 patients presented a cerebellar

chronic ischemic lesion. On the other hand RD and AD provide information on myelin and

axon conditions. Specifically myelination affects RD, [20, 43–44], while axonal damage affects

Fig 4. Voxel-wise analysis of white matter tracts. Regions showing altered Radial Diffusivity (A), Mean

Diffusivity (B) and Fractional anisotropy (C) in patients compared to controls. The regions in the middle

cerebellar peduncle are shown in light blue; the regions in superior cerebellar peduncle are shown in red. Axial

diffusivity was not significantly affected (data not shown).

https://doi.org/10.1371/journal.pone.0180439.g004
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Table 3. Statistics of cerebellar white-matter voxel-wise comparisons for each patients’ group.

Side Size (NoV) Coordinates(mm) Peak Z-scores

X Z Y

RD (Cb-L>HS) MCP L 13 -10 -34 -30 3.92

SCP L 16 -6 -44 26 4.53

R 9 6 44 26 3.78

MD (Cb-L>HS) MCP L 12 -16 -48 -28 4.21

SCP L 13 -6 -44 26 4.33

R 6 6 -44 26 3.70

FA (Cb-L<HS) MCP L 8 -12 -40 -34 3.70

SCP L - - - - -

R - - - - -

Regions of significant diffusivity white matter changes between patients and healthy controls restricting the comparison to the voxels of the MCP and SCP.

Altered diffusion tensor measures are reported separately for each tract. Only regions that survived after correction for multiple comparisons (FWE

corrected p <0.05) have been considered. Stereotaxic coordinates are reported in MNI space. NoV = Number of voxels in the cluster.

https://doi.org/10.1371/journal.pone.0180439.t003

Fig 5. Between groups voxel-based comparison of cerebral GM density. Regions showing patterns of

reduced regional GM in patients compared to HS in both contralateral and ipsilateral cerebral cortex.

https://doi.org/10.1371/journal.pone.0180439.g005
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AD. Thus, our findings indicate prevalent bilateral myelin damage with relative axonal spar-

ing. Focal cerebellar lesions have been described to result in impaired higher cognitive func-

tions, associated with structural modifications in cerebral cortex regions functionally linked to

the cerebellar lesioned areas [6, 12]. Specifically, a focal cerebellar lesion has been described to

result in a functional impairment of the contralateral cerebral cortex (crossed cerebello-cere-

bral diaschisis) [14–15, 45–46], consistent with the prominent anatomical properties of the

cerebello-cerebral projections that for the most part are crossed [6, 10]. However, in the pres-

ent study cerebral regions ipsilateral to the lesioned cerebellum, namely caudate nucleus and

putamen, were also found to show significant GM alterations. Similar ipsilesional changes

have also been observed in the cerebral cortex in a previous VBM study [12]. Bilateral cerebel-

lar influences over cerebral cortex are also supported by lesional studies in rodents showing

abnormal activity in the ipsilesional sensorimotor cortex [47] not to mention that ipsilateral

connections between cerebellum and cerebral cortex have also been shown [48–49]. In light of

this evidence, it is reasonable to hypothesize that not only contralateral but also ipsilateral net-

works may suffer from a unilateral damage of the cerebellum. Present findings, indicating

changes in the cerebellar peduncles sub-voxel structure bilaterally in face of a unilateral cere-

bellar lesion, may impact our understating of cerebro-cerebellar interplay. As most of the

recruited patients had a lesion in the left cerebellum, we cannot conclude with certainty that a

right-side lesion would result in the same pattern of damage. Further investigations are needed

to confirm that these findings can be generalized.

Different arguments can be put forward to explain this result. Firstly considering the exten-

sive literature, cited above, indicating that a unilateral cerebellar lesion may functionally and

structurally affect cerebral cortex bilaterally, it might be hypothesized that the bilateral cortical

impairment may rebound on the functionality of the lesion-free cerebellum inducing the

observed myelin peduncle damages.

On the other hand, resting state functional MRI (fMRI) studies widely also demonstrated

functional coherence between the two cerebellar hemispheres [50–52] and dentate nuclei [49].

Thus, a bilateral cerebellar coupling may also explain the myelin damage contralateral to the

lesion side. In support of this theory the existence of a cerebellar commissural system has been

suggested by anatomical data [49, 53–54].

However, another possibility has to be considered. Bilateral microstructural alterations in

the peduncles might be related to closeness to the ischemic lesion. Indeed, a different grade of

structural alterations in perilesional chronic ischemic areas is a well-known phenomenon [55].

The DTI alterations observed contralaterally to the RMN ischemic lesion, such as increased

Table 4. Statistics of whole brain voxel-wise comparisons for each patients’ group (Cb-L<HS).

Brain Region Side Size(NoV) Coordinates(mm) Peak Z-scores

X Y Z

Frontal Orbital R 1876 18 18 -14 4.33

Caudate L 897 -9 24 3 5.19

Putamen L -22 18 -2 3.91

Thalamus R 784 18 -19 9 6.27

Paracingulate Gyrus R 696 11 32 33 4.92

9 44 19 3.89

11 15 46 3.65

The regions of significantly decreased grey matter density in patients with left cerebellar lesion compared to healthy controls are reported. Only regions that

survived after correction for multiple comparisons (FWE corrected p <0.05) have been considered. Stereotaxic coordinates are reported in MNI space.

https://doi.org/10.1371/journal.pone.0180439.t004
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RD and MD, is partially consistent with a possible chronic microstructural ischemic pattern as

well as a chronic demyelination [20, 38, 56].

Overall, although the precise mechanism inducing bilateral abnormalities in MCP and SCP

is still unclear, its presence questions the interpretation of functional and structural alterations

observed in the cerebral cortex after unilateral damage of the cerebellar efferents.

A limitation of the study that needs to be discussed is that, due to the small sample of

patients recruited, direct correlation between GM changes, WM structural alterations and cog-

nitive performances was not attempted. However, it should be considered that the strict inclu-

sion criteria clearly affected the recruitment rate. In spite of these limitations, present results

highly support the hypothesis of a bilateral cerebello-cortical functional whose confirmation

will require further studies involving larger populations of patients. This will also allow to

explore the relationship between brain characteristics and clinical outcomes of patients, as well

as to better establish the direct causality between GM changes and WM structural alterations.

To conclude, present findings indicate that, in face of a unilateral cerebellar lesion, bilateral

changes in the cerebellar peduncles microstructure can be observed. Consistently, cerebral

GM reduction can be found without lateralization. Altogether, these structural observations

may provide important insights into understanding cerebro-cerebellar interaction in health

and disease. This latter aspect is of particular value considering the increasing interest of cere-

bellar neuromodulation to treat different CNS disease [57–59].

Supporting information

S1 File. (WM_Voxel_Wise_Analysis) Supporting MRI data file contains the averaged

MCP, L-SCP and R-SCP used as explicit masks and T-contrast and results of voxel-wise

analysis between cerebellar patients and HS for FA, MD, and RD within the reconstructed

tracts.

(ZIP)

S2 File. (GM_Voxel_Based_Morphometry) Supporting MRI data file contains T-contrast

and results of cerebral GM voxel-based morphometry between cerebellar patients and HS.

(ZIP)
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