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Abstract

We present DADA2, a software package that models and corrects Illumina-sequenced amplicon 

errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves 

differences of as little as one nucleotide. In several mock communities DADA2 identified more 

real variants and output fewer spurious sequences than other methods. We applied DADA2 to 

vaginal samples from a cohort of pregnant women, revealing a diversity of previously undetected 

Lactobacillus crispatus variants.

The importance of microbial communities to human and environmental health has motivated 

methods for their efficient characterization. The most common and cost-effective method is 

the amplification and sequencing of targeted genetic elements1. Amplicon sequencing of 

taxonomic marker genes such as the 16S rRNA gene in bacteria, the ITS region in fungi, and 

the 18S rRNA gene in eukaryotes, provides a census of a community. Functional diversity 

can be probed by targeting functional genes2.

Disentangling biological variation from amplicon sequencing errors presents unique 

challenges, which prompted the development of amplicon-specific error-correction 
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methods3,4,5,6. Most of these methods were designed for 454 pyrosequencing, and are not 

applicable to Illumina sequencing.

Errors in Illumina-sequenced amplicon data are currently addressed by quality filtering and 

the construction of Operational Taxonomic Units (OTUs): clusters of sequences that differ 

by less than a fixed dissimilarity threshold7,8,9 (typically 3%). Lumping together similar 

sequences reduces the rate at which errors are misinterpreted as biological variation 

(Supplementary Fig. 1), but OTUs under-utilize the quality of modern sequencing by 

precluding the possibility of resolving fine-scale variation5,10,11,12. Fine-scale variation can 

be informative about ecological niches10, temporal dynamics12, and population structure2. 

Fine-scale variation differentiates pathogenic from commensal strains in some cases13,14, 

and can contain clinically relevant information for more complex microbiome-associated 

diseases15.

The Divisive Amplicon Denoising Algorithm (DADA) introduced a model-based approach 

for correcting amplicon errors without constructing OTUs5. DADA identified fine-scale 

variation in 454-sequenced amplicon data while outputting few false positives2,5.

Here we present DADA2, an open-source R package (https://github.com/benjjneb/dada2) 

that extends and improves the DADA algorithm. DADA2 implements a new quality-aware 

model of Illumina amplicon errors. Sample composition is inferred by dividing amplicon 

reads into partitions consistent with the error model (Methods). DADA2 is reference-free, 

and applicable to any genetic locus. The DADA2 R package implements the full amplicon 

workflow: filtering, dereplication, chimera identification, and merging paired-end reads.

We compared DADA2 to four algorithms (Methods): UPARSE, an OTU construction 

algorithm with the best published false-positive results9; MED, an algorithm with the best 

published fine-scale resolution in Illumina amplicon data11; and the popular mothur (average 

linkage) and QIIME (uclust) OTU methods7,8.

We benchmarked these algorithms on three mock community datasets: Balanced, HMP and 

Extreme (Methods, Supplementary Table 1), each sequenced at a depth of over 500,000 

highly overlapping paired-end Illumina MiSeq 2×250 reads. The Balanced community 

contained 57 bacteria and archaea at nominally equal frequencies16. The HMP community 

contained 21 bacteria at nominally equal frequencies17. The Extreme community contained 

27 bacterial strains at frequencies spanning five orders of magnitude and differing over the 

sequenced region by as little as one nucleotide (Methods, Supplementary Table 2). Sequence 

quality varied: Balanced was higher (Mean Q = 35.9 forward/33.5 reverse), Extreme 

moderate (33.0/29.3), and HMP lower (32.3/28.7).

We compared output sequences to the known reference sequences present in the reference 

strains making up these communities. Output sequences that exactly matched a reference 

sequence were classified as Reference, and those differing by one mismatch or gap were 

classified as One Off. Contaminants were identified in the yet unclassified sequences by 

BLASTing against nt (Methods). Sequences with an exact BLAST hit (100% identity, 100% 

coverage) were classified as Exact, and those with best hits containing one mismatch or gap 

as One Off. Everything else was classified as Other. We evaluated sensitivity by detection of 
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the reference strains. Note that fine-scale variation was present in all mock communities, as 

some reference strains contained multiple distinguishable 16S rRNA sequence variants.

We compared the sample sequences output by DADA2 to the output of UPARSE (Fig. 1). 

Almost all variants with Hamming separation greater than UPARSE's OTU radius (3%, 

dashed line) were identified by both algorithms (black). However, DADA2 identified fine-

scale variation that UPARSE did not (blue), in both the merged reads (Fig. 1) and the 

forward reads alone (Supplementary Fig. 2–7). DADA2 accurately resolved sequence 

variants differing by a single nucleotide and present in as few as two reads.

DADA2 identified more reference sequences and as many or more reference strains than 

UPARSE in every dataset, using merged or forward reads (Table 1). DADA2 identified every 

reference strain in the Balanced and HMP datasets; the Extreme reference strains it missed 

demonstrate its limits (Supplementary Note 1). DADA2 output fewer spurious sequences 

(Other and One Off) than UPARSE in every dataset (Table 1).

Minimum Entropy Decomposition (MED) is a method to distinguish fine-scale diversity in 

amplicon data11. Like DADA2, MED divides amplicon reads into partitions within which 

variation is supposed to be artefactual. MED effectively uses a single-site minor-allele-

frequency threshold to distinguish real variation, and prevents false positives with a 

minimum abundance threshold. Thus while MED identified fine-scale variation, it output 

more false positives and couldn’t detect rare variants (Table 1, Supplementary Fig. 2–7).

Mothur and QIIME output significantly more spurious sequences than the other methods, 

although this deficiency was reduced when merging reads (Table 1, Supplementary Fig. 2–

7). UPARSE was the most accurate OTU method tested by all measures save the number of 

reference strains identified in the merged Extreme dataset. The spurious output of mothur 

and QIIME included chimeric and non-chimeric errors (Supplementary Table 3).

The residual error rates in the output of DADA2 were very low. For the Balanced dataset, 

DADA2's residual error rate of 2.46 × 10−8 (forward) and 2.53 × 10−8 (merged), compares 

favorably to the best error rates of 5.9 × 10−3 and 5.0 × 10−4 previously reported16. For the 

HMP dataset, DADA2's residual error rate of 1.66 × 10−5 (forward) and 2.74 × 10−6 

(merged) compares favorably to the previously reported error rates of 9.2 × 10−4 and 4.6 × 

10−4 in [18], and 2 × 10−4 (merged) in [17]. DADA2 discarded relatively few reads 

compared to the other methods (Table 1).

DADA2’s core denoising algorithm was slower but comparable to UPARSE, and DADA2 

easily processed Illumina samples on a laptop. For the filtered Balanced forward reads 

(33,516 unique sequences) UPARSE ran in 9s, QIIME/uclust in 17s, DADA2 in 21s, mothur 

in 2m26s and MED in 2m34s on a 2013 MacBook Pro (Methods).

We further evaluated DADA2 on two longitudinal, Illumina-sequenced datasets: 142 vaginal 

samples from 42 pregnant women19, and 360 mouse fecal samples17.

The vagina is the least diverse human body habitat1, often dominated by a single 

Lactobacillus OTU20. Lactobacillus crispatus is the most common species, and L. crispatus 
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dominated communities have been associated with good health and stability20. DADA2 

revealed that L. crispatus communities are more complex than generally recognized: six 

distinct L. crispatus sequence variants were present in multiple samples and substantial 

abundance (Fig. 2a). This variation is imperceptible to OTU methods, as these variants differ 

by just 1–2 nucleotides over the sequenced region.

The joint distribution of L. crispatus variants strongly suggests they represent multiple 

bacterial strains. The distribution of sequence variants was stable over time, but differed 

substantially between women, and distinct ecological relationships appear to exist between 

variants. L1 and L2 showed a pattern of mutual exclusion consistent with competition for a 

common niche (Fig. 2b). L1 and L3 showed a pattern more consistent with an absence of 

direct competition (Fig. 2c): The frequency of L1 was independent of the frequency of L3, 

which strongly tended towards 20%.

The fecal community is more diverse than the vaginal community or mock communities, 

which could present different bioinformatic challenges. When applied to the mouse fecal 

dataset, DADA2 output 389 sequences and UPARSE 327 OTUs, of which 257 were shared. 

Output sequences were BLASTed against nt: 247/257 of the shared sequences, 123/132 of 

the DADA2-only sequences, and 26/70 of the UPARSE-only sequences were Exact matches. 

DADA2-only sequences were typically close to other sample sequences: the median 

Hamming distance of DADA2-only sequences to a more abundant output sequence was 2, 

for shared sequences it was 15. Sample richness was highly correlated between the methods 

(Pearson correlation = 0.99), but DADA2 identified more variants (mean ratio = 1.21). These 

results are consistent with the mock community benchmarking: DADA2 identified more 

biological variants, especially within UPARSE's OTU radius, while outputting fewer 

spurious sequences.

These comparisons show that DADA2 is more accurate than other methods. DADA2 

resolves fine-scale variation better than the current best method for that task, while 

outputting fewer incorrect sequences than the most robust OTU method. The precision of 

DADA2 improves downstream measures of diversity and dissimilarity, and potentially 

allows amplicon methods to probe strain-level variation.

The output of DADA2 can be clustered into OTUs, but that often eliminates biological 

information present in the data. OTUs are not species, and their construction is not 

necessitated by amplicon errors. DADA2 enhances the study of microbial communities by 

allowing researchers to accurately reconstruct amplicon-sequenced communities at the 

highest resolution.

 Online Methods

 The Divisive Amplicon Denoising Algorithm

The core denoising algorithm in the DADA2 R package is built on a model of the errors in 

Illumina-sequenced amplicon reads. This error model quantifies the rate λji at which an 

amplicon read with sequence i is produced from sample sequence j as a function of sequence 

composition and quality. A Poisson model for the number of repeated observations of the 
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sequence i, parameterized by the rate λji, is then used to calculate the p-value of the null 

hypothesis that the number of amplicon reads (the abundance) of sequence i is consistent 

with the error model. These p-values are used as the division criteria for an iterative 

partitioning algorithm, which continues dividing sequencing reads until all partitions are 

consistent with being produced from their central sequence5. We now describe each of these 

steps in detail.

 Sequence comparison—Pairwise sequence alignments are performed by a vectorized 

implementation of the Needleman-Wunsch algorithm with ends-free gapping. As alignment 

dominates the computational costs of the algorithm, two heuristics are enabled by default. 

The first heuristic is the use of a kmer-distance screen prior to alignment. If the kmer-

distance between i and j exceeds a user-settable parameter (KDIST_CUTOFF), no alignment 

is performed21. The default value of this parameter was chosen to exclude only pairs of 

reads with >10% nucleotide mismatch. The second heuristic is banded alignment, which 

forgoes calculation of potential alignments in which the net number of gaps of one sequence 

relative to the other exceeds a user-settable parameter (BAND_SIZE). The default value of 

this parameter was chosen to minimally impact the alignment of sequences with few indels, 

such as ribosomal RNA genes. Both heuristics can be disabled by the user, and the default 

values should be re-examined if the algorithm is applied to genetic regions with significantly 

different characteristics, such as the indel-rich ITS region.

 Error model—DADA2 models errors as occurring independently within a read, and 

independently between reads. Under this model, the rate at which an amplicon read with 

sequence i is produced from sample sequence j is reduced to the product over the transition 

probabilities between the L aligned nucleotides:

The transition probability between aligned nucleotides is allowed to depend on the original 

nucleotide, substituting nucleotide, and associated quality score, e.g. p(A→C, 35).

After sequence alignment, the error rate λji is calculated and stored. If sequences i and j 
were not aligned because they exceeded the kmer-distance cutoff λji is set to 0.

 The abundance p-value—The abundance p-value quantifies the notion that sequence i 
is too abundant for it to be explained by errors in amplicon sequencing. If sequencing errors 

are independent across reads, the number of amplicon reads with sequence i that will be 

produced from sample sequence j is Poisson distributed with expectation equal to an error 

rate λji multiplied by the expected reads of sample sequence j. Let unique sequence i with 

abundance ai be in partition j containing nj reads. Then, conditional on i being read at least 

once, the abundance p-value is the probability of seeing that many or more identical reads 

(ρpois is the Poisson density function):
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A low pA indicates that there are more reads of sequence i than can be explained by errors 

introduced during the amplification and sequencing of nj copies of sample sequence j.

Note that the abundance p-value is calculated conditional on at least one sequence being 

observed. As a result, all singleton sequences have an abundance p-value of 1, and are never 

judged inconsistent with the error model. This means that singletons cannot form their own 

partitions, and DADA2 will not infer singleton sequences. The effect of this is similar in 

practice to the UPARSE developer's recommendation to remove singleton sequences prior to 

picking OTUs, and in both cases is driven by the difficulty in robustly differentiating 

singleton errors from real singleton sequences.

 The divisive partitioning algorithm—First, amplicon reads with the same sequence 

are grouped into unique sequences with an associated abundance and consensus quality 

profile (or dereplicated). The divisive partition algorithm is initialized by placing all unique 

sequences into a single partition, and assigning the most abundant sequence as the center of 

that partition. All unique sequences are then compared to the center of their partition, error 

rates are calculated and stored, and the abundance p-value is calculated for each unique 

sequence. If the smallest p-value, after bonferroni correction, falls below the user-settable 

threshold OMEGA_A, a new partition is formed with the unique sequence with the smallest p-

value as its center, and all unique sequences are compared to the center of that new partition.

After a new partition is formed, every unique sequence is allowed to join the partition most 

likely to have produced it (i.e. that produces the highest expected number of that unique 

sequence). At that point the division procedure iterates, with each iteration consisting of 

identifying the unique sequence with the smallest p-value, forming a new partition with that 

sequence as its center, and reshuffling sequences to their most likely partition.

Division continues until all abundance p-values are greater than OMEGA_A, i.e. all unique 

sequences are consistent with being produced by amplicon sequencing the center of their 

partition. The inferred composition of the sample is then the set of central sequences and the 

corresponding total abundances of those partitions (alternatively: each read is denoised by 

replacing it with the central sequence of its partition).

A detailed description of the original version of this divisive algorithm is available in Rosen 

et al. 20125. The DADA2 implementation has been slightly simplified for computational 

speed, in particular there is no longer any construction of “indel families”.

 Error model parameterization—DADA2 depends on a parameterized error model 

(the 16 × 41 transition probabilities, e.g. p(A→C, 35) but if those parameters are not known 

a priori then DADA2 can estimate them from the data.
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Given an inferred partition of the amplicon sequences, DADA2 records the mismatches 

between every sequence and the center of its partition, and counts each type of mismatch 

(e.g. the number of A→C mismatches where Q=35). That table of observed mismatches 

represents the errors inferred by DADA2, and can be used to estimate the parameters of the 

error model. DADA2's default parameter estimation method is to perform a weighted loess 

fit to the regularized log of the observed mismatch rates as a function of their quality, 

separately for each transition type (e.g. A→C mismatches are fit separately from A→G 

mismatches). However, the error rate estimation function is a modular part of the algorithm, 

and the user is able to provide their own R function to estimate the parameters of the error 

model from the observed mismatches if they prefer a different method.

 Alternating estimation until consistency—DADA2's selfConsist mode 

alternates sample inference (conditional on the parameters of the error model) with 

parameter estimation (conditional on the inferred sample composition) until convergence, at 

which point jointly consistent estimates of the error parameters and sample composition are 

reported. This improves the accuracy of DADA2: while Illumina quality scores are 

informative, they do not exactly match their textbook definition (Supplementary Fig. 8), and 

we have observed significant variation in this relationship between different runs. The 

plotErrors function in the DADA2 R package produced Supplementary Fig. 8, and is a 

useful tool to visualize the observed and estimated error rates in various datasets.

 DADA2 pipeline—The DADA2 R package implements a complete pipeline to turn 

paired-end fastq files from the sequencer into merged, denoised, chimera-free, inferred 

sample sequences. Parts of this pipeline can be substituted with outside methods, but there 

are some structural differences between the DADA2 pipeline and most others. One such 

difference is that the DADA2 pipeline performs merging of paired-end reads after denoising. 

This is because the core denoising algorithm uses the empirical relationship between the 

quality score and the error rates. When reads are merged, this relationship will differ 

between the forward-only, overlapping, and reverse-only portions of the merged read. That 

variation interferes with the denoising algorithm, and therefore greater accuracy can be 

achieved by denoising before merging, albeit at some computational cost.

 Filtering: fastqFilter() implements filtering of fastq files that largely recapitulates 

the usearch fastq_filter command (http://www.drive5.com/usearch/manual/

cmd_fastq_filter.html). In short, this function trims sequences to a specified length, removes 

sequences shorter than that length, and filters based on the number of ambiguous bases, a 

minimum quality score, and the expected errors in a read18. fastqPairedFilter() 

implements the same trimming and filtering, but applies it to paired reads jointly, only 

outputting reads where both the forward and reverse reads pass the filter.

 Dereplication: derepFastq() imports a fastq file and outputs a dereplicated list of 

unique sequences and their abundances. derepFastq() also outputs consensus positional 

quality scores for each unique sequence by taking the average (mean) of the positional 

qualities of the component reads. These consensus scores are used by the error model of the 

dada() function.
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 Denoising: dada() implements the core denoising algorithm described above.

 Chimeras: isBimeraDenovo() identifies sequences that are exact bimeras (two-parent 

chimeras) of more abundant output sequences. Bimeras are identified by performing a 

Needleman-Wunsch global alignment of each sequence to all more abundant sequences, and 

then searching for combinations of a left-parent and a right-parent that cover the child 

sequence without any mismatches or internal indels. Child sequences that differ by a single 

mismatch or indel from the chimeric model are also flagged if the left-parent and right-

parent are both at least 4-away from the child sequence.

isBimeraDenovo() is intended to be used after denoising, and on exactly inferred sample 

sequences, rather than on noisy input reads or fuzzy OTUs. It was necessary to implement 

isBimeraDenovo() because most current stand-alone chimera identification programs are 

intentionally conservative about identifying chimeras that are relatively close to other more 

abundant sequences, because such sequences are expected to be later joined together in the 

same OTU (Supplementary Note 2). DADA2 does not create OTUs, and does differentiate 

closely related sequence variants, therefore we implemented this simple, but more sensitive, 

chimera detection method.

 Merging: mergePairs() performs a global ends-free alignment between paired forward 

and reverse reads, and merges them together if they exactly overlap. mergePairs() 

requires that the input forward and reverse reads read in by derepFastq() were in the 

same order, a feature which is maintained by fastqPairedFilter(). Note that merging in 

the DADA2 pipeline happens after denoising, hence the strict requirement of exact overlap 

since it is expected that nearly all substitution errors have already been removed.

 Benchmarking

 Test datasets—The Balanced community consists of 57 bacteria and archaea from a 

broad range of habitats. The 16S rRNA gene sequences of most of these strains were well 

separated (>3%) over the region sequenced. However, the sequences of 5 strains were 

identical to other more abundant strains, while 5 strains had a total of 7 additional 

distinguishable sequence variants in their genomes that differed by 1 or 2 nucleotides. There 

were also two strains that were less than 3% different from more abundant strains. The 

Balanced dataset was downloaded from http://www.ebi.ac.uk/ena/data/view/PRJEB6244, 

and its construction was described in [16] where it is identified as dataset DS 35.

The HMP community consists almost entirely of strains well separated (>3%) over the 

region sequenced (S. epidermis and S. aureus are indistinguishable), most of which colonize 

the human body. The HMP dataset was downloaded from http://www.mothur.org/

MiSeqDevelopmentData.html, and its construction was described in [17] where it is 

identified as the MOCK1 sample in run 130403. This dataset was also analyzed in [18].

The Extreme dataset was generated for this study. The organisms for the Extreme 

community include human gastrointestinal tract bacterial isolates (Supplementary Table 2). 

The Extreme dataset was intended to include more fine-scale variation than the other mock 

communities, the members of which were chosen in part for their well-separated 16S rRNA 
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gene sequences. The Extreme strains are all distinguishable over the sequenced region of the 

16S rRNA gene, but some pairs of strains differ by as little as 1 nucleotide. The Extreme 

dataset is available under SRA accession number SRX1478507.

Extreme strains were grown overnight in liquid broth with the medium recommended from 

the source culture collection for each respective strain (Table 1). An aliquot of the bacterial 

culture was used to directly amplify the 16S rRNA gene. One microliter of the bacterial 

culture was used as template to amplify the V4 region of the 16S rRNA gene using fusion 

gene primers (515f/806r) that incorporate Illumina adapter sequences and indexing 

barcodes22. The PCR reaction was carried out in a 25 uL mixture containing 1× HotMaster 

Mix with 2.5 mM Mg2+ (5 PRIME, Gaithersburg, MD), 400 nM forward primer, 400 nM 

reverse primer, along with the bacterial culture template. The following cycling parameters 

were used: initial cell lysis and DNA denaturing at 95$^\circ$C for 10 minutes, followed by 

30 cycles of 95°C for 30 seconds, 50°C for 30 seconds, and 72°C for 30 seconds, ending 

with a final annealing step at 72°C for 10 min. PCR amplicons were cleaned using 

Agencourt AMPure XP beads (Beckman Coulter, Pasadena, CA) following the 

manufacturer's instructions. Cleaned PCR amplicons were analyzed and quantified using an 

Agilent 2100 Bioanalyzer.

Strains were grouped into two taxonomic groups, Firmicutes and Bacteroidetes. Within each 

taxonomic group, strains were designated for one of six 10-fold dilution groups 

(Supplementary Table 2). PCR amplicons for each strain were first normalized to the same 

concentration. From there, each amplicon was individually diluted to its respective dilution 

level and then all amplicons were pooled. The concentration of the pooled library was 

quantified using the Quant-iT PicoGreen dsDNA Assay kit (Life Technologies, Carlsbad, 

CA) and analyzed on an Agilent 2100 Bioanalyzer. The pooled library was diluted to 4 nM 

and then Illumina's protocol for preparing libraries for sequencing on the MiSeq was 

followed. The final concentration of the library was diluted to 6 pM with ~20% PhiX spiked 

in to account for the low base-diversity library. The final pooled library was sequenced on an 

Illumina MiSeq with a MiSeq Sequencing Reagent Kit v3 to obtain 250 bp paired end reads 

utilizing custom sequencing primers as described in [22].

 Workflow on test data—A common filtering and trimming was performed before 

applying each method: The DADA2 fastqPairedFilter (paired reads) and 

fastqFilter (forward reads only) functions were used to remove sequences with Ns or 

more than two expected errors18, and to trim the first 20 nucleotides and the last 10 

nucleotides (forward reads) or 10–50 nucleotides (reverse reads) depending on the quality 

profile of the data.

The usearch command fastq_mergepairs with a minimum overlap of 20 bases and 

maximum differences of 1 was used to merge the filtered forward and reverse reads for 

further analysis by UPARSE, MED and QIIME. Mothur used its native read merging 

function make.contigs. DADA2 denoised the forward and reverse reads independently, 

and then merged them with its mergePairs function.
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Chimeras were removed from the denoised output of DADA2 and MED by 

isBimeraDenovo in the DADA2 R package, as this tool is intended for the exactly inferred 

sequences output by these methods. UPARSE has built-in chimera removal. The uchime 

method included in mothur and QIIME was used to remove chimeras for those pipelines23.

A list of output sequences and associated abundances was obtained for each algorithm. For 

DADA2 these were the inferred sample sequences, for UPARSE, mothur and QIIME the 

representative OTU sequences, and for MED the representative sequences of its “nodes”.

We also removed singleton OTUs from the outputs of mothur and QIIME. The DADA2, 

UPARSE and MED pipelines all decline to call singleton variants, so removing singletons 

from mothur and QIIME allows a cleaner comparison between methods. Additionally, 

nearly all of the singleton variants output by mothur and QIIME were spurious, so removing 

singletons improved their reported accuracy.

Software versions: DADA2 version 0.99.8, usearch version 8.1.1831 (implements 

UPARSE), MED version 2.0, mothur version 1.36.1, QIIME version 1.9.1.

 Specificity—Output sequences were first compared to the known 16S rRNA gene 

reference sequences of the members of each mock community. If an output sequence 

matched a reference sequences, it was classified as Reference, and if it had one mismatch or 

gap to a reference sequence it was classified as One Off. Output sequences that were at least 

Hamming distance 2 from any reference sequence were then BLASTed against the nr/nt 

database. If the best hit was an exact match covering the full output sequence, it was 

classified Exact. If there was a single mismatch or indel, it was classified One Off. Output 

sequences that remained unclassified to this point were classified Other.

We included the BLAST against nr/nt step because even amplicon sequencing data from 

communities with a putatively known reference composition will contain contaminant 

sequences. Contaminants are real, albeit unwanted, biological variation, and should be 

identified when correcting amplicon errors. While the nr/nt database is imperfect, it is 

reasonable to expect that Exact matches are far more likely to be real variants than are 

Others. Output sequences classified as Other, and output sequences classified as One Off 

that differed by one substitution from a more abundant output sequence, were considered a 

proxy for false positives. Output sequences classified as Reference or Exact were considered 

true positives.

 Sensitivity—We compiled the 16S rRNA gene sequences (reference sequences) for the 

intended members of each mock community (reference strains). The presence of each 

reference strain was confirmed by checking that at least one read matching one of its 16S 

rRNA gene sequences was present in the filtered dataset. If no such read existed, that strain 

was removed from the reference list.

Output sequences were compared to the list of reference sequences. If any output sequence 

matched any 16S rRNA gene sequence present in a strain, that reference strain was 

considered to have been identified.
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 Time Benchmarking—When benchmarking computational time, we attempted to 

isolate the core sample inference algorithms for each pipeline as much as possible. Thus, for 

the time benchmarking we applied each algorithm to an identically prepared set of 

sequences: the filtered forward-only reads from the Balanced dataset including singletons. 

We did not include chimera identification in this benchmarking. The specific commands 

benchmarked are listed at the end of the Balanced workflow.

Note that preprocessing steps, such as discarding singletons and reference-based chimera 

removal, can substantially reduce subsequent computation time for all of these methods.

 Analysis of Vaginal and Fecal Samples

The 16S rRNA gene amplicon data from human vaginal samples in [19] (2.13M paired-end 

Illumina Miseq reads in 157 samples) and from mouse feces in [17] (3.65M paired-end 

Illumina Miseq reads in 362 samples) were analyzed with the DADA2 pipeline outlined 

above. First the demultiplexed fastq files were filtered and trimmed in the same manner as 

the test datasets. Each sample was dereplicated, a portion of the dataset was used to estimate 

the error parameters, and dada() was applied to the full pooled dataset using those inferred 

error parameters. isBimeraDenovo() was used to remove chimeras.

For the human vaginal samples, output sequences that appeared in at least two samples and 

at least 0.3% of the total reads were taxonomically identified by BLAST. Further analysis 

focused on the six L. crispatus sequence variants identified by this procedure.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Sequence variants inferred by DADA2 compared to the OTUs constructed by UPARSE
The merged sequences output by DADA2 are plotted for three Illumina amplicon datasets: 

(a) Balanced, (b) HMP, and (c) Extreme. Frequency is plotted on the y-axis; Hamming 

distance to the closest more-abundant sequence on the x-axis. Shapes represent accuracy 

(Methods). When variants are well separated from other members of the community the 

sequence variants inferred by DADA2 largely coincide with the OTUs output by UPARSE 

(black). However, DADA2 resolves additional variation (blue), especially within the 

UPARSE's OTU radius (dashed line), while outputting fewer spurious sequences (One Off 

and Other).

Callahan et al. Page 13

Nat Methods. Author manuscript; available in PMC 2016 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Lactobacillus crispatus sequence variants in the human vaginal community during 
pregnancy
DADA2 identified six Lactobacillus crispatus 16S rRNA sequence variants present in 

multiple samples and a significant fraction of all reads (L1: 19.7%, L2: 11.1%, L3: 6.5%, 

L4: 3.1%, L5: 1.3%, L6: 0.4%). (a) The frequency of L1–L6 in each sample. Black bars at 

the bottom link samples from the same subject. The frequency of (b) L1 vs. L2, and (c) L1 

vs. L3, by sample. The dashed line indicates a total frequency of 1.
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Table 1

The accuracy of DADA2, UPARSE, MED, mothur and QIIME on three mock community datasets

Output
Reads(%)

Output Sequences Reference
StrainsTotal Reference Exact One Off Other

Balanced

Forward

DADA2 99.2 93 59 33 1 0 57

UPARSE 99.1 81 48 29 2 2 53

MED 95.5 86 59 5 22 0 57

Mothur 96.3 249 44 25 15 165 49

QIIME 99.2 378 51 34 3 290 54

Merged

DADA2 96.2 87 57 29 1 0 55

UPARSE 94.2 76 45 27 2 2 50

MED 91.1 64 56 6 2 0 54

Mothur 94.1 108 42 27 11 28 47

QIIME 94.1 170 45 28 4 93 50

HMP

Forward

DADA2 95.1 151 23 112 8 8 21

UPARSE 96.7 161 20 123 10 8 21

MED 80.9 83 23 2 58 0 21

Mothur 95.4 849 20 177 47 605 21

QIIME 97.4 1375 20 177 60 1118 21

Merged

DADA2 92.3 67 23 40 2 2 21

UPARSE 67.7 94 20 59 2 13 21

MED 64.8 32 23 3 6 0 21

Mothur 62.1 121 20 82 9 10 21

QIIME 67.6 290 20 71 8 191 21

Extreme

Forward

DADA2 99.5 68 26 35 3 4 23

UPARSE 99.5 74 21 40 0 13 21

MED 86.4 95 16 0 79 0 13

Mothur * * * * * * *

QIIME 99.5 3237 20 44 73 3100 20

Merged

DADA2 97.6 25 24 1 0 0 21

UPARSE 69.9 23 18 4 0 1 18

MED 67.6 32 17 0 15 0 14
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Output
Reads(%)

Output Sequences Reference
StrainsTotal Reference Exact One Off Other

Mothur 94.3 44 23 14 0 7 23

QIIME 69.9 36 19 8 1 8 19

After a common filtering step, methods were applied to the forward reads, and the merged forward and reverse reads, of the Balanced, HMP and 
Extreme datasets (Methods). Output sequences were classified as Reference or Exact (true positives) and One Off or Other (false positives) by 
comparison to the known sequences of these mock communities (reference strains) and comparison to nt to identify contaminants (Methods). 
DADA2 detected the most reference strains and sequences, while outputting the fewest false positives. Mothur failed to complete on the Extreme 
forward reads.
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