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Abstract

Central place foraging pollinators tend to develop multi-destination routes (traplines) to
exploit patchily distributed plant resources. While the formation of traplines by individual pol-
linators has been studied in detail, how populations of foragers use resources in a common
area is an open question, difficult to address experimentally. We explored conditions for the
emergence of resource partitioning among traplining bees using agent-based models built
from experimental data of bumblebees foraging on artificial flowers. In the models, bees
learn to develop routes as a consequence of feedback loops that change their probabilities
of moving between flowers. While a positive reinforcement of movements leading to reward-
ing flowers is sufficient for the emergence of resource partitioning when flowers are evenly
distributed, the addition of a negative reinforcement of movements leading to unrewarding
flowers is necessary when flowers are patchily distributed. In environments with more com-
plex spatial structures, the negative experiences of individual bees on flowers favour spatial
segregation and efficient collective foraging. Our study fills a major gap in modelling pollina-
tor behaviour and constitutes a unique tool to guide future experimental programs.

Author summary

Pollinating animals, like bees, face the challenge of maximising their returns on plant
resources while minimising their foraging costs. Observations show bees establish idio-
syncratic foraging routes (traplines) to visit familiar plants using short paths. This is an
effective strategy for collecting pollen and nectar that are dispersed and renewable
resources. Intriguingly, different bees seem to establish non-overlapping traplines, which
aids in partitioning resources. So far, however, how bees establish these foraging strategies
is a mystery. It seems unfeasible for them to be able to negotiate with competing foragers.
Here we present a simple computational model derived from empirical observations sug-
gesting bees can develop efficient routes between flowers while minimizing spatial over-
laps with competitors based only on their history of reinforcement in a floral array. In the
model, bees learn to return to flowers where they found nectar and avoid flowers that
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were found empty. Numerical simulations of our model predict the emergence of resource
partitioning between pairs of bees under various conditions. This suggests a simple strat-
egy to promote efficient foraging among competing agents on a renewable resource that
could apply to many different pollinating animals.

Introduction

Foraging animals are expected to self-distribute on food resources in order to minimize com-
petition and maximize their individual net energy gain [1,2]. Resource partitioning between
individuals of different species is well documented, and often results from functional [3,4] or
behavioural [5,6] specializations. By contrast, how individuals of the same species interact to
exploit resources in a common foraging area is less understood [7,8].

For pollinators, such as bees that individually exploit patchily distributed floral resources in
environments with high competition pressure, efficient resource partitioning appears a prodi-
gious problem to solve. It involves assessing the quality of food resources, their spatial distribu-
tion, their replenishment rate, and the activity of other pollinators. As central place foragers,
bees often visit familiar feeding sites (plants or flower patches) in a stable sequence called a
“trapline” [9,10]. Individual bees with exclusive access to an array of artificial flowers tend to
develop traplines minimizing travel distances to visit all the necessary flowers to fill their nec-
tar crop and return to the nest (e.g. bumblebees: [11-13]; honey bees: [14]). This routing
behaviour involves spatial memories that can persist days [15] or weeks [16].

How bees partition resources, when several conspecifics exploit the same foraging area, is
however an open question. Experimentally the problem is challenging to address as it requires
monitoring the movements of numerous bees simultaneously over large spatial and temporal
scales. In theory, bees should develop individualistic traplines that minimize travel distances
and spatial overlap with other foragers, thereby improving their own foraging efficiency and
minimizing the costs of competition [17,18]. Best available data supporting this hypothesis
come from observations of small numbers of bumblebees foraging on potted plants [19,20] or
artificial flowers (in effect mimicking inflorescences or plants) [18,21] in large flight tents. In
these experimental foraging conditions with limited numbers of bees and feeding sites, forag-
ers tend to avoid spatial overlaps as a consequence of competition by exploitation (when bees
visited empty flowers) and interference (when bees interacted on flowers) [21].

Computational modelling is a powerful approach to further explore the mechanisms by
which such partitioning might emerge from spatial learning and competitive interactions. At
the individual level, trapline formation has been modelled using an iterative improvement
algorithm where a bee compares the net length of the route it has just travelled (sum of the
lengths of all transitions between two flowers, or the nest and a flower, comprising the flower
visitation sequence) to the length of the shortest route experienced so far [22]. If the new route
is shorter (or equivalent), the bee increases its probability of using all the transitions compos-
ing this route in its subsequent foraging bout. After several iterations, this route-based learning
heuristic typically leads to the discovery and selection of a short (if not the shortest possible)
trapline, thereby replicating observations in bees across a wide range of experimental condi-
tions [23]. Note however that this model makes the strong assumption that bees can compute,
memorize and compare the lengths of multiple routes upon return to their nest. To address
this issue, it was proposed that trapline formation could also emerge from vector-based learn-
ing [24], in which the bee remembers independent vectors instead of complete routes. This
form of learning was thought to be more parsimonious and plausible considering the current
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understanding of spatial computation in the insect brain [25]. So far, however, none of these
traplining algorithms have accounted for social interactions and current models that include
bee foraging either did not consider individual specificities of movements based on learning
and memory [26-30], or implemented them very succinctly without being the focus of the
model [31]. Thus presently, there has been no formal exploration of how resource partitioning
between interacting bees might form.

Here, we investigated the behavioural mechanisms underlying resource partitioning among
traplining bees by comparing predictions of three agent-based models to each other. The dif-
ferent models integrate learning behaviour and social interactions in slightly different ways.
Recent work showed that resource partitioning in bats foraging on patchily distributed cacti
can be explained by basic reinforcement rules, so that a bat that finds an abundant feeding site
tends to return to this site more often than its conspecifics [32]. Since bees extensively rely on
associative learnings to recognize flowers and develop foraging preferences [33], we hypothe-
sized that the combination of positive experiences (when a flower is full of nectar) and negative
experiences (when a flower is unrewarding) could lead to the emergence of resource partition-
ing when different bees learn to use spatially segregated routes [18,21]. First, we developed
models implementing biologically plausible navigation (derived from vector-based learning)
based on positive and negative reinforcements of transition probabilities between flowers and
tested the independent and combined influences of these feedback loops on trapline formation
by comparing simulations to published experimental data. Next, we explored how these simple
learning rules at the individual level can promote complex patterns of resource partitioning at
the collective level, using simulations with multiple foragers in environments with different
resource distributions.

Results
Overview of models

We designed models of agents (bees) foraging simultaneously in a common set of feeding sites
(flowers) from a central location (colony nest) (see summary in Fig 1). A full description of the
models is available in the ODD protocol (S1 Text). Briefly, each bee completes a succession of
foraging trips (foraging bouts) defined as the set of movements and flower visits between the
moment it leaves the nest until the moment it returns to it. Each bee initially moves between
the different flowers using a distance-based probability matrix [22,23]. The probability to
move between each flower is then modulated each time the bee finds the flower rewarding
(positive reinforcement) or unrewarding (negative reinforcement). Learning occurs after each
flower visit (online learning). We implemented three models to explore different combinations
of positive and negative reinforcements: model 1: positive reinforcement only (hereafter
“Model 1[+]”), model 2: negative reinforcement only (Model 2[-]), model 3: positive and neg-
ative reinforcements (Model 3[+/-]). Model comparison thus informed about the effect of
each of the rules separately and in combination.

Simulations with one forager

We first tested the ability of our models to replicate trapline formation by real bees, by compar-
ing simulations of a single forager to published experimental data in which individual bumble-
bees were observed developing traplines between five equally rewarding artificial flowers in a
large open field [13,22]. Lihoreau et al. [22] tested seven bumblebees in a regular pentagonal
array (S1A Fig), which we judged enough to run quantitative comparisons with model simula-
tions. While Woodgate et al. [13] tested six bees in a narrow pentagonal array (S1B Fig), only
three of them presented enough successive foraging bouts in a single day to allow statistical
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leave nest

| Model 1[+] : positive reinforcement only. |

| Model 2[-] : negative reinforcement only. |

Model 3[+/-] : positive and negative reinforcements.
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Fig 1. Flowchart summarizing the agent-based models. Rectangles represent actions performed by a bee. Diamonds
indicate conditional statements. Arrows connect the different modules. The dashed rectangles are subject to the
different rules of the three models.

https://doi.org/10.1371/journal.pcbi.1009260.9001

comparisons with our model. Thus, for this dataset only qualitative comparisons were made
with the model simulations. All statistical results are presented in Table 1.

We assessed the ability of bees to develop efficient routes by computing an index of route
quality (i.e. the squared volume of nectar gathered divided by the distance travelled; see Meth-
ods). For real bees, route quality increased significantly with time in the regular pentagonal
array of flowers (Fig 2A). When comparing simulations to experimental data, there were no

Table 1. Statistical output for simulations with one individual. Comparisons of route quality and route similarity
through Binomial GLMM:s using bee identity as a random effect (bee identity nested in simulation identity for simu-

lated data).
Variable Data Estimate p

Route Quality Exp. Data (Intercept) 0.153 £ 0.023 0.001

Model 1[+] -0.027 £ 0.023 0.224

Model 2[-] -0.155 £ 0.023 0.001

Model 3[+/-] -0.022 £ 0.023 0.339

Route Similarity Exp. Data (Intercept) 0.110 + 0.020 0.001
Model 1[+] 0.088 £ 0.020 0.001

Model 2[-] -0.109 £ 0.020 0.001

Model 3[+/-] 0.086 £ 0.020 0.001

https://doi.org/10.1371/journal.pchi.1009260.t001

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009260  July 28, 2021 4/19


https://doi.org/10.1371/journal.pcbi.1009260.g001
https://doi.org/10.1371/journal.pcbi.1009260.t001
https://doi.org/10.1371/journal.pcbi.1009260

PLOS COMPUTATIONAL BIOLOGY A model of resource partitioning between foraging bees

Lihoreau et al. 2012 Model 1[+] Model 2[-] Model 3[+/-]
@ (Exp. Data) (Pos. Reinf)) (Neg. Reinf) (Pos. + Neg. Reinf.)
']00- .......................... 100- . - . 100- ...............................
=075- B
= ,.'.' oL
T 0.50- 0.50 - B i
3 0.25 0.25- 1o st e e 0.25--
O-()O-I 1 1 1 0-OO-I ] 1 1 o-OC)-I ] ] O-OO-I ] 1 1
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
(b)
100_ ...................... 1 00_ 100_ - . 100_ . L 1Y
= L - 8 o
B075- - ‘ 0.75- 0.75- : 0.75-
@© i G W : :
B 0.50- -l : 0.50 = omn 0.50- SR 0.50 = mer=s-n
© > 4 o .. ..
8 ) ) . : . i ..- .
S 025- §gF .- » 0.25- - 0.25- 0.25-
000_ ................... - 000- .......................... 000- .................................... 000_ .........................
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Foraging Bout Foraging Bout Foraging Bout Foraging Bout

Fig 2. Comparisons of experimental and simulated route qualities. Comparisons of route qualities (a) and route similarities (b) between simulations and
experimental data (regular pentagonal array of flowers as in [22]). See details of models in Fig 1. For each dataset, we show the estimated average trends across foraging
bouts (coloured curves), along the standard error (grey areas) of the mean. For the sake of eye comparison, in the simulation plots the standard error of the mean is
estimated from a sample of 7 simulations (N = 7 bees in [22]). Average trends were estimated over 500 simulation runs, using GLMM Binomial model with bee identity
as random effect (bee identity nested in simulation identity for simulated data).

https://doi.org/10.1371/journal.pcbi.1009260.g002

significant differences in trends with models 1[+] and 3[+/-] (Table 1), meaning that simulated
bees developed routes of similar qualities as real bees. However, route qualities predicted by
model 2[-] were significantly lower than the experimental data. Similar trends were observed
in the narrow pentagonal array of flowers (53 Text).

We assessed the ability of bees to develop stable routes using an index of route similarity
(i.e. computing the number and percentage of transitions between two flowers (or the nest and
a flower) shared between two successive routes; see Methods). Route similarity is set between 0
(the two routes are completely different) and 1 (the two routes are completely identical). For
real bees, route similarity increased with time in the regular pentagonal array (Fig 2B). When
comparing simulations to experimental data, route similarity increased significantly more in
models 1[+] and 3[+/-] than for real bees. However, route similarity in model 2[-] was signifi-
cantly lower than for real bees. Similar trends were observed in the narrow pentagonal array
(S3 Text).

Thus overall, positive reinforcement is necessary and sufficient to replicate the behavioural
observations (although with a significant difference found for route similarity between the
experimental data and the models 1[+] and 3[+/-]), while negative reinforcement has no
detectable effect.

Simulations with two foragers

Having tested our models with one forager, we next explored conditions for the emergence of
resource partitioning within pairs of foragers. Here experimental data are not available for
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Table 2. Statistical output for simulations with two individuals. Comparisons of (i) exploitation competition, (ii) interference competition, (iii) route similarity, (iv)
route partitioning and (v) collective foraging efficiency through GLMMs using bee identity as a random effect (bee identity nested in simulation identity for simulated

data). The results presented are the slope estimate along with a 95% confidence interval of the mean, for each type of environment tested (See Methods for details).

Variable Data
Exploitation Competition Model 1[+]
Model 2[-]
Model 3[+/-]
Interference Competition Model 1[+]
Model 2[-]
Model 3[+/-]
Route Similarity Model 1[+]
Model 2[-]
Model 3[+/-]
Route Partitioning Model 1[+]
Model 2[-]
Model 3[+/-]
Collective Foraging Efficiency Model 1[+]
Model 2[-]
Model 3[+/-]

https://doi.org/10.1371/journal.pcbi.1009260.t002

Estimate (1 patch)
-4.26e-03 * 2.10e-04
-3.32e-03 £ 1.90e-04
-8.94e-03 + 2.20e-04
-4.57e-03 £ 7.20e-04
-2.49e-03 £ 7.40e-04
-1.53e-02 + 8.00e-04
1.34e-01 + 2.00-e03
7.46e-04 + 6.65e-03
1.33e-01 + 2.00e-03
2.90e-02 + 1.30e-03
1.22e-02 * 1.30e-03
3.55e-02 + 1.30e-03
4.20e-02 + 1.50e-03
-5.08e-03 + 1.24e-03
4.12e-02 £ 1.50e-03

Estimate (2 patches)
6.27e-03 + 1.80e-04
-2.10e-02 + 2.00e-04
-1.88e-02 + 3.00e-04
1.05e-02 + 4.00e-04
-2.10e-02 + 6.00e-04
-1.66e-02 + 7.00e-04
9.56e-02 + 1.30e-03
1.91e-02 + 2.90e-03
6.95e-02 + 1.20e-03
-1.02e-02 £ 1.30e-03
1.28e-02 + 1.20e-03
3.17e-02 £+ 1.30e-03
-4.61e-03 £ 1.27e-03
-8.03e-03 £ 1.27e-03
8.77e-03 £ 1.25e-03

Estimate (3 patches)
6.65e-03 + 1.90e-04
-2.06e-02 * 2.00e-04
-1.05e-02 + 2.00e-04
9.16e-03 + 5.20e-04
-1.68e-02 * 7.00e-04
-1.01e-02 * 6.00e-04
7.76e-02 + 1.20e-03
-3.20e-02 + 3.10e-03
6.14e-02 + 1.30e-03
-8.26e-03 + 1.26e-03
1.82e-02 + 1.20e-03
2.19¢-02 + 1.30e-03
3.04e-03 + 1.25e-03
-4.24e-03 + 1.24e-03
1.83e-02 + 1.30e-03

comparison. We thus simulated foraging patterns and interactions of bees in different types of
environments defined by flower patchiness. Each environment contained 10 flowers that were
either distributed in one patch, two patches, or three patches (see examples in S2 Fig; for
details, see Methods). Each bee had to visit five rewarding flowers to fill its crop to capacity. All
the statistical results of this part are presented in Table 2.

Exploitation and interference competition. We first analysed exploitation competition
by quantifying the frequency of visits to non-rewarding flowers by each bee during each forag-
ing bout. The frequency of visits to non-rewarding flowers decreased for simulated bees in
models 2[-] and 3[+/-] (Fig 3A and Table 2), irrespective of the environment they were tested
in. However, in model 1[+], bees behaved differently in the different environments. In the one
patch environment, bees decreased their visits to non-rewarding flowers, whereas in the two
and three patch environments, bees tended to increase their visits to non-rewarding flowers.
The increase of non-rewarding visits in environments with patchily distributed resources can
be explained as follows. If bees start reinforcing visits to flowers of a shared patch, they will
become more likely to visit the same patch. Given the much larger space between flowers of
different patches than between flowers of the same patch, the probability to switch from one
patch to the next (without the help of the negative reinforcement) is low, leading to bees flying
between the empty flowers of a patch repeatedly. This process ultimately increases visits to
empty flowers, and also occurrences of interference between the two bees if they are both at
the same patch.

We analysed interference competition by quantifying the number of interactions on flowers
at each foraging bout between the two bees. The frequency of encounters on flowers decreased
with time for both models 2[-] and 3[+/-] (Fig 3B and Table 2), irrespective of the type of envi-
ronment. Here again, bees of model 1[+] behaved differently in the different environments. In
the one patch environment, bees decreased their frequency of encounters on flowers, whereas
in the two and three patches environments they increased their frequency of interactions.
Again this is likely due to the absence of negative reinforcement, leading bees to be trapped in
an empty patch.
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Fig 3. Model comparisons for observed variables. Results of simulations with two foragers in environments with 10 flowers. See details of models in Fig 1. The x axis is
the number of completed foraging bouts by the two foragers. The y axis represents respectively: (a) the estimated mean frequency of visits to empty flowers; (b) the
estimated mean frequency of encounters on flowers; (c) the similarity index SI,,;, between two successive flower visitation sequences; (d) the index of resource
partitioning Qo (0: both bees visit the same set of flowers; 1: bees do not visit any flower in common); (e) the collective foraging efficiency index QLgy,,,,. Average
trends for each model are estimated across all types of environments (one patch, two patches and three patches; see S2 Fig).

https://doi.org/10.1371/journal.pcbi.1009260.9003

These differences in the occurrence of exploitation and interference competition correlate
to a variation in the total number of visits to flowers, effectively improving the bees’ foraging
efficiency. The strength of this effect is greater for the exploitation competition as it is occur-
ring much more often (exploitation: 2 to 10 occurrences in average; interference: 0 to 2 occur-
rences in average; Fig 3A and 3B).

Thus, overall negative reinforcement was necessary for reducing exploitation and interfer-
ence competition. By allowing bees to avoid empty flowers, negative reinforcement facilitated
the discovery of new flowers and thus gradually relaxed competition. In the absence of nega-
tive reinforcement, both types of competition increased in environments with several flower
patches.

Route similarity. We analysed the tendency of bees to develop repeated routes by com-
paring the similarity between flower visitation sequences of consecutive foraging bouts for
each individual (Fig 3C). Bees increased route similarity through time in all types of environ-
ments in models 1[+] and 3[+/-] (Table 2). By contrast, in model 2[-], route similarity did not
vary in the one patch environment and decreased through time in the other environments.
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The presence of negative reinforcement in models 2[-] and 3[+/-] reduced the final level of
route similarity compared to trends found in model 1[+]. In these conditions, bees learned to
avoid revisits to empty flowers and showed greater variation in their visitation sequences as a
result of searching for new flowers.

Resource partitioning. We analysed the level of resource partitioning by quantifying the
tendency of the two bees to use different flowers. This index varies between 0 (the two bees use
the same set of flowers) and 1 (the two bees use completely different sets of flowers; see
Methods).

In model 1[+], bees showed an increase of resource partitioning with time in environments
with one patch, and a decrease in environments with two or three patches (Fig 3D and
Table 2). By contrast, in model 2[-] and model 3[+/-], bees showed an increase of resource
partitioning with time in all types of environments. Model 3[+/-] displayed similar levels of
partitioning in all the different environments where models 1[+] and 2[-] showed a greater
variance. Model 1[+] had greater partitioning only in the one patch environment, while model
2[-] had greater partitioning in the two and three patch environments. This suggests positive
and negative reinforcements contributed unevenly but complementarily in the model 3[+/-]
with different spatial distributions of flowers. Positive reinforcement would be the main driver
for partitioning in the one patch environment, while negative reinforcement would be the
main driver in the two and three patches environments.

Collective foraging efficiency. To quantify the collective foraging efficiency of bees, we
analysed the capacity of the two foragers to reach the most efficient combination of route qual-
ities (i.e. minimum distance travelled by a pair of bees needed to visit the 10 flowers; see
Methods).

In model 1[+], pairs of bees increased their collective foraging efficiency with time in envi-
ronments with one and three patches (Fig 3E and Table 2). By contrast, bees decreased their
level of foraging efficiency in the environment with two patches. In model 2[-] pairs of bees
decreased their collective foraging efficiency with time in all types of environments. In model
3[+/-] bees increased their collective foraging efficiency with time in all types of environments.
Positive reinforcement seems to be the main driver for collective foraging efficiency in the one
patch environment. However, neither the positive or negative reinforcements alone managed
to increase foraging efficiency in the two and three patch environments. Only their interaction,
as seen in the model 3[+/-], brought an increase in collective foraging efficiency. Collective
efficiency is generally higher in the one patch environment than in the two and three patches
environments because the difference between the best possible path (for which the collective
foraging efficiency is equal to 1) and a typical suboptimal path of a simulated bee is lower due
to the absence of long inter-patch movements.

Discussion

Central place foraging animals exploiting patchily distributed resources that replenish over
time are expected to develop foraging routes (traplines) minimizing travel distances and inter-
actions with competitors [17,18,34]. Here we developed cognitively plausible agent-based
models of probabilistic navigation to explore the behavioural mechanisms leading to resource
partitioning between traplining bees. In the models, bees learn to develop routes as a conse-
quence of feedback loops that modify the probabilities of moving between flowers. Simulations
show that, in environments where resources are evenly distributed, bees can reach high levels
of resource partitioning based on positive reinforcement only, but cannot do so based on nega-
tive reinforcement only. However, in environments with patchily distributed resources, both
positive and negative reinforcements become necessary.
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We developed our hypotheses and models based on observations on single foraging bees
[13,22]. Our first step was therefore to test how the models compared to existing data. Models
with positive reinforcement showed a good general fit to the experimental data (Fig 2 and Fig
A in S3 Text), although they often overestimated the increase of route similarity with experi-
ence in real bees. This imperfect match could be due to the low amount of available experi-
mental data in the original studies (seven individuals in [22], three individuals in [13]), but
also a result from the limitations of our models. First, the model bees navigate with the only
intent of finding resources, while real bees sometimes show phases of stochastic exploration
during and after the trapline formation [13,35]. Second, real bees do not always find a flower
when exploring their environment, especially when naive. On the contrary, there is no proba-
bility of not finding a flower for the model’s bees, which then visit on average more flowers
from the first foraging bout. The resulting routes are of higher route quality as they visit more
different flowers, but of lower similarity as they also use different transitions between flowers,
while real bees navigate back and forth between the same few flowers.

We then used our models for predicting behaviours of two competing bees in different
types of environments. To develop a trapline in this competitive situation, the bees needed to
find rewarding flowers but also avoid competitors. These two goals were independently ful-
filled by the positive reinforcement and the negative reinforcement. Simulated bees were fast-
est to develop a trapline when using the positive reinforcement only, and unable to follow any
stable route when solely using the negative reinforcement. However, this does not indicate that
the use of both reinforcements was less effective than just positive reinforcement. Simulated
bees were indeed more likely to establish a stable route with positive reinforcement only, but
these routes most likely contained contested flowers that the bees were not able to give up on,
as they did not change their behaviour after experiencing unrewarded visits. This assumption
is supported by the fact that both reinforcements (model 3[+\-]) leads to a greater resource
partitioning and a higher collective foraging efficiency.

When foraging in uniformly distributed plant resources (one patch), it is easiest to encoun-
ter all the resources available as none of them are isolated far from any other (with thus a low
probability of being reached). Consequently, two bees are very likely over time to learn non-
overlapping foraging routes and show resource partitioning. However, in environments with
non-uniformly distributed resources (two or three patches), the added spatial complexity can
interfere with this process. The initial likelihood of moving between distant patches is rela-
tively low. Thus, the sole implementation of positive reinforcement often does not allow bees
to explore all possible patches, so that the paths of competing bees overlap and interfere within
a subset of the available patches. Adding a negative reinforcement for movement transitions
leading to unrewarded flowers increases aversion for these empty flowers, the spatial segrega-
tion of foraging paths between competing bees and the collective exploitation of all available
patches, even if the initial probabilities of moving to distant patches are low. This interplay
between the influences of positive and negative experiences at flowers on the spatial and com-
petitive decisions of bees is in accordance with the behavioural observations that bees tend to
return to rewarding flowers and avoid unrewarding flowers, either because flowers were found
empty or because the bees were displaced by a competitor during a physical encounter [18,21].

The need for a negative reinforcement to enhance discrimination between different options
or stimuli is well-known in learning theory and behavioural studies [36-38]. At the individual
level, negative experiences modulate learning. For both honey bees and bumblebees, adding
negative reinforcement to a learning paradigm (e.g. quinine or salt in sucrose solution)
enhances fine scale colour discrimination [39] and performance in cognitive tasks requiring
learning of rules of non-elemental associations [40]. The insect brain contains multiple distinct
neuromodulatory systems that independently modulate negative and positive reinforcement
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[41] and the ability of bees to learn negative consequences is well-established [42]. At the col-
lective level, negative feedbacks are also known to modulate social and competitive interac-
tions. This is especially notable in collective decisions making by groups of animals and robots
[43], where negative feedbacks enable individuals to make fast and flexible decisions in
response to changing environments [44,45]. Even so, the utility of negative reinforcement to
enhance efficient trapline formation and the consequences of this for the emergence of effec-
tive resource partitioning has not been commented on previously. It may be that this is a gen-
eral phenomenon with applicability to other resource partitioning systems.

Our study implies that some very basic learning and interaction rules are sufficient for trap-
line formation and resource partitioning to emerge in bee populations, providing a solid basis
for future experimental work. Nonetheless, several improvements of the model could already
be considered for further theoretical investigations of bee spatial foraging movements and
interactions. These could include adding to the model the documented inter-individual vari-
ability in cognitive abilities [46,47] and spatial strategies [48] of bees, the variability in the
nutritional quality of resources [49,50] and the specific needs of each colony [51], or the well-
known ability of bees to use chemical [52], visual [53] and social information to decide
whether to visit or avoid flowers. For instance, foragers of many bee species leave chemical
cues as footprints on the flowers they have visited (bumblebees and honeybees: [54]; solitary
bees: [55]). Bees learn to associate the presence or absence of a reward to these footprints and
to revisit or avoid scented flowers [56]. Such a pheromone system is a beneficial signal for all
participants in the interaction [54]. This additional information could significantly enhance
the positive or negative experiences of bees visiting flowers and thus increase resource parti-
tioning to the benefit of all bees coexisting in the patch (S4 Text). Even different species of bee
can learn to use these cues [54,57]. More exploration could also be done in the future in
regards to the probability of winning a competitive interaction on flower. While we considered
all individuals to have similar probabilities to access floral nectar when bees encounter on
flowers, resource partitioning has been suggested to be favoured by asymmetries in foraging
experiences [11,18]. Differences in experience or motivation would ultimately affect the out-
come of competition, both passively (more consistent depletion of the flowers in a trapline)
and actively (active displacement of other bees from one’s established trapline).

Our study fills a major gap in our understanding of pollinator behaviour and interactions
by building on recent attempts to simulate trapline foraging by individual bees [22-24]. It con-
stitutes a unique theoretical modelling framework to explore the spatial foraging movements
and interactions of bees in ecologically relevant conditions within and between plant patches,
thereby holding considerable premises to guide novel experiments. Further developments of
the model could be used to test predictions with more than two bees (see examples S1 Video
and S4 Text), several colonies, or even different species of bees (e.g. honey bees) and thus com-
plement current predictions about pollinator population dynamics [29-31]. Ultimately, the
robust predictions of the spatial movements and interactions of bees over large spatio-tempo-
ral scales, through experimental validations of the model, have the potential to show the influ-
ence of bee movements on plant reproduction patterns and pollination efficiency [58,59].

Methods
Description of models

We built three agent-based models in which bees learn to develop routes in an array of flowers
(see summary diagram in Fig 1). The environment contains flowers each delivering the same
quality and volume of nectar. At each foraging bout (flower visitation sequence, beginning and
ending at the colony nest entrance as the bee starts and finishes a foraging trip, respectively),
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each bee attempts to collect nectar from five different flowers in order to fill its nectar crop
(stomach) to capacity. Flowers are refilled between foraging bouts. In simulations with two
bees, the two individuals start their foraging bout synchronously, and the flowers are refilled
with nectar after the last bee has returned to the nest. For each bee, flower choice is described
using movement transitions (orientated jumps between two flowers or between the nest and a
flower). The initial probability of using each possible transition is based on the length of the
movement, so that short transitions have a higher probability than longer ones. This probabil-
ity is then modulated through learning when the bee used a transition for the first time during
about.

We implemented two learning rules: (i) a positive reinforcement, i.e. if the flower at the end
of a transition contains nectar and the bee feeds on it, it is set as a rewarding experience and
the probability to reuse the transition later is increased; (ii) a negative reinforcement, i.e. if the
flower is empty or if the bee is pushed away by competitors, it is set as a non-rewarding experi-
ence and the probability to reuse the transition later is decreased. The three models imple-
mented either one of these two rules (model 1[+]: positive reinforcement only; model 2[-]:
negative reinforcement only) or both rules (model 3[+/-]).

A flower is empty if it had previously been visited in the same foraging bout by the same or
another bee (exploitation competition). If multiple bees visit a flower at the same time (inter-
ference competition), only one bee (randomly selected) is allowed to stay and take the reward
if there is one. The other bees react as if the flower was empty. After each flower visit, all bees
update their probabilities to reuse the movement transitions accordingly.

Trapline formation thus depends on the experience of the bee and its interactions with
other foragers. For simplicity, we restricted our analysis to two bees. Working with pairs of
bees facilitates future experimental tests of the models’ predictions by reducing the number of
bees to manipulate and control in experiments [11,18]. Note, however, that the same models
can be used to simulate interactions among more bees (see examples with five bees in S1 Video
and S4 Text).

A detailed description of the model is provided in S1 Text, in the form of an Overview,
Design concepts and Details (ODD) protocol [60,61]. The complete R code is available at
https://gitlab.com/jgautrais/resourcepartitioninginbees/-/releases.

Environments

Simulations with one forager. Our first goal was to test the ability of our models to repli-
cate observations of real bees. To do so, we ran simulations in environments replicating pub-
lished experimental studies in which individual bumblebees (Bombus terrestris) were observed
developing traplines between five equally rewarding artificial flowers in a large open field
[13,22]. To our knowledge, these studies provide the most detailed available datasets on trap-
line formation by bees. Lihoreau et al. [22] used a regular pentagonal array of flowers (S1A
Fig) in which they tracked seven bumblebees. We judged this sample size enough to run quan-
titative comparisons with model simulations (raw data are available in the supporting informa-
tion of [22]). Woodgate et al. [13] used a narrow pentagonal array of flowers (S1B Fig). Here,
however, the small sample size of the original dataset (three bumblebees, data shared by J.
Woodgate) only enabled a qualitative comparison with the model simulations (S3 Text).

Simulations with two foragers. We then explored conditions leading to resource parti-
tioning by running model simulations with two foragers. Here we simulated environments
containing 10 flowers, in which each bee had to visit five rewarding flowers to fill its crop to
capacity. The simulated flowers should thus be considered as feeding sites such as plants or
inflorescences, which are more likely to contain such large amounts of resources (20% of the
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bee’s crop). To test whether model predictions were robust to variations in spatial distributions
of resources we simulated three types of environments characterized by different levels of
resource patchiness: (i) a patch of 10 flowers, (ii) two patches of five flowers each, and (ii1)
three patches of five, three and two flowers respectively (see examples in S2 Fig). We generated
flower patches in a spatial configuration comparable to the one used in both experimental set-
ups [13,22]. In a 500m x 500m plane, a nest was set as the centre (coordinates 0,0). Then, patch
centres were placed with a minimum distance of 160m between each, and at least 20m from
the nest. Within a patch, flowers were randomly distributed according to two constraints: (i)
flowers were at least 20m apart from each other and from the nest, (ii) the maximum distance
of each flower from the centre of their patch was 40m. This ensured that each patch had a max-
imum diameter of 80m and inter-flower distances were smaller between all flowers of the same
patch than between all flowers of different patches (See ODD Protocol for more details, S1
Text, Ch.7 “Submodels”). The distances used in the simulated environments were chosen to
replicate the experimental data used to test the model [13,22] where closest flowers were
spaced by 25 metres. In our model, however, only the relative distance between the different
elements of the environment mattered as all distances were normalized in the process of creat-
ing the probability matrix (S1 Text).

Movements

At each step, a bee chooses to visit a target location (flower or nest) based on a matrix of move-
ment probabilities. This matrix is initially defined using the inverse of the square distance
between the current position of the bee and all possible target locations [22,23]. The probabil-
ity of moving from location i to location j among multiple possible targets, is initially set to:

1
dzx_,

Z; (1)

P(i —j) =

<l

Where d;; is the distance between locations i and j. The use of a movement probability matrix
is justified by its capacity to approximate accurately the probability to reach a flower using a
random walk, although it is significantly dependent on what exponent is used in the formula
transforming distances to probabilities (See S6 Text for details). Thus, while the probability
matrix allows unexperienced bees (during their first foraging bout) to move between all flow-
ers, it should not be interpreted as a knowledge of their positions, but rather a probability of
finding them by chance.

Before choosing its destination, the bee lists all possible target locations. For simplicity, the
bee excludes its current location, thus preventing looping flights to and from the same target
(flower or nest), which are rare in experienced bumblebee foragers [62] and provide little
information about bee routing behaviour. The bee also excludes the location it had just come
from to simulate the tendency of bumblebees to avoid recently visited (and thus depleted)
flowers [62]. The foraging bout ends if: (i) the bee fills its crop to capacity, (ii) the bee chooses
the nest as a target destination, or (iii) the bee reaches a maximum travelled distance of 3000
m. The latest was added to avoid endless foraging trips in the model. The maximum distance
was chosen based on the observation that bumblebees typically forage within a distance of less
than 1km from their nest [63-65].

Learning

Learning modulates the probability of using transition movements as soon as the bee experi-
ences the chosen target and only once within a foraging bout (the first time the transition is
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used during the foraging bout; Fig 1). This approach has the advantage of implementing vector
navigation [24,25] (S6 Text) and thus avoids assumptions about computation and comparison
of complete routes [22,23], but it makes new assumptions about bees remembering a large
number of locations and distances of flowers. Bees are known to be able to learn few indepen-
dent feeding sites, and even to create shortcuts between these locations [66,67]. By keeping a
low number of flowers, we ensured the number of transitions to remember would be low so
that this hypothesis was reasonable.

Positive reinforcement was implemented in models 1[+] and 3[+/-]. It occurred when a bee
used a transition leading to a rewarding flower. The probability of using this transition was
then multiplied by 1.5, then normalized among other transition probabilities to ensure that all
sum up to 1 and no single probability goes beyond a value of 1, as in Reynolds et al. [23]. This
positive reinforcement is based on the well-known tendency of bumblebees to return to nec-
tar-rewarding places through appetitive learning [68]. Negative reinforcement was imple-
mented in models 2[-] and 3[+/-]. It occurred when a bee used a transition leading to a non-
rewarding flower. The bee reduced the probability of using that transition by multiplying it by
0.75 (here also rescaling the probabilities after application of the reinforcement). This negative
reinforcement rule was based on the tendency of bumblebees to reduce their frequency of
revisits to unrewarded flowers with experience [21]. We applied a lower value to negative rein-
forcement because bees are much more effective at learning positive stimuli (visits to reward-
ing flowers) than negative stimuli (visits to non-rewarding flowers) (review in [69]). Sensitivity
analyses of these two parameters show that increasing positive and/or negative reinforcement
increases the speed and level of resource partitioning (S2 Text). However, only positive rein-
forcement has a significative effect on route similarity (Fig C in S2 Text).

Competitive interactions

We implemented competitive interactions between foragers in the form of exploitation and
interference (Fig 1). Exploitation competition occurred when a bee landed on a flower whose
nectar reward had already been collected by another bee. If the flower was empty, the probability
to reuse the transition was either left unchanged (model 1[+]) or decreased (negative reinforce-
ment, models 2[-] and 3[+/-]). Interference competition occurred when two bees arrived simul-
taneously on a flower. Only one bee could stay on the flower and access the potential nectar
reward with a random probability (p = 0.5). After the interaction, the winner bee took the reward
if there was one. The loser bee reacted as it would for an empty flower. To our knowledge, there
is no empirical data suggesting that bees would react differently to these types of competitive
interactions. Therefore, we made the parsimonious assumption that the effect was the same.

Data analyses

All analyses were performed in R version 3.3 [70].

Simulations with one forager. For each model, we compared the results of the simula-
tions to the reference observational data, either quantitatively (for [22]) or qualitatively (for
[13]; S3 Text). We stopped the simulations after the bees completed a number of foraging
bouts matching the maximum observed during the experimental conditions of the published
data (37 foraging bouts in [22]; 61 foraging bouts in [13]). We ran 500 simulations for each
model and we estimated how models fitted the experimental data using two main measures:

i. the quality of each route, QL, calculated as:

QL = 4 (2)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009260  July 28, 2021 13/19


https://doi.org/10.1371/journal.pcbi.1009260

PLOS COMPUTATIONAL BIOLOGY A model of resource partitioning between foraging bees

Where F is the number of rewarding flowers visited during a foraging bout and d is the net
length of all transition movements travelled during the foraging bout. QL is standardized
between 0 and 1 by the quality of the optimal route in each array QL (shortest possible
route to visit all 5 flowers).

=

ii. asimilarity index SI,;;, between flower visitation sequences experienced during two conse-

cutive foraging bouts a and b as follows:

Sa
SIah = 2lh (3)
ab

Where s, represents the number of flowers in transitions found in both sequences, and I,
the length of the longest flower visitation sequence between i and j multiplied by 2 to make
sure that SI,,;, = 1 occurs only when two consecutive sequences sharing the same transitions
also have the same length (more details and examples in S5 Text).

We applied generalized linear mixed effect models (GLMM) with binomial error, using the
glmer function in ‘lme4’ package [71], to assess whether the estimated trends across foraging
bouts for QL and S, obtained from model simulations with one forager differed from trends
obtained from experimental data. In each model, we used a random structure to account for
the identity of bees.

Simulations with two foragers. We generated 10 arrays of flowers for each of the three
types of environments (one patch, two patches and three patches) and ran 100 simulations for
each of the three models (9000 simulations in total). We compared the simulation outcomes of
the models using four measures:

i. the frequency at which each bee experienced exploitation competition (i.e. flower visits
when the reward has already been collected) and interference competition (i.e. flower visits
when two bees encounter on the flower).

ii. the similarity index SI,;, between successive foraging bouts by the same bee.

iii. the degree of resource partitioning among bees, based on network modularity Q [21,72]. Q
is calculated using the computeModules function implemented in the R package ‘bipartite’
[73] using the DIRTLPAwb+ algorithm developed by Beckett [74]. Although Q ranges
between 0 (the two bees visit the same flowers) and 1 (the two bees do not visit any flower
in common), the comparison of modularity between networks requires normalisation
because the magnitude of modularity depends on network configuration (e.g., total num-
ber of flower visits) [74,75]. For each network, we calculated:

Q

Q. (4)

Qnorm =
where Q,,, is the modularity in a rearranged network that maximizes the number of mod-
ules [72].

iv. an index of collective foraging efficiency, QL. computed for each foraging bout b, to
estimate the collective efficiency of all foraging bees, as:

Z;:1 QLp‘h

(5)
QLoprimal

QLgroup,b =

where QL, 5 is the route quality of the individual p during bout b, n the number of bees,
and QL,ptimar is the maximum value of all the possible sums of individual route qualities.
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QL ptimar was calculated in each environment by computing all possible combinations of
two routes visiting five flowers each and extracting the combination with the highest
quality.

To assess whether the trends across foraging bouts obtained from simulations with two
bees differed between models (Fig 1) and types of environments (S2 Fig), we applied GLMMs
for each of the following response variables: (i) frequency of competition types (Poisson error
distribution), (i) SI,;, (Binomial error distribution), (ii1) Q,,oy,, (Binomial error distribution)
and (iv) QLgy,,,p, (Binomial error distribution). In each model, we used a random structure to
account for bee identity nested in flower arrays (i.e. 100 simulations of each spatial array for
each model). To statistically compare the trends across foraging bouts, we estimated the mar-
ginal trends of the models, as well as the 95% confidence intervals of the mean using the
emtrends function in ‘emmeans’ package [76]. When the 95% confidence intervals of the esti-
mated trends included zero, the null hypothesis was not rejected. Statistical models were run
using the glmer function in ‘lme4’ package [71].

Supporting information

S1 Fig. Experimental Flower Arrays. Arrays of artificial flowers (grey circles) and the colony
nest (black pentagons) used to obtained the experimental datasets. A. Regular pentagon, modi-
fied from Lihoreau et al. [22]. B. Narrow pentagon, modified from Woodgate et al. [13].

(TIF)

S2 Fig. Simulated Flower Arrays. Examples of simulated environments. Spatial distribution
of 10 flowers (grey circles) and a colony nest (black pentagon) in three types of environments
defined by different levels of flower patchiness. A flower patch was characterized by: 1) a uni-
form distribution of flowers, 2) a lower distance between flowers within the patch than
between all flowers from different patches (see details in methods).

(TIF)

S1 Text. ODD Protocol.
(DOCX)

S2 Text. Sensitivity analysis of positive and negative reinforcements.
(DOCX)

$3 Text. Qualitative comparison between simulations and observations in the narrow pen-
tagon.
(DOCX)

$4 Text. Predictions with more than two bees.
(DOCX)

§5 Text. Supplementary information on the similarity index.
(DOCX)

$6 Text. Details on the movement probability matrix.
(DOCX)

S$1 Video. Animation of a model simulation with 5 bees. Example of simulation of five bees
foraging in an environment with one patch of 50 flowers. Both positive and negative reinforce-
ment rules are implemented (model 3[+\-]). Bees performed 100 foraging bouts.

(MP4)
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