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Abstract

Traditional methods of computing standardized mortality ratios (SMR) in mortality studies rely upon a number of
conventional statistical propositions to estimate confidence intervals for obtained values. Those propositions include a
common but arbitrary choice of the confidence level and the assumption that observed number of deaths in the test
sample is a purely random quantity. The latter assumption may not be fully justified for a series of periodic ‘‘overlapping’’
studies. We propose a new approach to evaluating the SMR, along with its confidence interval, based on a simple re-
sampling technique. The proposed method is most straightforward and requires neither the use of above assumptions nor
any rigorous technique, employed by modern re-sampling theory, for selection of a sample set. Instead, we include all
possible samples that correspond to the specified time window of the study in the re-sampling analysis. As a result, directly
obtained confidence intervals for repeated overlapping studies may be tighter than those yielded by conventional methods.
The proposed method is illustrated by evaluating mortality due to a hypothetical risk factor in a life insurance cohort. With
this method used, the SMR values can be forecast more precisely than when using the traditional approach. As a result, the
appropriate risk assessment would have smaller uncertainties.
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Introduction

A traditional and commonly used approach in mortality studies

is based on the standardized mortality ratio (SMR) model,

described in a number of texts [1–3]. The SMR is defined as

the ratio of the observed to expected numbers of deaths and is

often times expressed as follows:

SMR~D=E~Si,a di að Þ=Si,a qi að ÞEi að Þ, ð1Þ

where D and E are the total actual and expected numbers of

deaths, summation is taken by selected equal time intervals i

(usually, 1 year long durations) and relevant strata a (e.g., age

groups), di(a) = observed number of deaths, qi(a) = population

death rate (conditional probability of death), and Ei(a) = exposure

(number of person-intervals) in i-th interval for stratum a. The

values of other relevant classification variables, such as sex and

smoking status, may be blended in eq. (1) or the SMR may be

computed separately for each individual combination. The

observed number of deaths in the numerator is taken for a sample

with specific distinct characteristics (e.g., a certain disease), whose

relative mortality is to be assessed in the study.

The above approach provides a simple way to evaluate

mortality ratios for wide range of study conditions, with a direct

method of estimating standard errors based on the binomial

distribution. For large enough numbers of deaths in each

individual group (di(a). = 5, qi(a)Ei(a). = 5) and total population

size much larger than the size of the study sample, a simple

approximation, based on the normal distribution of the observed

numbers of deaths [4], may be used:

s:e: SMRð Þ~SMR0 1d=nð Þ1=2=d1=2, ð2Þ

where SMR0 is given by (1), d =Si, a di(a) is total observed number

of deaths and n is the size of the study sample. The resultant

confidence interval for SMR may be approximated as follows:

SMR~SMR0 1{1= 2dð Þz={Z 1d=nð Þ1=2=d1=2
� �

, ð3Þ

where Z is the normal distribution score for selected confidence

level (Z = 1.96 for commonly used 95% confidence level).

An alternative, so-called Byar’s [3], approximation is a simple

but amazingly precise approximation to exact results based on the

Poisson distribution:

SMRL~ D=Eð Þ 1{1= 9Dð ÞZ= 3D1=2
� �� �3

,

SMRU~ Dz1ð Þ=Eð Þ 1{1= 9 Dz1ð Þð ÞZ= 3 Dz1ð Þ1=2
� �� �3

,

ð4Þ

where SMRL, SMRU are the lower and upper limits of the

confidence interval.

Methods

Issues with Conventional Approach
Although simple and straightforward, these methods of estimat-

ing confidence intervals have a number of weaknesses. The first
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obvious issue is the necessity to select a particular confidence level.

Even though the 95% value is a standard selection in most

situations, there is no solid justification for using it; any choice is,

strictly speaking, an arbitrary one. The second issue, that is the

center point of the present article, is the most general assumptions

upon which these traditional estimation methods are based. It is

always assumed that the actual number of deaths in a population for

which the final SMR is evaluated is a purely random quantity. This

means that the true number can have any value according to the

corresponding distribution with the mean equal to the observed

number of deaths in the study sample. While this assumption is quite

reasonable for prediction attempts that stretch indefinitely into the

future, in many real situations it would be too conservative resulting

in unjustifiably wide confidence intervals. Indeed, often times it is

more meaningful to attempt forecasting relevant SMR values only

over a finite number of years of additional follow-up. One possible

reason is the need for most accurate and credible SMR estimates

over a relatively narrow time horizon. Plausible examples are:

repeated studies of the effect of pollutants in a community, recurring

studies of occupational mortality, or an ongoing study of a particular

risk factor found in individual life insurance underwriting. Each of

these studies would use as its expected mortality basis a (potentially

stratified) set of mortality rates representative of the population the

study subjects were drawn from.

For instance, consider a typical mortality study conducted for

entrants to a study within the past 10 years with a maximum 10

year observation period, and assume that the observed number of

deaths is 400. If the objective of the study is to forecast the SMR 3

years into the future when a new 10 year observation period will

be used, it would be too much of a stretch to assume that the

confidence interval for the observed number of deaths is given by

400(1+/21.96/(400)1/2) = 400+/239 (see Eq. 3, assuming 1/

(2d)<0, (12d/n)1/2<1). Indeed, since the next 10 year study will

include all deaths from last 7 years of entrants with a maximum 7

year follow-up that are included in the current one, let’s say, 250

deaths, only about 150 or so ‘‘new’’ deaths may have to be treated

as a random variable, and a more reasonable final estimate might

look like 250+150(1+/21.96/(150)1/2) = 400+/224 deaths. Fur-

thermore, the assumption that all 150 ‘‘new’’ deaths are a purely

random quantity is an exaggeration. Since the majority of those

deaths (perhaps, 120 or so) will come from the same 7 years of

entrants followed for additional 3 years, their number will not be

completely independent of the 250 deaths included in the current

study. Only a few additional deaths (say, about 30) coming from 3

years of new entrants followed for up to 3 years total will have to

be treated as a completely independent random variable.

Proposed New Method
Obviously, developing a rigorous approach based on sound

statistical methods to incorporate these ideas may not be a feasible

task. Luckily, there is no need to embark upon such a difficult

journey. The center piece of the present paper is a new proposed

approach that is very straightforward, independent of any

statistical assumptions, and may therefore be justifiably called

‘‘evidence-based’’. The approach we are proposing here is based

on a generalization of re-sampling methods that have gained some

recognition in the last decades. Extensive literature now in

existence [4–6] describes specific methods (e.g., bootstrap and

jackknife), developed by a number of scholars, and offers

sophisticated arguments, based on sound statistical principles, in

support of those methods. The main difference among various re-

sampling approaches lies in the specific way that the set of test

samples is created and in the number of those samples that is

deemed appropriate to provide desired credibility and precision of

the resultant estimates. Our method is free of any ambiguity

associated with both those complications due to the presence of a

natural time scale provided by the study itself. In the example

discussed earlier, the relevant scale is the length of the period for

consecutive studies (e.g., 3 years).

Once that main time interval has been specified, the selection of

the test samples becomes most straightforward. Specifically, in the

proposed re-sampling method, every possible sample falling within

the said time interval is used. Consecutive samples are obtained

simply by censoring the original sample back one day (or other

smallest time increment available with the data) at a time.

Censoring in this context means setting the end of the study on a

specified day and excluding all deaths that occurred on later days

from the analysis. Simultaneously, the start date of the study is also

adjusted on a daily basis in such a way that a specified constant

length of the follow-up (observation period) is always maintained.

Therefore, for granular enough data, with all relevant dates

(entering/leaving the study or death) for each subject known to the

nearest day, the number of test samples is equal to the total

number of days in the study’s main time interval.

Results

Example: Risk Factor Study
In order to illustrate the proposed method, let us set up a mortality

study with the purpose of evaluating a risk factor in a cohort of life

insurance applicants. It matters not what the risk factor is, merely

that it may infer additional mortality compared to the baseline

mortality rates derived from the entire cohort. The question at hand

will be if this risk factor’s extra mortality varies by age.

The experience here is taken from data available to the authors

encompassing fully underwritten insurance policies issued between

1996–2008 from which the base death rates (quantities qi(a) in Eq. 1)

were derived. The observation period for the study will be set at 10

years, and we will present results for a 3-year main time interval

(forecasting horizon). The risk factor in this mortality study is

comprised of selected impairments that are routinely underwritten

and for which extra premium is typically assessed. All the analyses

have been performed using SAS programming language, version 8.2.

The study has been run with two consecutive data samples: one

with an observation period of 1996–2005, another one with an

observation period of 1999–2008. The characteristics of the two

samples are presented in Table 1; there have been no significant

changes in the distribution by sex and age over the chosen 3-year

time interval. Table 2 below demonstrates the results obtained by

running the 10 year mortality studies in a traditional way,

Table 1. Study samples for two 10-year observation periods,
three years apart.

1999–2008 1996–2005

Sex Age Cases Deaths Cases Deaths

All 30–69 134,979 679 145,085 702

All 30–49 103,162 348 111,934 333

All 50–69 31,817 331 33,151 369

Male 30–49 79,464 290 85,282 284

Male 50–69 23,798 261 24,728 300

Female 30–49 23,698 58 26,652 49

Female 50–69 8,019 70 8,423 69

doi:10.1371/journal.pone.0012340.t001

Re-Sampling Mortality Studies

PLoS ONE | www.plosone.org 2 August 2010 | Volume 5 | Issue 8 | e12340



according to Byar’s approximation (Eqs. 4). In order to make the

results as ‘‘credible’’ as reasonably possible, the study population

was limited to (middle-age) adult nonsmokers, ages 30–69. Eight 5-

year wide age groups a (30–34, 35–39, …, 65–69) were used for

the base death rates and SMR computations, with 1-year long

time intervals i to account for effects of varying durations in eq. 1.

The death rates were always computed for the corresponding 10

year study sample, and no attempts have been made to smooth

them out in any way. All the results presented below are for the

exposures computed at the beginning of 1 year time intervals;

using mid-interval exposures instead yields practically identical

results. In the interests of protecting the company’s proprietary

data, all SMR values have been ‘‘normalized’’ by representing

them as ratios to the SMR value for the entire study sample (both

sexes, ages 30–69).

With this hypothetical study, the main issue under investigation is

whether the risk assessment of this factor should be made dependent

on age. The most general observation of Table 2 results immediately

raises the following question: are the SMR values for ages 30–49 and

50–69 significantly different? Based on unisex analysis, and for the

1999–2008 observation period, we might conclude that they are,

since the corresponding 95% level confidence intervals (1.00–1.24

for ages 30–49 and 0.80–1.00 for ages 50–69) do not overlap.

However, looking at the 1996–2005 observation period, we find that

the intervals do overlap, and the conclusion drawn from that earlier

study should be: no statistically significant difference between the two

age bands. Furthermore, when stratified by sex, the confidence

intervals for the two age groups in question overlap noticeably for

both study re-runs. Therefore, in a real-life situation, the conclusion

would likely be that no stratification by age was justified. The 1999–

2008 study might draw attention to the first disputable evidence for

emerging possible age dependence of the risk factor. It is likely,

though, that only in case of clearly non-overlapping confidence

intervals repeated for several subsequent re-runs would stratification

by age be seriously considered.

The situation is substantially different with the proposed new

approach used for the estimation of the confidence intervals in

question. Table 3 below presents the results obtained by using re-

sampling method described earlier for the 1999–2008 observation

period with daily re-sampling, that is, setting the beginning and

ending censor date forward one day at a time from the 1996–2005

observation period until covering the 1999–2008 period. There

are in effect then 1,096 resulting ten year observation periods

using this technique. The average SMR is taken from these

individual observation period SMRs and the endpoints of the

confidence intervals correspond to the minimum and maximum

values of the SMR distribution.

Discussion

In accordance with earlier discussion, each confidence interval

turns out to be much narrower than in the traditional approach.

As a result, none of them overlap, even when stratified by sex, and

the only possible conclusion could be the positive need for age

stratification.

A natural question arises: how robust is the proposed method,

e.g., what is the minimum sample size and/or number of deaths

that can assure the credibility of the corresponding estimates? For

this evidence-based approach and in the absence of any other

model parameters except the main time interval (3 years) and the

length of the follow-up (10 years), we suggest a simple practical

criterion. Namely, as long as the actual consecutive study design

ensures large enough overlapping (7 years out of 10 in the current

example) that the re-sampling confidence intervals are significantly

tighter than the ones resulting from the traditional approach, the

Table 2. Traditional approach for two 10-year observation
periods, three years apart.

1999–2008 1996–2005

Sex Age SMR 95% C.I. SMR 95% C.I.

All 30–69 1.00 0.93–1.08 1.00 0.92–1.08

All 30–49 1.12 1.00–1.24 1.05 0.95–1.21

All 50–69 0.90 0.80–1.00 0.96 0.83–1.05

Male 30–49 1.07 0.95–1.20 1.03 0.92–1.19

Male 50–69 0.87 0.77–0.98 0.95 0.81–1.05

Female 30–49 1.47 1.11–1.90 1.25 0.88–1.71

Female 50–69 1.02 0.80–1.29 0.98 0.76–1.31

SMR = Standardized Mortality Ratio, C.I. = SMR Confidence Interval.
All values normalized by the SMR for the entire study sample (both sexes, ages
30–69).
doi:10.1371/journal.pone.0012340.t002

Table 3. Proposed 10-year observation period, with three
years of daily re-sampling.

Observation period progressing daily from
1996–2005 to 1999–2008

Sex Age SMR Full C.I.

All 30–69 1.00 0.97–1.03

All 30–49 1.11 1.05–1.16

All 50–69 0.91 0.86–0.99

Male 30–49 1.07 1.02–1.12

Male 50–69 0.89 0.82–0.99

Female 30–49 1.38 1.19–1.61

Female 50–69 1.00 0.94–1.09

SMR = Mean of SMR distribution, Full C.I. = Min2Max of SMR distribution.
All values normalized by the SMR for the entire study sample (both sexes, ages
30–69).
doi:10.1371/journal.pone.0012340.t003

Table 4. Proposed 5-year observation period, with three
years of daily re-sampling.

Observation period progressing daily from
2001–2005 to 2004–2008

Sex Age SMR Full C.I.

All 30–69 1.00 0.90–1.10

All 30–49 1.12 0.85–1.25

All 50–69 0.90 0.76–1.02

Male 30–49 1.15 0.89–1.35

Male 50–69 0.86 0.72–1.05

Female 30–49 0.94 0.51–1.66

Female 50–69 1.04 0.75–1.42

SMR = Mean of SMR distribution, Full C.I. = Min2Max of SMR distribution.
All values normalized by the SMR for the entire study sample (both sexes, ages
30–69).
doi:10.1371/journal.pone.0012340.t004
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proposed method may be regarded as meaningful and preferred.

Of course, depending on the specific statistic under investigation,

the relative tightness of the confidence intervals may or may not

matter for the final study results. For example, let’s now consider a

5-yr study with the same main time interval of 3 years. As

presented in Table 4, the re-sampling confidence intervals for the

two age groups widen sufficiently to overlap for both sexes. And

even though they are still significantly tighter than those obtained

with the traditional approach, the proposed method does not

provide any added value – the conclusion would still be: no

stratification by age justified at this point.

Similarly, if a 10-yr study is re-run with one additional year of

daily re-sampling (4-yr main time interval), questions about the

need for stratification by age arise. As Table 5 shows, even though

for males the confidence intervals still do not overlap, they now do

for females. Therefore, the simplest, most conservative, conclusion

may be that for a 10-yr study the longest forecasting horizon

ensuring the robustness of the proposed method and reliability of

its predictions is 3 years.

At the same time, a more aggressive modification of the

proposed method may be justified. It has to do with the fact that so

far we have evaluated the confidence intervals over the entire

forecasting horizon (3 or 4 years), which resulted in their lower and

upper limits being constant. However, the statistic under

investigation – SMR – can clearly be time-dependent. Indeed, a

quick look at Table 2 data suggests, for example, that for females,

especially those ages 30–49, this dependence may, in fact, be quite

significant. Therefore, a natural refinement of the proposed

method could consist of dividing the original main time interval

into a number of smaller intervals and performing described daily

re-sampling over each one of them separately. This way, the

corresponding number of SMR values with their associated

confidence intervals will result. If plotted as a function of a time

variable describing each individual re-sampling interval by a single

point (e.g., the end of its observation period), the time-dependent

confidence bands will be generated, similar to those produced with

the Principal Response Curves (PRC) method [7]. Consider, for

example, using 1-yr individual re-sampling intervals. As shown in

Table 6, the corresponding confidence intervals do not overlap for

either one of the sexes, and the resulting ‘‘confidence bands’’ do

not overlap anywhere. An obvious question now arises: in what

case can this modified approach work and how should the specific

individual re-sampling intervals be adequately chosen? Clearly, in

order for this refined method to be justified, there should be some

systemic, rather than just random, variations in SMR value for

those individual intervals. With our example, such differences

could readily be caused by changes in the underwriting standards

that result in varying sample selections over the years.

An example of computing the confidence bands for PRC by

performing a standard non-parametric bootstrap at each time

point (weekly data were used) is given in [8]. It is instructive to

compare the results obtained by using our proposed method and

the standard bootstrap. Table 7 presents the results of applying

bootstrap re-sampling to the two 10-yr study samples discussed

earlier. Even though only 100 re-samples were used, the

confidence intervals are much wider than those for the proposed

method and significantly overlap for both sexes (with more

commonly used 1000 re-samples, the confidence intervals would

be even wider). Bootstrap re-samples were drawn using PROC

SURVEYSELECT in SAS, with Unrestricted Random Sampling

(URS) method, i.e., with replacement.

Another issue, that standard re-sampling methods concern

themselves with, is that of a possible bias in the obtained estimate

of the statistic in question, i.e. the difference between its empirical

(sample-based) value and the ‘‘true’’ (population-based) value. There

are ways to estimate that bias for various re-sampling methods that

are described in the literature [4–6]. The advantage of the simple

Table 5. Proposed 10-year observation period, with four
years of daily re-sampling.

Observation period progressing daily from
1996–2005 to 2000–2009

Sex Age SMR Full C.I.

All 30–69 1.00 0.97–1.03

All 30–49 1.11 1.05–1.16

All 50–69 0.91 0.86–0.99

Male 30–49 1.07 1.03–1.12

Male 50–69 0.88 0.79–0.99

Female 30–49 1.41 1.19–1.61

Female 50–69 1.06 0.95–1.26

SMR = Mean of SMR distribution, Full C.I. = Min2Max of SMR distribution.
All values normalized by the SMR for the entire study sample (both sexes, ages
30–69).
doi:10.1371/journal.pone.0012340.t005

Table 6. Four proposed 10-year observation periods, with one year of daily re-sampling each.

Observation period from
1999–2008 to 2000–2009

Observation period from
1998–2007 to 1999–2008

Observation period from
1997–2006 to 1998–2007

Observation period from
1996–2005 to 1997–2006

Sex Age SMR Full C.I. SMR Full C.I. SMR Full C.I. SMR Full C.I.

All 30–69 1.00 0.98–1.02 1.00 0.98–1.02 1.00 0.98–1.02 1.00 0.98–1.02

All 30–49 1.13 1.10–1.18 1.13 1.11–1.16 1.11 1.09–1.12 1.08 1.04–1.10

All 50–69 0.90 0.87–0.92 0.89 0.86–0.91 0.91 0.89–0.92 0.94 0.89–0.98

Male 30–49 1.07 1.04–1.13 1.09 1.05–1.12 1.06 1.04–1.08 1.05 1.02–1.09

Male 50–69 0.83 0.80–0.85 0.86 0.83–0.88 0.89 0.87–0.90 0.93 0.87–0.98

Female 30–49 1.49 1.37–1.60 1.42 1.33–1.56 1.46 1.32–1.62 1.27 1.18–1.42

Female 50–69 1.22 1.15–1.27 1.02 0.96–1.09 1.03 0.98–1.07 0.96 0.93–0.99

SMR = Mean of SMR distribution, Full C.I. = Min2Max of SMR distribution.
All values normalized by the SMR for the entire study sample (both sexes, ages 30–69).
doi:10.1371/journal.pone.0012340.t006
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approach proposed in the present paper is the absence of any ‘‘true’’

value for the statistic under investigation (SMR), except that obtained

with the daily re-sampling over the appropriate time interval. In other

words, the described full set of daily re-samples represents the entire

‘‘population’’ over the specified time horizon. The only unknown part

of this ‘‘population’’ is the one that will appear in subsequent studies

as a result of newly underwritten future cases. Of course, there is no

rigorous way to make any credible inferences regarding the future

samples updated with those cases.

To further demonstrate the benefits of the proposed method, let

us also apply the traditional approach of Eq. 4 to the entire sample

with 13-yr long observation period (1996–2008). As demonstrated

in Table 8, with the numbers of deaths almost twice those for each

one of the two 10-yr studies (see Table 2), the confidence intervals

become much tighter. As a result, for males they do not overlap

anymore although they touch. But for females the confidence

intervals for the two age groups still overlap, and so even three

additional years of observation do not provide clear indication of

the need for stratification by age.

The other obvious result here is that with tighter confidence

intervals, the specific SMR values can be forecast more precisely

than when using the traditional approach. As a result, with the

proposed method used, the appropriate risk assessment would

have smaller uncertainties.

Concluding Remarks
One final comment: so far, we have not mentioned a powerful

method, based on the Cox proportional hazards model [9,10], that

lately has been increasingly used in epidemiological mortality

studies. That model has been gaining popularity in bio-medical

research over the traditional SMR approach because of its

exceptional versatility. The main advantages of the Cox model

are: its suitability for multivariate analysis, no need for any specific

assumptions regarding survival probability distribution in the base

population, and the ability to handle time-dependent variables.

However, the estimated confidence intervals for computed hazard

ratios are generally at least as wide as those for the SMR model

and depend on a number of statistical assumptions, including the

aforementioned need to select a specific confidence level. The

reason for the confidence intervals being especially wide is the

presence of intrinsic uncertainties associated with the maximum

likelihood method which is an integral part of any practical

quantitative implementation of the Cox model [10]. As a result, it

suffers from the same weaknesses discussed earlier as the SMR

approach, which may also substantially reduce its predictive power

in a number of important situations.

As an illustration, in Table 9 we present the results from

multivariate Cox regression obtained for the most recent re-run of

the same 10-year study. The analysis was conducted using PROC

PHREG in SAS and, wherever appropriate, included multivariate

sex/age adjustments. It is clear that even for that re-run, which,

with the traditional SMR approach used, gave the first indication

of possible need for age stratification, the Cox regression would

not discover statistically significant difference between the two age

groups. Similar results would be obtained with the earlier study re-

run. Therefore, even though the proposed approach could easily

be used with the Cox regression (by re-sampling successive re-runs

of PROC PHREG), that would not provide any additional benefit

in the model’s predictive power.

In summary, the new approach to estimating confidence

intervals for the SMR values in mortality studies by employing

re-sampling methods, proposed in the present article, may provide

important advantages over the traditional approach based on the

binomial/Poisson distribution for the observed numbers of deaths.
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Table 8. Traditional approach for the entire 13-year
observation period.

Sex Age Cases Deaths SMR 95% C.I.

All 30–69 170,397 1208 1.00 0.94–1.06

All 30–49 128,663 604 1.11 1.02–1.20

All 50–69 41,734 604 0.91 0.84–0.99

Male 30–49 98,680 498 1.08 0.99–1.18

Male 50–69 31,132 477 0.90 0.82–0.99

Female 30–49 29,983 106 1.27 1.04–1.54

Female 50–69 10,602 127 0.95 0.79–1.13

SMR = Standardized Mortality Ratio, C.I. = SMR Confidence Interval.
All values normalized by the SMR for the entire study sample (both sexes, ages
30–69).
doi:10.1371/journal.pone.0012340.t008

Table 9. Cox model for 10-year observation period.

1999–2008

Sex Age HR 95% C.I.

All 30–69 1.00 0.91–1.09

All 30–49 1.09 0.97–1.23

All 50–69 0.90 0.79–1.02

Male 30–49 1.08 0.95–1.23

Male 50–69 0.86 0.75–1.00

Female 30–49 1.15 0.87–1.52

Female 50–69 1.01 0.77–1.33

HR = Hazard Ratio, C.I. = HR Confidence Interval.
All values normalized by the HR for the entire study sample (both sexes, ages
30–69).
doi:10.1371/journal.pone.0012340.t009

Table 7. Standard Bootstrap with 100 re-samples for the two
10-year observation periods.

1999–2008 1996–2005

Sex Age SMR Full C.I. SMR Full C.I.

All 30–69 1.00 0.91–1.09 1.00 0.89–1.11

All 30–49 1.13 0.95–1.28 1.05 0.90–1.20

All 50–69 0.90 0.76–1.07 0.96 0.86–1.10

Male 30–49 1.11 0.95–1.29 1.07 0.92–1.23

Male 50–69 0.87 0.72–1.05 0.98 0.85–1.15

Female 30–49 1.22 0.76–1.61 0.97 0.70–1.43

Female 50–69 1.00 0.72–1.33 0.87 0.61–1.17

SMR = Mean of SMR distribution, Full C.I. = Min2Max of SMR distribution.
All values normalized by the SMR for the entire study sample (both sexes, ages
30–69).
doi:10.1371/journal.pone.0012340.t007
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