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The COVID-19 pandemic starting in the first half of 2020 has changed the lives of everyone
across the world. Reduced mobility was essential due to it being the largest impact
possible against the spread of the little understood SARS-CoV-2 virus. To understand the
spread, a comprehension of human mobility patterns is needed. The use of mobility data in
modelling is thus essential to capture the intrinsic spread through the population. It is
necessary to determine to what extent mobility data sources convey the samemessage of
mobility within a region. This paper compares different mobility data sources by
constructing spatial weight matrices at a variety of spatial resolutions and further
compares the results through hierarchical clustering. We consider four methods for
constructing spatial weight matrices representing mobility between spatial units, taking
into account distance between spatial units as well as spatial covariates. This provides
insight for the user into which data provides what type of information and in what situations
a particular data source is most useful.

Keywords: COVID-19, spatial, mobility, spatial weight matrices, principal component analysis, hierarchical
clustering

1 INTRODUCTION

The COVID-19 pandemic starting in the first half of 2020 has changed the lives of everyone across
the world. From working from home at all hours, using less public and personal transport, home-
schooling under lock down, to economic strife and anxiety; predicting such changes would have been
near impossible a priori. By far the largest impact, aside from the economic troubles many find
themselves in, is reduced mobility. Daily commuting has been much reduced due to various
lockdown measures internationally. In addition, international flights and cross border travel was
restricted for significant periods of time, even between regions in some countries.

Reduced mobility was essential, however, due to it being the largest impact possible against the
spread of the little understood SARS-CoV-2 virus. Social distancing and stay at home instructions
were understood and implemented internationally. These instructions were seen as the best
protection for the individual, as well as being the means to prevent overload on the hospital
systems, which would otherwise result in inflated death rates. These protection mechanisms are
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formed on an understanding of the basic nature of the spatial
spread of the virus. A virus spreads via a host, whom it relies on to
move amongst other susceptibles. The more movement and
interaction performed by the host, the more the virus is able
to spread. It is thus imperative to incorporate a spatial element
when modelling the spread of the COVID-19 pandemic. Herein,
we focus on modelling the mobility spatially.

Quantifying mobility patterns of people facilitates a more
accurate understanding of the spread of the disease. An
individual’s ability to physically “lock down” and stay at home
was affected by economic inequality, as shown in a US study
(Huang et al., 2021). In South Africa, this economic inequality is
extreme, with the World Bank recognising South Africa, in 2019,
as having the worst inequality in the world1.

While the strict lockdown introduced by the South African
government from March 27, 2020 delayed the first wave, the
mobility was by no means completely reduced due to many living
day-to-day for food. Food parcel queues from food donations
were a large focus during the first half of the pandemic in South
Africa, as the risk of contracting COVID-19 was overridden by
the need for food. Such queues, and the use of public transport
during these times, heightened the transmission risk of COVID-
19 in South Africa, even while lockdown rules were in place. A full
lockdown was therefore not possible, and spatial interaction
continued between individuals from different regions across
South Africa. Modelling regions in isolation will therefore not
capture the influence of this mobility on the spread of COVID-19
in South Africa. The use of mobility data in modelling COVID-19
is thus essential to capture the intrinsic spread through the
population. A common source is mobile phone location data,
which has been utilized previously for epidemiological modelling
(Cummings et al., 2004; Wesolowski et al., 2012; Bengtsson et al.,
2015; Wesolowski et al., 2015; Finger et al., 2016; Ruktanonchai
et al., 2016). However, this data is difficult to obtain due to
increasing privacy concerns worldwide. In addition, there are
often a number of network providers in a region, each with
certain market share. Without data access from all, or at least, the
largest providers, representativeness and mobile phone
penetration will be limited and should be used with caution.
Other sources of mobility data are published by Facebook and
Google. The spatial resolution of these is lower, however. In this
paper we focus on mobile phone and Facebook mobility data,
which has higher spatial resolution than the Google alternative.

It is necessary to determine to what extent different sources of
mobility data, at differing spatial resolutions, convey the same
message of mobility within a region. In this paper we
demonstrate, through the use of principal component analysis
as well as hierarchical clustering, how different sources of spatial
mobility data at various resolutions can lead to different
conclusions with regards to spatial unit connectivity. Spatial
connectivity is an essential first step in spatial modeling,
providing a quantification of the spatial dependency between
spatial units. Herein, we compare the calculation of a number of
spatial weight matrices in quantifying how spatial units relate. We

also discuss the advantages of different sources and how they can
be harnessed when modelling the spread of a virus. We do this by
using principal component analysis in order to condense the
information that can be gained from a spatial weight matrix and
then using hierarchical clustering to identify the strongest spatial
associations and to essentially put on display what type of
relationships the spatial weight matrix is identifying. This is to
the best of our knowledge the first time this exact combination
has been used for this purpose.

The mobility data available for South Africa is presented in
Section 2. The methodology for constructing connectivity
matrices is developed in Section 3, and the results are
presented in Section 4. Section 5 provides a discussion and
Section 6 concludes.

2 DATA

Available mobility data is at different resolutions. For the case of
South Africa, the administrative divisions of the country are
summarised in Table 1. In order of increasing spatial
resolution these are country, province, district municipality,
local municipality, and ward, labelled as administrative levels 0
through 4 respectively. To facilitate the comparison of different
sources of spatial information, it is first necessary to aggregate the
data from each source to the same spatial resolution. Increasing
the resolution of spatial data can be achieved through methods
such as small area estimation or spatial micro-simulation (see e.g.
(Ballas et al., 2005; Pfeffermann, 2013)). These methods are
somewhat involved and require the use of auxiliary
information or assumptions that are unlikely to be true. In
this paper we investigate aggregating down to the lowest
spatial resolution used by our data sources. While this is
relatively straightforward to accomplish, it potentially results
in the loss of information.

Mobility data are used to understand various issues ranging
from epidemic modelling, transport planning and management,
communication network improvement and urban planning
(Asgari et al., 2013; Zhou et al., 2018). Asgari et al. (2013)
indicates that mobility goes far beyond mere geographical
movement of humans, but provides a comprehensive
perspective on human interactions that could be considered
from spatial, temporal, and contextual aspects. Human
mobility is one of the aspects of mobility that gained attention
from the global spread of infectious diseases as with the recent
COVID-19 pandemic. A variety of technologies including

TABLE 1 | South Africa’s administrative boundaries.

Administrative level Spatial unit name Number
of spatial units

0 Country 1
1 Province 9
2 District municipality 52
3 Local municipality 213
4 Ward 4,392

1https://povertydata.worldbank.org/Poverty/Home (Accessed May 2021)
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navigation sensors, wireless technologies, and cellular
communication technologies are used to position humans in
space (Toch et al., 2019). A study by Zhou et al. (2018)
provides a comprehensive overview of the different types of
human mobility patterns data. These include those data types
that capture both the wider (city-wide) and minute (building-
wide or large structure) human movements, for example, cellular
services records (CSRs), surrounding WiFi access point records
(SWAPRs), Global Positioning System locations (GPSLs),
geotagged social media (GTSM), public transport smart card
records (PTSCRs), bluetooth detection records (BDRs), andWiFi
probe request records (WFPRs). The analysis methods range
from data visualisation to statistical analysis methods
(classification and clustering), heuristic logic, graph theory and
optimization techniques.

2.1 South Africa’s Lockdown Levels
To quell the spread and impact of the COVID-19 pandemic, the
South African government instigated one of the strictest
lockdowns in the world. This particular lockdown strategy is
structured around different “levels” of lockdown, each of which
brings different restrictions (with level 5 being the highest and
placing restrictions on nearly all forms of travel to all citizens
except for those classified as essential workers). The various levels
as well as the dates for which they were active are given inTable 2.
Note that for this paper we only consider the lockdown until the
end of Level 3 due to data availability only over this period.

As non-pharmaceutical interventions (such as the lockdown)
are eased the population is allowed to become more mobile.
Naturally this will have an impact on the transmission rate of the
virus and thus this temporal element must be included in some
manner. In this paper we split the data temporally on the date
ranges given in Table 2 up to level 4 and set up a spatial weight
matrix for each level of lockdown to study how mobility patterns
changed. Two mobility data types were available for this research.
The first is freely available data shared by Facebook, and the
second is mobility data made available by a South African cellular
provider for the context of the COVID-19 response in 2020. In
Figure 7we provide the Google mobility data at country level. We

do not use this data in this research as it is only available at
administrative level 1, representing low spatial resolution. It is
however useful for context providing mobility levels in each
various industry sectors. Mobility for residential travel
(i.e., individuals remaining at their place of residence) is the
only type of travel that saw an increase after the country
transitioned into level 5. Grocery and pharmacy travel saw an
initial spike shortly before the country went into level 5 (possibly
attributed to panic-buying). After transitioning to level 5 we see a
drastic decrease in all types of travel, with residential travel
showcases a slightly downward trend while all other forms of
travel have an upward trend. Grocery and pharmacy travel is the
quickest to recover to pre-COVID levels while travel to parks and
travel stations is the slowest to recover (most likely due to this
being for leisure). By the end of the year residential travel is still
higher than before any lockdown interventions. Table 3 provides
the average changes over each level as well.

2.2 Facebook Data for Good
Multiple geographically indexed datasets have been made freely
available for use by Facebook through their “Facebook data for
good” initiative. These datasets serve to aid researchers and
policymakers in understanding the spread of COVID-192.

This paper utilises one of these available datasets, namely the
“Movement rangemaps” dataset. The data indicates the change in
mobility, F(t)

i ∈ (−1, 1) (which can be interpreted as a percentage
(−100, 100)), for a spatial unit i on a given day t over the period
March 1, 2020–February 28, 2021 relative to a 1-week baseline
calculated in February 2020. The daily values for each district
municipality were calculated by determining the number of so-
called “Bing tiles”3 that each inhabitant visited on a given day
(place of residence being determined by the location where users
most often spend their nights). A bing tile is the term used by
Microsoft for a spatial polygon. After incorporating some degree

TABLE 2 | South Africa’s lockdown levels and dates.

Level Date Restrictions

Business as usual March 1, 2020–March 26, 2020 No restrictions
Level 5 March 27, 2020–April 30, 2020 Essential services only otherwise all confined to place of residence. No inter-provincial movement, except for

transportation of goods and exceptional circumstances e.g. funerals. Public and private transport restricted to certain
times of the day with limitations on vehicle capacity

Level 4 May 1, 2020–May 31, 2020 More sectors permitted with restrictions, including mining, and partial e-Commerce allowed. Public places (such as
religious, cultural, recreational facilities) and the tourism sector remain closed and gatherings prohibited. All confined to
place of residence from 8pm to 5am. No local (between metropolitan areas or districts) or inter-provincial movement of
people, except for permitted reasons e.g. returning for alert level 4 operations. All borders remain closed except for
designated ports of entry for restricted home affairs operations and for the transportation of fuel, cargo and goods.
Public and private transport may operate at all times of the day, with limitations on vehicle capacity

Level 3 June 1, 2020–August 17, 2020 More sectors permitted including take away restaurants, e-commerce and delivery services and global business
services. Public places and tourism opened and gatherings and sporting activities permitted but all subject to
restrictions. All confined to place of residence from 11pm to 4am. No inter-provincial movement of people, except for
transportation of goods, exceptional circumstances and other permitted reasons. Public and private transport may
operate at all times of the day, with limitations on vehicle capacity

2https://dataforgood.fb.com/(Accessed May 2021)
3https://docs.microsoft.com/en-us/bingmaps/articles/bing-maps-tile-system
(Accessed May 2021)
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of noise, the average number of tiles visited by the inhabitants was
determined and expressed relative to the baseline. The full
description of how these values were calculated is available in
the Appendix. The spatial resolution for units of this data are
district municipalities, namely at administrative level 2.

Figure 1 shows the aggregated data for district municipalities,
with the average across the district municipalities shown in red.
The figure demonstrates that the average mobility nationally
dropped significantly in late March. This corresponds to when
South Africa entered its first hard lockdown on the March 27,
2020 (see Table 2). The hard lockdown imposed severe
restrictions on travel and constituted a strict stay at home
directive. Only essential workers were allowed to leave their
homes. Furthermore, the average change in mobility is
primarily negative over the entire study period, indicating that
mobility patterns remain more constrained than before the hard
lockdown. The first COVID-19 case was discovered on March 5,
2020 and the lockdown announcement was made a week later on
15 March. This could explain the drop in mobility already seen
from early March.

Notable benefits of using this data are that the data is freely
available and could potentially act as a very representative proxy
for human mobility, as Facebook services are not constrained to
specific mobile network providers. In addition, all the cellular
network providers in South Africa provide a free version of
Facebook called Facebook Zero. Even though it is known that
not all South Africans have a Facebook account, the Facebook
mobility data may provide an acceptable level of
representativeness for mobility within the country since the
population of South Africa is considered significantly young4.
It is also clear that a large amount of the original data was
censored in order to preserve user privacy and thus the data is at a
sparse level of spatial resolution (administrative level 2). The data
is also not specific with regards to the direction of spatial mobility.
Daily observations only indicate whether individuals were more
or less mobile in a district municipality and do not indicate the
spatial units towards which this mobility was directed.

2.3 Mobile Network Data
The growing popularity and widespread use of mobile devices has
led to massive amounts of data being produced at any given point
in time all around the world. Mobile phone data can be collected
either passively by mobile services providers or through the use of

mobile applications. The ease with which such large quantities of
data can be gatheredmakes cellular data attractive for researchers.
Mobile devices operate by sending and receiving information
from cellphone towers. When interacting with a cellphone tower
we say that a phone has “pinged” off a cellphone tower. A mobile
device may ping off a cellphone tower by sending or receiving any
kind of information, be it a phone call, text message or application
notification. The mobile network data obtained for this research
is obtained using the number of users whose mobile devices
pinged off a cellphone tower within one ward (administrative
level 4) on a given day and then later that day pinged off a
cellphone tower in a different ward.

Mobile phone data has been used numerous times in the field
of spatial epidemiology to model the spread of various diseases,
including cholera (Bengtsson et al., 2015; Finger et al., 2016),
dengue (Cummings et al., 2004; Wesolowski et al., 2015) and
malaria (Wesolowski et al., 2012; Ruktanonchai et al., 2016).
Following the outbreak of the COVID-19 pandemic, the
governments of various countries across the world began
collecting cellular device user data in an attempt to aid the
conception and implementation of non-pharmaceutical
interventions (Ekong et al., 2020; Oliver et al., 2020; Peixoto
et al., 2020; Varsavsky et al., 2021). This data has since been used
by researchers to clearly establish a correlation between
population mobility and COVID-19 case numbers (Gao et al.,
2020; Peixoto et al., 2020; Xiong et al., 2020; Zhou et al., 2020).

Limitations of mobile phone data exist. First and foremost of
these is the issue of user privacy. Mobile phone data could
potentially be misused to identify specific individuals and thus
cellular providers are often hesitant to provide researchers with
such data (Grantz et al., 2020; Oliver et al., 2020). Such data is
often aggregated to a low spatial resolution to prevent this as well
as reduce noise, but this comes at the cost of some data specificity.
Another potential drawback of mobile phone data is high
computational cost. For high mobile phone penetration rates,
mobile phone data may consist of a number of entries in the order
of billions. The computational cost of processing such datasets is
prohibitive, potentially preventing analysis.

For this paper, anonymised mobile phone data was obtained
from a local mobile network provider. In South Africa, the mobile
phone penetration level is estimated to be as high as 95%5. The

TABLE 3 | Average changes in population mobility over lockdown levels using the Google mobility data during 2020.

Level Date Retail Grocery and pharmacy Parks Transit stations Workplaces Residential

BAU 2 Feb - 26 Mar −3.49 1.68 −9.39 −5 −0.88 1.71
Level 5 27 Mar - 30 Apr −73.06 −46.09 −46.86 −78.49 −65.89 33
Level 4 1 May - 31 May −50.39 −23.45 −39.39 −61.71 −40.58 23.35
Level 3 1 Jun - 17 Aug −29.53 −10.71 −23.17 −49.72 −28.1 17.17
Level 2 18 Aug onwards −17.76 −3.34 −23.29 −34.65 −19.78 11.35

4Mid-2021 Statistics South Africa Population Report http://www.statssa.gov.za/
publications/P0302/P03022021.pdf (Accessed August 2021)

5See https://www.geopoll.com/blog/mobile-penetration-south-africa/and https://
www.icasa.org.za/uploads/files/State-of-the-ICT-Sector-Report-March-2020.pdf
(Accessed May 2021)
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provider utilised in this paper is one of the largest providers in the
country, with an estimated market share of 42%.

The data provides the number of mobile phone users m(t)
ij

that travelled to ward j fromward i on day t for the period 2March
- May 12, 2020. The data is at administrative level 4, which is the
highest spatial resolution reasonably possible while preserving
some level of privacy of exact user location. To compare
insights gained from this data and the Facebook dataset in
Section 2.2, it would first be necessary to aggregate the mobile
phone data to the same spatial resolution which is administrative
level 2. In South Africa, each ward has a unique 8-digit ID code.
The first three digits of this code indicates the district municipality
that the ward is a part of. For example, the ward ID 9344007
indicates that the ward is part of the district municipality with code
934. In order to aggregate the data to district municipality level, one
could replace the ward IDs of the observations with their district
municipality codes (i.e. only the first three digits), whereupon rows
with identical origin and destination codes would be discarded. The
mobile phone data at administrative level 2 is thus given by

M(t)
I,J � ∑

i∈I,j∈J
m(t)

ij ,

where I and J are district municipalities and i and j are wards as
previously indicated. Transitions contained within a single
district municipality are thus discarded. Analysis revealed that
this caused an average of 26% of daily observations to be
discarded. The retained data is displayed in Figure 2. The
representation differs to that of Figure 3 as the data provides
transitions between regions in this case. We once again notice a
sharp decline in population mobility in late March.

The population of South Africa (mid-2021) is approximately
60.14 million6, and yet the highest total number of inter-district
municipality transitions on any given day was approximately 10
million (seen in Figure 2). It should be noted that the same
individual can be responsible for multiple transitions and that

some individuals could potentially possess multiple cellular
devices. Literature does exist on the use of mobile phone
data to estimate population numbers, see e.g. (Sakarovitch
et al., 2018). Doing so is not within the scope of the research
presented here but would be of value in testing mobile phone
representability. Despite the quality of available hardware7, this
process proved highly computationally expensive due to the number
of comparisons that need to be run on billions of lines of data in
order to create a spatial weight matrix for each day in the time
period.

3 METHODOLOGY

3.1 Literature Review
When a particular phenomenon exhibits evidence of spatial
dependence, this dependency must be taken into account when
modelling to minimise the risk of producing biased results
(Stakhovych and Bijmolt, 2009; Ejigu and Wencheko, 2020).
In the case of an infectious disease that is spread through
physical contact and near proximity, it is clear that locations
that are situated closer together (or rather the inhabitants of
these locations) will play a larger role in determining their
respective infection rates than locations that are farther apart.
To incorporate this fact, spatial models allow spatial units to be
more strongly (or weakly) correlated with one another based on
some select criteria that is deemed suitable for the phenomenon
being modelled. This is achieved through the use of a spatial
weight matrix (sometimes called a “spatial mobility matrix”)
usually denoted by W (Bavaud, 1998; Getis and Aldstadt, 2004;
Aldstadt and Getis, 2006; Stakhovych and Bijmolt, 2009;
Anselin, 2013; Ejigu and Wencheko, 2020).

Definition 1 (Spatial weight matrix). Let S � {1, 2, . . . , n} be a
set of spatial units. A spatial weight matrix (Bavaud, 1998; Getis
and Aldstadt, 2004; Stakhovych and Bijmolt, 2009; Anselin, 2013)
is an n × n matrix W � [wij] satisfying wij ≥ 0 and ∑n

j�1wij �
1 ∀ i ∈ S.

FIGURE 1 | “Facebook for good”movement range maps data (March 1,
2020–February 28, 2021) relative to a baseline calculated in a week of
February 2020.

FIGURE 2 | Number of individual transitions between wards using the
available mobile phone data (March 2, 2020–May 12, 2020).

6Mid-2021 Statistics South Africa Population Report http://www.statssa.gov.za/
publications/P0302/P03022021.pdf (Accessed August 2021)

7All analysis presented here was performed on a desktop computer running Intel
Core i7 with a clock speed of 3.40GHz, a 64-bit operating system and 64 GB of
installed memory
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This matrix is formally defined as an expression of spatial
dependency between spatial units (Bavaud, 1998; Getis and
Aldstadt, 2004; Stakhovych and Bijmolt, 2009; Anselin,
2013). Simply put, the spatial weight matrix is constructed in
such a way so that entry wij quantifies the amount of spatial
influence that spatial unit i exerts on spatial unit j (Bavaud,
1998; Getis and Aldstadt, 2004; Stakhovych and Bijmolt, 2009;
Anselin, 2013).

Such matrices are frequently restricted to being symmetrical to
simplify estimation. However, symmetry is not required and can
result in a less realistic representation of spatial dependency
(Bavaud, 1998; Getis and Aldstadt, 2004; Stakhovych and
Bijmolt, 2009; Anselin, 2013). Another common convention is
that wii � 0 for all i to exclude the possibility of so-called “self-
influence” (Bavaud, 1998; Getis and Aldstadt, 2004; Stakhovych
and Bijmolt, 2009). Non-zero diagonal entries can however be
included and are interpreted as quantifying the resistance that
each spatial unit has against influence from the other spatial units
(Bavaud, 1998; Anselin, 2013). Performing row-standardisation
on the matrix allows the connectivity of different spatial units to
be compared (Bavaud, 1998; Getis and Aldstadt, 2004).

Spatial weight matrices are most commonly used in the fields of
econometrics and spatial statistics (Anselin, 2013). Recently however,
they have become popular in the field of spatial epidemiology and
have been used to model various diseases including dengue, malaria,
foot and mouth disease (Brown et al., 2016; Malik et al., 2016; Brown
et al., 2018; Suryowati et al., 2018) and most recently COVID-19
(Huang et al., 2020; Tagliazucchi et al., 2020). There are relatively few
established guidelines with regards to constructing a spatial weight
matrix (Bavaud, 1998; Aldstadt and Getis, 2006; Stakhovych and
Bijmolt, 2009; Ejigu andWencheko, 2020), however, the construction
of these matrices has seen some advancement, with greater emphasis
being placed on creating matrices that offer an accurate
representation of human mobility. Simpler models rely on
measures such as distance, contiguity or adjacency (Aldstadt and

Getis, 2006; Stakhovych and Bijmolt, 2009; Anselin, 2013; Brown
et al., 2016; Malik et al., 2016; Brown et al., 2018; Suryowati et al.,
2018; Ejigu and Wencheko, 2020; Huang et al., 2020) while more
complex ones are able to use mobile phone data (Huang et al.,
2020) and geostatistical information (Getis and Aldstadt, 2004;
Aldstadt and Getis, 2006). Accurately specifying these matrices
is a non-trivial problem, as discussed in (Ejigu and Wencheko,
2020). Most recently, Ejigu et al. proposed a methodology
through which both distance and covariate information can
be utilized (Ejigu and Wencheko, 2020).

Given the importance of correctly specifying the spatial weight
matrix, and the fact that there are oftenmultiple sources of spatial data
available on hand, it becomes necessary to develop some means of
comparing spatial weight matrices. Specifically, it is necessary to
compare the insights that can be derived from different spatial
weight matrix definitions. In recent years this comparison has been
achieved either through the use of measures of spatial autocorrelation,
such asMoran’s I (Suryowati et al., 2018), or throughmore specialised
methods local to the field of spatial statistics (Gao et al., 2018; Jin et al.,
2020). In this paper, we adapt an idea initially presented by Garrison
and Marble (Garrison and Marble, 1964), whereby principal
component analysis is used to reduce the dimensionality of
candidate spatial weight matrices. We then introduce the use of
hierarchical clustering to derive a clustering solution for the spatial
unit principal scores. This allows for amore informative comparison of
the information provided by these connectivitymatrices, as opposed to
simply comparing their structure visually.

3.2 Spatial weight Matrices
Selecting an optimal spatial weight matrix is often reliant on the
use of a priori information and experience. In this paper the
emphasis is on comparing the implications for different spatial
weight matrices and the varying types of spatial associations that
they represent. We next discuss the spatial weight matrix
construction approaches used in this paper.

FIGURE 3 |Google mobility report data for February 15, 2020–November 20, 2020 (transitions to different levels of lockdown indicated by vertical reference lines).
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3.2.1 Method 1: Distance Method
The exponential distance definition of a spatial mobility matrix is
used frequently in studies involving spatial correlation, and is a
popular choice in spatial econometrics (Aldstadt and Getis, 2006;
Stakhovych and Bijmolt, 2009; Anselin, 2013; Ejigu and Wencheko,
2020). As previously mentioned however, the concepts of distance,
contiguity and adjacency do not necessarily offer themost accurate or
realistic representation of human mobility. In this paper we include
this model in order to draw comparisons between it and more data-
driven models. The entries of the spatial weight matrix are given by

wij � exp(−dij) (1)

where dij is the Euclidean distance between the centroids of
spatial units i and j. Diagonal entries are set to 0 to remove
the possibility of so-called “self-influence,” and all rows are
standardised to sum to 1 to facilitate comparisons between
different spatial units. Both of these restrictions were
maintained for all matrices in this paper. Under this model,
spatial units are most strongly spatially correlated with the spatial
units that are closest to them geographically. No temporal
component can be incorporated for this method.

3.2.2 Method 2: Mobile Network Method
The mobile network data indicates the number of individuals
that travelled from spatial unit i to spatial unit j on a given day t.
These entries are used to construct the spatial weight matrix as
follows,

w(t)
ij � M(t)

ij . (2)

This model expresses spatial weights as a function of the
amount of flux (both in and out) occurring at a spatial location,
and is sometimes referred to as a spatial interaction matrix
(Bavaud, 1998). Spatial units where more (less) individuals
travelled to other spatial units will thus have a larger (smaller)
effect on other spatial units.

3.2.3 Method 3: Weighted Facebook Data Method
In order to create a spatial mobility matrix using the Facebook
data, we use the same approach of Ejigu et al. (Ejigu and
Wencheko, 2020). This takes into account proximity as well as
covariate information which is spatially dependent. The entries of
the spatial weight matrix are given by

w(t)
ij � exp − α · |F(t)

i − F(t)
j | + (1 − α) · dij( )( ) (3)

where F(t)
i is the mobility of spatial unit i at time t, scaled by

population size (the covariate information), dij is the Euclidean
distance between the centroids of spatial units i and j, and α ∈ (0, 1)
is a control parameter indicating the amount of weight that should
be given to the covariate term. The control parameter α was set to
0.6 in this paper to allow for the covariate data to play a slightly
more prominent role in the estimation process without disregarding
the importance of distance. The parameter captures that we are
making an assumption that the Facebook data can be used to
capture transitions between regions even though it is isolated
location data. The value of 0.6 gives the weighted calculation a

slight nudge towards the Facebook data. Note that if α � 0 then the
model simplifies to the exponential distance model in Eq. 1.

The Facebook mobility data for each district municipality was
scaled using population size in order to account for the fact that
increased mobility in a given district is more (less) influential to
neighbouring districts if the population size is large (small). This was
also done in order to restore some of the variation in the data that was
likely lost when the data was censored to a lower spatial resolution.

3.2.4 Method 4: Scaled Facebook Data Method
An additional final spatial weight matrix was constructed based
on further variation of the exponential distance model. For this
matrix, the rows of the exponential distance matrix are scaled
using the (unscaled) Facebook mobility data. For example, if the
mobility within district municipality i was 20% lower than the
baseline, then the entire row i is multiplied by 0.8. Each entry in
the exponential distance matrix is thus scaled by some number in
(0,2). The entries in the matrix are given by

w(t)
ij � 1 + F(t)

i( ) · exp(−dij). (4)

This construction allows the exponential distance matrix to be
scaled such that the spatial influence of more (less) mobile district
municipalities is increased (decreased). This also renders the
exponential distance matrix non-symmetric, which should
offer a more realistic representation of spatial influence.
Methods three and four are a novel approach to constructing
connectivity matrices from the Facebook mobility data.

3.3 Principal Component Analysis
Principal component analysis (PCA) is a statistical technique that
aims to derive a parsimonious representation of a given dataset by
deriving an orthogonal linear transformation of the data (Friedman
et al., 2001). In standard PCA, the only hyperparameter that needs to
be selected is the number of principal components, which is primarily
dependent on the cumulative proportion of variance in the data that
the user wishes to retain. For this paper, the number of principal
components was chosen such that 75% of the variation in the data
wasmaintained. The full discussion of PCAand its various extensions
is left to the existing literature (see e.g. (Friedman et al., 2001)).

3.4 Hierarchical Clustering
Hierarchical clustering is an unsupervisedmachine learning technique
that allows the user to group together data points in an attempt to
uncover sets of observations that share similar characteristics
(Friedman et al., 2001). This is achieved by procedurally grouping
together those observations that are most similar to each other based
on some selected measure of dissimilarity, referred to as a “linkage”
(Friedman et al., 2001). The number of retained clusters can then be
selected either using some measure of cluster (dis)similarity or a pre-
selected value. We use agglomerative clustering, which additionally
requires the selection of a method through which the dissimilarity of
separate clusters is calculated. A full discussion on hierarchical
clustering may be found in (Friedman et al., 2001).

Herein, we chose the number of clusters to be identical to the
number of principal components. Complete linkage was used to
calculate the difference between clusters at each iteration. Single
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and average linkage displayed a propensity for resulting in clusters that
were very large. This was most likely due to the fact that single linkage
considers the minimum distance between clusters at each iteration,
thus regarding clusters as more similar in general. Complete linkage
considers the maximum distance between clusters and thus considers
clusters to bemore distinct. Average linkage is the average of these two
extremes.

4 RESULTS

Figure 4 shows the 52 district municipalities of South Africa. The
four largest cities in the country are Tshwane, Johannesburg,
Durban and Cape Town, situated in the City of Tshwane, City of
Johannesburg, eThekwini and City of Cape Town district
municipalities respectively as indicated in colour in Figure 4.
These four cities are the focal point of economic activity and
travel in the country, and it is thus logical that they would play a
substantially larger role in the transmission of the virus than other
municipalities.

4.1 Method 1: Distance Method
Figure 5A shows the weights (those >5) for the exponential
distance weight matrix. Since the entries are calculated based only
on the Euclidean distance between the district municipalities (and
no additional information), there are no significantly large
weights present. As temporal information cannot be included,
this method produces only a single spatial weight matrix.

This spatial weight matrix required the largest number of principal
components, namely 14, in order to explain 75%of the variation in the
data. This is most likely due to the lack of any form of auxiliary data or
information that could be used to better describe the relationship of
the district municipalities. The result of hierarchical clustering on the
principal component observations is given in Figure 5B.

4.2 Method 2: Mobile Network Method
Figure 6 shows the spatial weight matrix for every level of
lockdown that the mobile phone data spans at administrative
level 3. This spatial weight matrix identifies very strong spatial
associations over relatively shorter distances (indicated by the
yellow lines). These strong correlations appear to cluster around
the edges of the country, with locations in the centre of the
country displaying less spatial association overall.

We note that there are strong spatial associations that do not
appear to be associated with any of the four major cities in the
country. In particular, we note strong associations in the North-
Western region of the country as well as some spatial associations
across Lesotho (a neighbouring country that is landlocked by South
Africa, shown in Figure 6D). The spatial weight matrices for the
mobile network data were also aggregated to administrative level 2,
shown at Figure 7.While some strong spatial associations can still be
identified around the country’s borders, many previously identified
associations (including several significant associations spanning
across the neighboring country of Lesotho) are now negligible. It
is clear that while this lower spatial resolution does capture some of
the spatial associations present in the data, much information is lost
when aggregating between spatial resolutions.

A notable drawback of data being at such a high spatial
resolution is that it becomes very difficult to cluster locations
in a meaningful way. At administrative level 3 there are 213

FIGURE 4 | South Africa’s district municipality boundaries and locations
of four largest cities.

FIGURE 5 | Method 1 (A) Spatial weights (weights ≤5 not shown), (B) Complete linkage clustering (14 clusters indicated by colours).

Frontiers in Big Data | www.frontiersin.org October 2021 | Volume 4 | Article 7183518

Potgieter et al. Representative COVID-19 Mobility

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


spatial units to consider. In order to explain just 75% of the
variation in this data one requires approximately 70 principal
components. Such a high number of clusters does not lend
itself to easy interpretation and thus it is necessary to aggregate
to a lower spatial resolution to render analysis feasible. When
aggregating to administrative level 2 we find that 20 principal
components are required to retain 75% of the variation present
in the data. This is most likely due to the fact that the mobile
network exhibits far greater daily variation than our data
sources. Figure 8 shows the clustering solution.

4.3 Method 3: Weighted Facebook Data
Method
This matrix construction incorporates both the Facebook
population mobility data and the population size for each
district municipality into the spatial weights for each district
municipality pair. Figure 9 shows the resulting matrix for each
level of lockdown. By allowing both mobility and population size
to play a role in this matrix, the strong spatial association between

the four largest cities in South Africa is identified, despite the
large geographical distance between them. If only Euclidean
distance had been taken into account, this association would
have been missed, as with Method 1. This spatial weight matrix
required nine principal components to explain 75% of the
variation in the data. Figure 10 shows the results of
applying hierarchical clustering to the principal component
observations.

4.4 Method 4: Scaled Facebook Data
Method
This spatial weight matrix was constructed as a potentially more
realistic alternative to the exponential distance matrix. Despite
containing a temporal element (in the form of daily mobility
measurements retrieved from the Facebook data), the results for
this matrix do not show any significant change across the
various levels of lockdown. Figure 11 visualises the spatial
weight matrix. Clustering performed on this matrix was more

FIGURE 6 |Method 2 spatial weight matrix entries (weights ≤5 not shown) (A) Business as usual, (B) Level 5, (C) Level 4, and (D) South Africa at local municipality
level (neighboring country Lesotho in green).
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successful and intuitive. Only seven components were required
to explain 75% of the variation in the data. Figure 11 shows the
clustering solution.

5 DISCUSSION

The results in Section 4 illustrate a number of ways to construct
spatial weight matrices from mobility data. For the standard
exponential distance method (Method 1), it is clear from Figure 5
that the clustering solution on this spatial weight matrix is not
ideal. There are far too many clusters and the clustering solution
reveals no clear interpretation. Although the initial matrix
construction used only the distances between district
municipalities, district municipalities that were located closer
together were not generally clustered together. The entries of
the spatial weight matrix constructed using the mobile network
data (Method 2), shown in Figures 6, 7, reveal strong spatial
associations over relatively short distances. The four focal largest
cities in the country are clearly identified as hubs for high
mobility but there are other regions, particularly those situated
on or near the borders of the country, that showcase highly
concentrated mobility. A possible explanation for these strong
spatial associations being observed far away from cities is the
existence of mining activity in these areas. Given that South
Africa has a very large and widespread mining sector, it seems
only reasonable that any model with a spatial element should
strive to incorporate these associations. The clustering solution
for this spatial weight matrix, shown in Figure 8, is distinct from

the other solutions in this paper in that distance is clearly not a
key role player in deciding which spatial units are clustered
together. Many spatial units that are situated close to one
another in geographical space are not clustered together, and
some spatial units are even placed into their own clusters despite
having many spatial neighbours. It can be argued that this clustering
solution is a more realistic reflection of the amount of travel between
spatial units. The reason for this is that locations being situated closer
together does not always imply that there is a higher degree of travel
between these locations. The strong local connectivities picked up by
this method are useful for epidemiological modelling, for example,
prediction of case number hotspot movement into spatial units of
higher likelihood of mobility.

The four largest cities in SouthAfrica are Tshwane, Johannesburg,
Cape Town and Durban, situated in the City of Tshwane, City of
Johannesburg, eThekwini and City of Cape Town district
municipalities respectively, as shown in Figure 4. The results in
Figure 9 (method 3) show a large spatial association between these
locations prior to the implementation of level 5 lockdown. Under
level 5 restrictions, when the spatial influence of most district
municipalities decreased, the spatial influence between these four
locations becamemore pronounced by comparison. This most likely
indicates that while smaller district municipalities were less active
due to restrictions, these four were comparatively more active and
still saw a sizable amount of travel between them. This seems feasible,
given that these locations are the focal points for economic activity in
the country and thus could not reasonably become “immobile”. As
restrictions were lifted, these spatial weights were still significantly
larger than those for other district municipalities, indicating that,

FIGURE 7 | Method 2 spatial weight matrix entries (weights ≤5 not shown) (A) Business as usual, (B) Level 5, (C) Level 4 at district municipality level.
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despite restrictions being eased, the spatial influence between
these four places is still significantly stronger than before the
lockdown. It is also apparent that the spatial influence between
less influential district municipalities has not returned to the
level that they were during business as usual (pre-lockdown).
Figure 10 shows that the district municipalities housing the four
largest cities are all either clustered together or in clusters of
their own. Other district municipalities are generally clustered
together based on the distance between them. This clustering
solution indicates that the four largest cities are significantly
different from the locations around them. This spatial weight
matrix is thus able to pinpoint the fact that these locations play a
potentially larger role in spatially-dependent phenomena such
as the spread of a virus. The effect in epidemiological modelling
allows for longer range spatial dependency, for example, spread
of the virus by daily flights between major city hubs. This is not
captured by Method 2.

The clustering results for Method 4, shown in Figure 11, do
not display any significant changes over the various levels of
lockdown. Figure 11 also shows that the clusters that are formed
for this spatial weight matrix are clearly based primarily on
distance, but illustrates that the auxiliary Facebook data aids in
constructing more finite and sensible clusters. Interestingly, we
notice a district municipality that has been classified into a
cluster on its own. When inspecting the results for the other

spatial weight matrices we note that this district municipality
has previously also been identified as its own cluster and was
shown to have strong spatial associations for Method 2. Upon
further inspection we note this district municipality houses
several mines. Similarly to Method 2, this spatial weight
matrix is able to identify location associations that go
unnoticed when relying on simple concepts such as
Euclidean distance. This method may not be useful alone in
epidemiological modelling and should most likely be used in
conjunction with either Method 2 or 3.

This paper shows that different representations of spatial
data can offer a variety of insights and capture different
relationships in the data. For example, the spatial weight
matrix created using Method three data emphasises the
prominent role of focal points in population activity.
However, the spatial weight matrix constructed using
Method four offers a scaled and smoothed way to use
distance to indicate which locations have a higher spatial
influence on one another. These two spatial weight matrices
use the same spatial data (i.e. the Facebook for good data), but
offer vastly different interpretations of spatial influence.
Finally, the interpretations that were able to be made from
the mobile phone data indicates that there are many
potentially strong spatial associations at shorter distances
that can only be identified when inspecting data at a high

FIGURE 8 | Method 2 complete linkage clustering results (20 clusters) (A) Business as usual, (B) Level 5 and (C) Level 4.
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spatial resolution. Table 4 provides a summary of the methods
used in this paper, their strengths and weaknesses, and their
usability based on the results. Each of these representations
can be seen as valid and are complementary with regards to the
insight they offer. Depending on the specific phenomenon
under study, an argument could be made their usability based
on observed patterns from the results, as in the case of a
pandemic such as COVID-19, which affects not only
congregated communities but allows for consequences to be
felt across an entire country.

Understanding mobility during the current pandemic is
essential. Both the reduction in mobility as well as retained
mobility need to be well understood, and depend on reliable
data collection. As shown here, data are collected in different
ways and are also made available in a variety of formats.
Mobility is distributionally different across strata of a
region’s demographics, with more mobile locations likely to
result in higher disease transmission. Higher resolution
mobility data is important to capture these differences in
more detail. Even so, the spatial resolution at district
municipality captures these nuances of the movement under

each lockdown level, and shows that significant movement still
took place due to the vulnerability of a large portion of South
Africa’s population.

The possibility of micro-spatial estimation (small area
estimation) is something to investigate further. Making use of
demographic covariates, transport networks and as well as mobile
network coverage maps could provide connectivity matrices at
higher spatial resolution, ideally at ward level. Estimation at
higher spatial resolution could be done by making use of a
number of lower spatial resolution sources. This allows for
micro-scale modelling of COVID-19 spread and will allow for
privacy while increasing spatial resolution and providing deeper
coverage in a region. Google mobility data is also available8 but
only at provincial level (administration level 1) for South Africa.
This spatial resolution is too low to consider estimation down to
ward level, especially if alternative mobility data is available at
administrative level 2. However, one could also combine mobility

FIGURE 9 | Method 3 spatial weight matrix entries (weights ≤5 not shown) (A) Business as usual, (B) Level 5, (C) Level 4, and (D) Level 3.

8https://www.google.com/covid19/mobility/(Accessed May 2021)
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FIGURE 10 | Method 3 complete linkage clustering results (9 clusters) (A) Business as usual, (B) Level 5, (C) Level 4, and (D) Level 3.

FIGURE 11 | Method 4 (A) Spatial weights (weights ≤5 not shown), (B) Complete linkage clustering (7 clusters indicated by colours).
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data at different spatial resolutions in a way that takes advantage
of the strengths of each dataset.

The computational aspects of dealing with mobility data
should not be overlooked. Spatial weight matrices can
become very large, depending on the number of spatial
regions under consideration. Herein the matrices were not
sparse, meaning that sparse representations could not be
used. Sparse representations could be investigated for high
spatial resolution modelling.

To quantify the similarity between the different spatial weight
matrices, one might consider the use of simple parametric
measures of correlation such as Pearson’s correlation coefficient.
However, given that there are a total of 52 spatial units (at a district
municipality level) and the weights betweenmany spatial unit pairs
are negligible, the spatial weight matrices can be regarded as zero-
inflated. In addition to making no allowance for the spatial nature
of the data, namely the spatial dependency, standard measures of
correlation would also deliver biased results. Future research could
investigate methods for comparison of spatial weight matrices via
appropriate correlation calculations or other techniques.

6 CONCLUSION

COVID-19 spreads spatially and thus the importance of
mobility data for COVID-19 modeling should not be
disregarded. Ideally, the raw data from the mobile network
providers and Facebook, if available, could provide individual
movements, allowing for accurate construction of spatial
weight matrices. This data could be anonymised and shared.
However, instead the methods proposed here can be made use
of. The use of movement data in epidemiology is becoming an
important covariate to include, without which the spread can
only be modelled in isolated regions. Social interactions
between human beings are unavoidable. Simple spatial
weight matrix construction techniques, such as only taking
into account distances, are not always ideal when the spatial
associations being captured are dependent on covariates which are
not only proximity based. This is made clear by the observed poor

performance of Method 1 when it was used as the basis of
clustering. The methods presented herein and the results shown
also enable epidemiological modellers in considering how to
incorporate spatial relationships in models. This is seldom done
due to limited mobility information as well as modelling
complexities it introduces. However, the improved accuracy in
model outcomes will ultimately balance out computational
complexities. The paper provides insights into mobility data
availability, representability as well as construction for use in
spatial modelling. Future research should investigate estimation
to a higher spatial resolution using multiple data sources as well as
the effect of spatial resolution in spatial epidemiological modelling.
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APPENDIX

Facebook for good data calculation.
Let u represent a single individual and Ut,i represent district

municipality i at time t. The total number of Bing tiles visited by
inhabitants of district municipality i is then

total_tiles(Ut,i) � ∑
u∈Ut,i

min(tiles(u), 200).

Note that the maximum number of Bing tiles visited that a
single individual can contribute is restricted to 200. In order
to preserve user privacy, an error term was included by
drawing from a Laplace distribution with parameters 0 and
F
ϵ where F � sensitivity parameter and ϵ � noise parameter as
follows

total_tiles′(Ut,i) � total_tiles(Ut,i) + Laplace 0,
F

ϵ( ).

The average number of tiles per district municipality was then
calculated as

avg_tiles′(Ut,i) � total_tiles′(Ut,i)
|Ut,i| .

The mobility value for each district municipality and for each
day was then finally expressed with respect to the baseline as

F(t)
i � avg_tiles(Ut,i) − baseline_avg_tiles′(i, day_of_the_week(t))

baseline_avg_tiles′(i, day_of_the_week(t)) .

For further details regarding this data see https://research.fb.
com/blog/2020/06/protecting-privacy-in-facebook-mobility-
data-during-the-covid-19-response/.

Frontiers in Big Data | www.frontiersin.org October 2021 | Volume 4 | Article 71835117

Potgieter et al. Representative COVID-19 Mobility

https://research.fb.com/blog/2020/06/protecting-privacy-in-facebook-mobility-data-during-the-covid-19-response/
https://research.fb.com/blog/2020/06/protecting-privacy-in-facebook-mobility-data-during-the-covid-19-response/
https://research.fb.com/blog/2020/06/protecting-privacy-in-facebook-mobility-data-during-the-covid-19-response/
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Modelling Representative Population Mobility for COVID-19 Spatial Transmission in South Africa
	1 Introduction
	2 Data
	2.1 South Africa’s Lockdown Levels
	2.2 Facebook Data for Good
	2.3 Mobile Network Data

	3 Methodology
	3.1 Literature Review
	3.2 Spatial weight Matrices
	3.2.1 Method 1: Distance Method
	3.2.2 Method 2: Mobile Network Method
	3.2.3 Method 3: Weighted Facebook Data Method
	3.2.4 Method 4: Scaled Facebook Data Method

	3.3 Principal Component Analysis
	3.4 Hierarchical Clustering

	4 Results
	4.1 Method 1: Distance Method
	4.2 Method 2: Mobile Network Method
	4.3 Method 3: Weighted Facebook Data Method
	4.4 Method 4: Scaled Facebook Data Method

	5 Discussion
	6 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References
	Appendix


