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Abstract: Type 2 diabetes is caused by persistent high blood glucose, which is known as

diabetic hyperglycemia. This hyperglycemic situation, when not controlled, can overproduce

NADH and lower nicotinamide adenine dinucleotide (NAD), thereby creating NADH/NAD

redox imbalance and leading to cellular pseudohypoxia. In this review, we discussed two major

enzymatic systems that are activated by diabetic hyperglycemia and are involved in creation of

this pseudohypoxic condition. One system is aldose reductase in the polyol pathway, and the

other is poly (ADP ribose) polymerase.While aldose reductase drives overproduction of NADH,

PARP could in contrast deplete NAD. Therefore, activation of the two pathways underlies the

major mechanisms of NADH/NAD redox imbalance and diabetic pseudohypoxia. Consequently,

reductive stress occurs, followed by oxidative stress and eventual cell death and tissue dysfunc-

tion. Additionally, fructose formed in the polyol pathway can also cause metabolic syndrome

such as hypertension and nonalcoholic fatty liver disease. Moreover, pseudohypoxia can also

lower sirtuin protein contents and induce protein acetylation which can impair protein function.

Finally, we discussed the possibility of using nicotinamide riboside, an NAD precursor, as a

promising therapeutic agent for restoring NADH/NAD redox balance and for preventing the

occurrence of diabetic pseudohypoxia.
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Introduction
The concept of pseudohypoxia in adult-onset diabetes (so called type 2 diabetes)

and its complications was first brought up by Williamson et al in 19931 and has

since garnered increasing attention in the field of diabetes research.2–5

Pseudohypoxia can be referred to as a compromised cellular capacity of utilizing

oxygen due to decreased levels of nicotinamide adenine dinucleotide (NAD),6–8

which can cause accumulation of NADH with occurrence of NADH/NAD redox

imbalance.9–11 This redox imbalance initially would cause reductive stress, but

would gradually lead to oxidative stress that damages cellular components

including proteins, DNA, and lipids.7 It is this widespread oxidative stress in

diabetes that wreaks havoc on cellular glucose metabolic pathways and culmi-

nates in cell death and tissue dysfunction.12–15 In this review, we discuss the

major pathways that can perturb NADH/NAD redox imbalance which leads to

pseudohypoxia in diabetes and its complications and the consequences of this

pseudohypoxia phenomenon. It should be pointed out that in addition to dia-

betes, occurrence of pseudohypoxia has also been implicated in the pathogenesis

of other diseases including cancers.16–19

Correspondence: Liang-Jun Yan
Department of Pharmaceutical Sciences,
UNT System College of Pharmacy,
University of North Texas Health Science
Center, 3500 Camp Bowie Blvd, Fort
Worth, TX 76107, USA
Tel +1 817 735 2386
Fax +1 817 735 2603
Email liang-jun.yan@unthsc.edu

Hypoxia Dovepress
open access to scientific and medical research

Open Access Full Text Article

submit your manuscript | www.dovepress.com Hypoxia 2019:7 33–40 33
DovePress © 2019 Song et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php

and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work
you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

http://doi.org/10.2147/HP.S202775

http://www.dovepress.com
http://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
http://www.dovepress.com/permissions.php


While there are numerous enzymes in a cell that use

NAD/NADH as their cofactors, there are only two well-

recognized enzyme systems that can lead to perturbation

of NADH/NAD redox imbalance. These are aldose reduc-

tase in the polyol pathway11,20,21 and poly (ADP ribose)

polymerases (PARPs).22,23 Both of which use NAD as

their substrate. Therefore, when activated by hyperglyce-

mia, aldose reductase (AR) can drive overproduction of

NADH while PARP can drive depletion of NAD.24

Aldose reductase
Under euglycemic conditions, AR remains in its inactive

state because there is not enough glucose to activate its

catalytic function.25 Therefore, the physiological signifi-

cance of this enzyme remain enigmatic. Nonetheless, it has

been suggested that AR, under normal physiological con-

ditions, is acting as a detoxifying agent that can degrade

lipid peroxidation aldehyde byproducts such as hydroxy-

nonenal and its glutathione conjugates.26,27 Chemically,

AR catalyzes the first and rate-limiting reaction in the

polyol pathway (Figure 1),28 which becomes activated in

diabetes due to hyperglycemia and can dispose approxi-

mately 30% of the glucose pool in a diabetic patient.29 AR

reduces glucose to sorbitol at the consumption of nicoti-

namide adenine dinucleotide phosphate(NADPH). The

second reaction of the polyol pathway is oxidation of

sorbitol to fructose with concurrent formation of NADH

(Figure 1). Therefore, the products of the polyol pathway

are sorbitol as an intermediate, fructose and NADH as

final products. All three products have been demonstrated

to accumulate in diabetic tissues.30–32 The detrimental role

of aldose reductase has been confirmed in AR deletion

studies whereby AR deficiency prevents development of

diabetes.33 Likewise, AR gene knockdown has also been

shown to slow down the development and progression of

diabetes complications.34 In fact, many drugs have been

designed to inhibit AR for diabetes therapeutic purposes.-
35–38

Poly (ADP ribose) polymerases
(PARPs)
PARPs can also be activated in diabetes due to oxidative

damage to DNA.39–41 This family of enzymes uses NAD

as its substrate by putting multiple ADP molecules onto

target proteins with concurrent release of nicotinamide

(Figure 2). While the function of activated PARP is to

repair damaged DNA,42,43 the enzyme can be over-acti-

vated in diabetes, thereby leading to NAD depletion and

eventual cell death.22 For example, in our laboratory, we

have found that in diabetic lung and pancreas, PARP1

expression is elevated with concurrent decrease in NAD

content.44,45 The detrimental role of PARPs in diabetes has

also been confirmed by gene knockout studies

whereby mouse lacks functional PARP1 does not develop

diabetes.46 Similarly, PARP deficiency has also been

shown to prevent diabetic development and progression.47

As is the case for AR, PARP has also been explored as a

drug target for battling diabetes.48–51 A recent comprehen-

sive review on PARP mechanism and regulation as well as

its potential therapeutic applications can be found in an

article authored by Alemasova and Lavrik.52

Consequences of pseudohypoxia in
diabetes
Reductive stress
The immediate consequence of pseudohypoxia due to

NADH/NAD redox imbalance is reductive stress.7,53

NADH accumulation can give rise to pseudohypoxia and

feedback-inhibit many metabolic enzymes or pathways
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Figure 1 The polyol pathway catalyzing conversion of glucose to fructose. This pathway has two reactions; the first reaction involves aldose reductase that catalyzes the

conversion of glucose to sorbitol; the second reaction involves sorbitol dehydrogenase that catalyzes conversion of sorbitol to fructose with concurrent formation of

NADH.

Abbreviation: NADH, nicotinamide adenine dinucleotide.
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such as the glycolytic pathway, pyruvate dehydrogenase

complex, Krebs cycle, and the electron transport chain.

Indeed, it has been reported that redox imbalance can

increase aerobic glycolysis54,55 and reductive stress can

impair brain blood barrier function and endothelial cell

angiogenesis.56,57 Importantly, feedback inhibition of

metabolic pathways would further prevent NAD from

accepting electrons and accentuate NADH/NAD redox

imbalance.7 Moreover, accumulation of NADH could be

linked to increase in GSH and NADPH, which could

further aggravate reductive stress,58–62 leading to cellular

dysfunction and cell death.63,64 It should be noted here that

accumulation of NADPH can also contribute to disease

development. For example, abrogation of NADH oxidase

activity can induce accumulation of NADPH and trigger

reductive stress, leading to sensitization of the heart to

ischemic/reperfusion injury.58

Oxidative stress
As implicated above, pseudohypoxia is a pathophysiologi-

cal condition whereby the absolute concentration of cellu-

lar NAD is significantly decreased when compared to

normal conditions.1 Therefore, the flip side of pseudohy-

poxia is increased levels of cellular NADH, which would

overload mitochondrial electron transport chain. In other

words, pseudohypoxia due to NADH/NAD redox imbal-

ance can overload mitochondrial electron transport chain,

leading to excess production of reactive oxygen species

(ROS).7 In particular, as complex I (NADH-ubiquinone

oxidoreductase) is the major site in mitochondria respon-

sible for NAD regeneration, complex I overload of NADH

can lead to over-production of ROS because of increased

electron leakage from the electron transport chain.65,66

Indeed, our laboratory has found that mitochondrial com-

plex I becomes hyperactive in the diabetic pancreas and

lung due to NADH overloading and this hyperactivity is

associated with increased ROS production, decreased ATP

synthesis, and increased cell death.44,45

Detrimental effects of fructose
Endogenous production of fructose by the polyol pathway

can lead to a variety of metabolic abnormalities.67,68 As

fructose breakdown bypasses the regulation of the glyco-

lytic pathway (Figure 3),68,69 fructose metabolism can

potentially deplete cellular ATP content,70 which can

lead to accumulation of uric acid and development of

gout and hypertension.71 Moreover, as fructose metabo-

lism leads to overgeneration of acetyl-CoA, more lipids

can be made in the liver. This can cause increased protein

modification such as glycation and acetylation72 and non-

alcohol fatty liver disease that further derange glucose

metabolism.73–76 Therefore, detrimental effect of fructose

accumulation and metabolism is another consequence of

pseudohypoxia that results from the activation of AR in

the polyol pathway.

Decreased levels of sirtuins
It is well established in experimental conditions that sirtuin

protein expression is positively correlated with cellular

NAD content. For example, in obese mouse, Sirt3 expres-

sion is decreased because of a decreased NAD content77

while caloric restriction increases Sirt3 expression due to

an increased NAD content.78 Therefore, when NAD

becomes scarce in diabetes due to NADH overproduction,

sirtuin protein contents are decreased.79,80 Several mem-

bers of the sirtuin family are protein deactylases.81,82

Therefore, dysfunction of sirtuin proteins can cause over-

coating of proteins with acetyl groups.83 For example,

mitochondrial sirtuin 3 (sirt3) expression was lower in

diabetic lung than in healthy controls with concurrent

NAD+ Nicotinamide

Poly(ADP ribose)

Poly(ADP ribose) polymerase-1
(PARP-1)

Protein
acceptor

Protein
acceptor

Figure 2 Poly (ADP ribose) polymerization reaction catalyzed by poly (ADP ribose) polymerase. Shown is PARP1 as an example.

Abbreviations: NADH, nicotinamide adenine dinucleotide; PARP, poly (ADP ribose) polymerase.
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increase in protein acetylation.45 Hence, decreased levels

of sirt3 would cause accumulation of acetylated proteins,

thereby impairing protein function and derailing metabolic

pathways. Conversely, stimulating sirtuin expression or

overexpression may serve as approaches to fighting

diabetes.84,85

Eliminating pseudohypoxia by
restoring NADH/NAD redox
balance
While many steps in NAD metabolism can be potentially

explored to restore NADH/NAD redox balance in dia-

betes, supplementation of NAD precursors has been

shown to be another promising approach in battling dis-

ease or diabetes.86,87 One such precursor that is worth

mentioning is nicotinamide riboside (NR).88 This com-

pound is more tolerable89 and has been tested in a variety

of experimental systems.88,90,91 For example, NR admin-

istration in diabetic mouse decreased fasting and nonfast-

ing glucose levels, decreased weight gain, and lessened

hepatic steatosis with concurrent protection against dia-

betic neuropathy.92 In prediabetic mouse, NR could

improve glucose tolerance, decrease body weight gain,

prevent liver damage, and retard the development of liver

steatosis.92 Moreover, NR supplementation was found to

increase NAD levels in tissues and to activate sirt3,

thereby improving oxidative metabolism and protecting

against metabolic dysfunction induced by high fat diet.89

This study clearly demonstrates that NR supplementation

can restore NADH/NAD redox balance by increasing cel-

lular and tissue NAD contents.89 It should also be pointed

out that as NAD can be synthesized de novo from either

aspartic acid in bacteria or tryptophan in animals,93,94 the

supplement of these substrates and enhancement of the

pertinent enzymes involved in NAD synthesis can also

be explored to fight pseudohypoxia in diabetes by boosting

NAD content.95–98

Conclusion
The occurrence of pseudohypoxia in diabetes and its com-

plications is caused by NADH/NAD redox imbalance,

which is mainly caused by activation of AR in the polyol

pathway and PARPs. Pseudohypoxia can induce reductive

stress followed by oxidative stress which eventually leads
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Figure 3 Pathways of fructose metabolism and detrimental consequences. Major abnormalities resulting from fructose metabolism are shown in the graph, which

include potential ATP depletion, accumulation of uric acid that gives rise to gout and hypertension, and nonalcoholic fatty liver disease as well as increased protein

acetylation.
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to cell death and tissue dysfunction (Figure 4). As a means

of restoring NADH/NAD redox balance and preventing

the occurrence of pseudohypoxia, NR has been shown to

be a promising compound as a therapeutic agent for dia-

betes and its complications. It should be noted that other

systems such as mitochondrial complex I may also be

explored as a therapeutic target for restoring NADH/

NAD redox balance to prevent the occurrence of pseudo-

hypoxia in type 2 diabetes.
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