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Glioma is the most common intracranial malignant tumor, and its specific pathogenesis
has been unclear, which has always been an unresolved clinical problem due to the limited
therapeutic window of glioma. As we all know, surgical resection, chemotherapy, and
radiotherapy are the main treatment methods for glioma. With the development of clinical
trials and traditional treatment techniques, radiotherapy for glioma has increasingly
exposed defects in the treatment effect. In order to improve the bottleneck of
radiotherapy for glioma, people have done a lot of work; among this, nano-
radiosensitizers have offered a novel and potential treatment method. Compared with
conventional radiotherapy, nanotechnology can overcome the blood–brain barrier and
improve the sensitivity of glioma to radiotherapy. This paper focuses on the research
progress of nano-radiosensitizers in radiotherapy for glioma.
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INTRODUCTION

Glioma is a tumor originating from glial cells, which is the most common primary malignant tumor
in the brain (1). According to the grade of malignancy listed in the National Comprehensive Cancer
Network (NCCN) Guidelines Version 1.2020 Central Nervous System Cancers (CNS), gliomas are
classified into grades I to IV. Grade I lesions are benign, including pilocytic astrocytoma, multiform
yellow astrocytoma, ganglion glioma, and subependymal giant cell astrocytoma. Grade II tumors
include diffuse astrocytomas and oligodendrogliomas, which grow slowly, but can be highly
differentiated. However, differing from pilocytic astrocytomas, these tumors infiltrate normal
brain tissue and have a tendency to turn malignant. Grade III tumors include anaplastic
astrocytoma and oligodendroglioma, which are characterized by high cell density and mitotic
cells. The tumors of Grade IV are the most damaged and most common gliomas, including
glioblastoma and gliosarcoma. Although we have made many efforts in the past few decades, glioma
still has not been cured, and the median survival time of glioblastoma is still only 12 to 15 months (2,
3). The prognosis for patients with recurrent disease remains poor, with a median survival of only 25
and 40 weeks for recurrent glioblastoma (GBM) and recurrent anaplastic glioma, respectively (4).
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Due to the active proliferation of glioma cells and the strong
ability of invasive growth, the course of the disease progresses
rapidly and is prone to recurrence and spread. As a routine
treatment for glioma, radiotherapy has been used in clinical
practice since 1970. The 2005 NCCN Glioma Treatment
Guidelines recommend radiotherapy as one of glioma standard
treatment methods (5–7).

Recently, radiotherapy has been developed rapidly, taking on
an increasingly prominent role and position in the treatment of
glioma, including conventional radiotherapy, three-dimensional
conformal radiotherapy (3D-CRT), intensity-modulated
radiation therapy (IMRT), and stereotactic radiotherapy.
Conventional radiotherapy for gliomas mostly uses linear
accelerators for whole-brain irradiation, which can easily cause
damage to normal brain tissue and affect the radiotherapy dose
in the tumor area. Radiotherapy technology has gradually shifted
from whole-brain radiotherapy to local radiotherapy, together
with improvements and research made when applying
radiosensitizers, radiation doses, and radiation time intervals,
in order to optimize the effect of radiotherapy, inhibit tumor
progression, and improve radiation damage. However,
radiotherapy for glioma still has some obvious shortcomings.
For example, Roshan Karunamuni (8) found that radiotherapy
for intracranial tumors can induce cognitive impairment, which
is positively correlated with radiation dose. There was no
significant difference in 5-year survival between patients with
WHO grade II glioma (LGG) in the two groups who received
50.4Gy and 64.8Gy (9). NCCN recommends the use of
preoperative and postoperative MRI imaging to determine the
optimal tumor volume (GTV) and clinical target volume (CTV)
before radiotherapy for gliomas. The clinical target volume
(CTV) is an extension of the GTV (including Grade III
gliomas, which increase the margin of 1 to 2 cm, and Grade IV
gliomas, which increase the margin of 2 to 2.5 cm). Adult low-
level glioma (WHO I or II) should receive 45–54Gy and
1.8v2.0Gy each time. For IDH wild-type low-grade glioma,
increasing the RT dose to 59.4–60 Gy was considered.
Anaplastic glioma and glioblastoma (WHO grade III or IV)
recommend conformal RT (CRT) technology, including three-
dimensional CRT (3D-CRT) and IMRT for focal brain
irradiation, and the recommended radiation dose, with 60Gy
and 2.0Gy each time or 59.4Gy and 1.8Gy each time. The initial
radiotherapy plan was 46Gy and 2Gy each time.

The mechanism of radiotherapy is mainly divided into two
types: direct damage and indirect damage. Direct damage is
mainly caused by the direct action of radiation on organic
molecules to produce free radicals to cause DNA molecules to
break. Indirect damage is mainly caused by the ionization of
water in human tissues by radiation (10). More and more studies
have shown that the currently used low-liner energy transfer
(Low-liner energy transfer LET) radiotherapy may promote the
invasion and migration of gliomas (11). The radioresistance of
gliomas is an important reason for the limitations of clinical
radiotherapy. Rapid proliferation, high invasiveness, and
radiation resistance are the main reasons behind unsatisfactory
radiotherapy effects for gliomas. How to increase the
Frontiers in Oncology | www.frontiersin.org 2
radiosensitivity of glioma has become an important challenge
(12–14).

The emergence of radiotherapy sensitizers provides new
opportunities for radiotherapy for glioma. On the one hand, it
can enhance the radiosensitivity of tumor cells; on the other
hand, it can reduce the radiation dose and the adverse effects of
normal brain tissue. When applied with radiotherapy, it can
change the responsiveness of tumor cells to radiation, thereby
improving the therapeutic efficiency. The killing effect of
radiosensitizers on tumor cells is related to many factors,
including tumor cell type, degree of cell differentiation, cell
cycle, clinical stage, and anatomical classification (15). After
treatment with radiation, DNA double-strand break (DSB) and
DNA single-strand break (SSB) can be observed. Nevertheless,
then some proteins related to DNA repair, such as DNA-
dependent protein kinase (DNA-PK), and are activated to start
the repair process. After that, the damaged cells return to normal
cells eventually. In the process of radiation on cells, many
factors determine the final results (16). Considering a single
cell, it can enhance DNA damage and promote cell apoptosis
or autophagy. Substances that inhibit DNA damage repair
may enhance the killing effect of radiation on tumor cells to
achieve the purpose of radiation sensitization. From the
perspective of the tumor as a whole, the oxygen and state of
the cells inside the tumor and the cell cycle distribution of the
tumor cells have an impact on the killing effect of radiation.
Most of the radiosensitizers used in the past refer to drugs
with the abovementioned functions. With the continuous
development of molecular biology, some small interfering
RNA (siRNA) and monoclonal antibodies targeting radiation-
sensitive genes have become new candidates for radiosensitizers
(17, 18).

Adams and Fowler et al. divided traditional radiosensitizers
into the following categories: DNA precursor base analogs
(such as 5-BUdR), electrophilic radiosensitizers (including
nitroimidazoles, nitroaromatic hydrocarbons, and nitro
heterocyclic compounds), oxygen-like compounds, radiation
damage repair inhibitors, mercapto inhibitors (such as
4-ethylmaleimide (NEM), neoarsphenamine, p-chloromer
curibenzoate, iodoacetamide), cytotoxic compounds Sensitizer
(Cu2+), tumor vascular disrupting agent, and gene-related tumor
radiosensitizer, etc. (19, 20). At present, the conventional
radiotherapy sensitizers in clinic include 5-fluorouracil,
platinum (such as cisplatin, carboplatin), gemcitabine, etc.,
which can enhance the radiotherapy sensitivity of tumor cells
through different mechanisms of action (such as inhibiting DNA
synthesis, promoting DNA double-strand breaks, regulating
the cell cycle, etc.) (21, 22). However, these conventional
radiotherapy sensitizers also have some drawbacks. With the
combination of radiotherapy to treat tumors, 5-fluorouracil has a
short half-life and requires long-term intravenous drip
administration, which easily forms thrombus and causes
nosocomial infections (23). Cisplatin is a widely used clinical
radiotherapy (CRT) drug, which can kill many types of tumors
(24, 25). Consequently, it can cause many adverse reactions,
such as nausea, vomiting, neurotoxicity, ototoxicity. and
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nephrotoxicity (26). 5-Iodine-2 deoxyuridine (IUdR) has been
confirmed to have a significant radiosensitization effect on
glioblastoma, but due to the short circulating half-life and the
inability to pass the blood–brain barrier (BBB), its clinical
application is limited (27). DNA double-strand repair
inhibitors (DSBRIs) KU55933 were once considered as one of
the most promising drugs to improve radiotherapy, but its
clinical application remains due to its potential toxicity to
normal tissues, inability to select-enter tumor cells, and poor
solubilization (28). Misonidazole is a hypoxic cell sensitizer,
which can enhance the antitumor effects of cyclophosphamide
in preclinical studies (29). Formerly, it is expected to be an ideal
radiotherapy sensitizer in terms of controlling radiation-resistant
tumor cells and p53 mutant tumor cells (30). However,
researchers in a randomized study found that Misonidazole did
not improve the prognosis of cervical cancer radiotherapy
compared with the placebo group (31), making people
question the effectiveness of Misonidazole, with the toxicity of
Misonidazol further studied. Trans sodium crocetinate (TSC)
has been verified as a radiotherapy sensitizer. In a study of a
C6 glioma model, the use of TSC improved the regression of
GBM tumors after radiotherapy, increased survival, and
achieved radiosensitization. The mechanism of action may
temporarily increase tissue oxygenation of hypoxic glioma (32,
33). However, the effect on patients with glioma needs to be
further explored. Carbon ion radiotherapy is an excellent way
of radiotherapy, with great application prospects in glioma (34–
36). However, its combination with nano-radiosensitizers
remains to be studied.

Therefore, how to find a safe and effective radiotherapy
sensitizer for glioma has become an urgent problem. With the
rapid development of nano-science and technology, people are
paying more and more attention to the role of nano radiation
sensitizers in the treatment of glioma. Therefore, this paper will
review the principle and types of radiosensitizers in radiotherapy
for glioma and the research progress of radiosensitizers in
radiotherapy for glioma
ADVANTAGES OF NANO-
RADIOSENSITIZERS IN RADIOTHERAPY
FOR GLIOMA

Nanomaterials have been widely used to improve the efficacy of
radiotherapy due to their good biocompatibility, inherent
radiosensitivity, a high carrying capacity of multiple drugs, and
enhanced penetration and retention in tumor tissues (37, 38).
The research of nanomaterial-mediated sensitization of
radiotherapy mainly focuses on the use of high atomic number
nanoparticles (such as gold, silver, and bismuth) to enhance the
radiation energy deposition in cells. With the development of
polymer nanomaterials, the research on the treatment of glioma
is increasing gradually. Small molecule drugs can be chemically
bound and physically coated to target glioma tissues through the
blood–brain barrier, thus improving the efficacy of radiotherapy
for glioma.
Frontiers in Oncology | www.frontiersin.org 3
Nano-Radiotherapy Sensitizers
Can Efficiently Cross the BBB
and Target Gliomas
The blood–brain barrier (BBB) is the outer layer of blood vessels
in the brain and spinal cord, which is highly selective for
substance penetration. The barrier properties of a healthy
blood–brain barrier are mainly due to the tight junctions
between endothelial cells, which are stable by astrocytes and
pericytes. Through complex design, the blood–brain barrier can
prevent the passage of neurotoxins and microorganisms, and
selectively allow oxygen and nutrients to enter the central
nervous system, thereby maintaining homeostasis (39–44).
BBB restricts the delivery of chemical drugs and becomes a
difficult point in the chemotherapy of glioma. Therefore, the
primary problem that nano-radiosensitizers used in radiotherapy
for glioma need to solve is to cross the BBB and target the
glioma tissue. Normally, nanoparticles cannot pass through
the BBB, but when the tumor is present, BBB permeability
increases, and nanoparticles can pass through. Compared with
normal tissues, tumor tissues have an abundant blood supply,
wide vascular space, and lack lymphatic drainage, making
macromolecular substances or lipid particles have high
permeability and high retention effects in tumor tissues, which
can be called the high permeability and retention effect (EPR) of
solid tumors. It can increase the drug concentration in tumor
tissue through the EPR effect, which is passive transport. Our
research group (45) used this effect to design an RT-sensitive
liposome that is responsive to hypoxia as a novel DOX delivery
system. The hypoxia radiosensitizer nitroimidazole combines
with lipid molecules with hydrolysable ester bonds to form
MDH, which is mixed with DSPE-PEG2000 and cholesterol
to make MLP liposomes. Experimental results show that
MLP liposomes can carry DOX and nitroimidazole across the
BBB and can effectively stay in the tumor area. Hypoxia can
induce the conversion of hydrophobic nitroimidazole into
hydrophilic aminoimidazole through electron transfer, causing
the instability of liposomes and releasing DOX. Meanwhile, MI
enhanced the radiosensitivity of radiation-tolerant hypoxic cells
due to electron affinity, and DNA damage caused by ionizing
radiation was enhanced. The drug delivery system can effectively
inhibit the growth of C6 glioma cells by combining radiotherapy
and chemotherapy. Additionally, nano-radiotherapy sensitizers
actively cross BBB by adding special ligands, antiboding
and proteining to the surface engineering of nanoparticles
to form multifunctional nanoparticles, with a strong BBB
crossing efficiency and can selectively and specifically target
CNS tumor tissues (46). It should be noticed that there is
another Nano-radiotherapy sensitizer that was designed by our
group called ALP-(MIs)n/DOX, and it also has an excellent
ability to cross the BBB (47) (Figure 1). Zhang et al. (48)
encapsulated the cyclin-dependent kinase inhibitor dinaciclib
into lipid nanoparticles containing anti-PD-L1 antibodies, and
RT induced the up-regulation of PD-L1 in glioma infiltrating
TAMC (Tumor-associated myeloid cells). Lipid nanoparticles
(LNP) targeting PD-L1 effectively target glioma tissues, inhibit
PD-L1 or eliminate TAMCs, which are immunosuppressive
March 2021 | Volume 11 | Article 633827
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cells, strengthen anti-tumor immunity, and extend the survival
time of mice.
Enhance the Efficacy of Radiotherapy
for Glioma Through Radiation
Energy Deposition
In terms of sensitization of radiotherapy, metal nanoparticles
have been studied for many years as radiotherapy sensitizers.
Metal nanoparticles with a high Z value have a high absorption
capacity of radiation and can concentrate radiation energy on the
tumor site (49). It is generally believed that these nanoparticles
increase the cross-section of tissues or cells that react with
radiation, facilitating the efficient deposition of high-energy
radiant energy. From the formula of X-ray absorption
coefficient m and incident X-ray energy E and atomic
coefficient Z: m = r Z4/(AE3), the absorption coefficient m is
positively related to the fourth power of atomic coefficient Z,
where r is the density and A the atomic mass (50, 51). Therefore,
materials with high atomic coefficient elements have better X-ray
energy absorption. The high Z-value nanoparticles after
absorbing ray energy can produce a photoelectric effect,
Compton effect, and Auger effect; this then generates a series
Frontiers in Oncology | www.frontiersin.org 4
of secondary electrons, such as the photoelectron, Compton
electron, and Auger electron (52–54), which can directly
interact with biomolecules locally or generate large amounts of
ROS with water molecules. The principium above is shown in
Figure 2 (71). Tumor cells are then killed and the sensitization of
radiotherapy is enhanced. The radiosensitization effect of AuNPs
A C

B

FIGURE 1 | Schematic of the hypoxia-responsive and hypoxia RT sensitization ALP-(MIs)n drug-delivery system. (A) Mechanism of ALP-(MIs)n RT sensitization and
DOX release under hypoxic condition and formation of ALP-(MIs)n/DOX. Six electrons are transferred in the complete reduction of nitro (R-NO2) to amine (R-NH2)
under hypoxic conditions via a single-electron reduction catalyzed by a series of intracellular nitro reductases. (B) Formation of AL-PLGA/DOX as the control group.
(C) Schematic illustrating ALP-(MIs)n applications: (i) Hypoxic cell radiosensitizer. ii. Hypoxia-responsive release of DOX into the cytoplasm, and then transports it to
the nucleus to kill tumor cells (47).
FIGURE 2 | Radiant energy deposition to arouse secondary electrons (71).
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xie et al. Nano-Radiosensitizer
depends on its size and the type of surface modification (55, 56).
Silver, platinum, gadolinium, etc. have similar radiosensitization
effects to gold nanomaterials. Liu et al. found that malignant
glioma-bearing rats treated with silver nanoparticles (AgNPs)
after radiotherapy effectively inhibited the proliferation of cancer
cells and promoted the apoptosis of cancer cells (57).

Enhance Radiotherapy for Glioma by
Enhancing DNA Damage and Inhibiting
DNA Repair
The radiotherapy resistance of tumors is mainly manifested in
the double-strand breaks of tumor cells caused by radiation, and
DNA itself has the ability to repair double-strand breaks (59). It
is believed that the anti-radiation effect of tumors is due to
hypoxia in tumor regions, which reduces DNA damage and
enhances cellular defense mechanisms (60, 61). Therefore, DNA
damage in glioma cells can be increased by increasing the oxygen
content in the glioma region. In the meantime, the local oxygen
of the tumor is more likely to produce ROS under the action of
radiation, which increases the killing effect on the tumor. Many
nano-radiotherapy sensitizers work by increasing the oxygen
content of the tumor area (62, 63). Additionally, gliomas are
usually resistant to RT due to their strong DNA repair activity
(64, 65). The cytotoxicity of RT is mainly due to DNA damage,
and double-strand breakage (DSB) caused by RT is the most
serious type of DNA damage. If it is not repaired, it is deadly to
the cells (66). Nanoparticles can inhibit DNA repair by inducing
down-regulation of repair proteins, such as thymidylate synthase
(67) (Figure 3), or inhibiting the DNA damage repair signaling
Frontiers in Oncology | www.frontiersin.org 5
pathway (68), thereby increasing the effect of radiotherapy. In
terms of glioma, our research group designed a hypoxic
radiosensitizer-prodrug liposome (MLP) as a carrier for the
DNA repair inhibitor Dbait, which significantly inhibited the
growth of glioma in situ in mice with the combination with
radiotherapy (69).

Can Effectively Transport Radionuclides to
Achieve RIT
Radiotherapy is divided into two categories: external radiation
therapy (EBRT) and internal radioisotope therapy (RIT). For
EBRT, radiation beams such as high-energy X-rays, electron
beams, or proton beams from outside the body are directly
irradiated on the tumor, thereby inducing the death of cancer
cells. For RIT, a minimally invasive method is used to introduce
therapeutic radioisotopes into the tumor, such as direct infusion
via a catheter (also called brachytherapy) (70, 71). Brachytherapy
is not suitable for treating distant tumors due to the rapid
elimination of radioisotopes in vivo. The combination of
targeted nanoparticles with radioactive isotopes enables
accurate isotope delivery, while nanoparticles for internal
radiotherapy can also improve tumor vascular permeability,
enhance retention effect (EPR), and increase uptake of the next
wave of nanoparticles (38). In the treatment of glioma,
nanoparticles were also widely used to deliver radionuclides
(58, 72), which was proven to have good safety and feasibility
(73). Allard introduced a lipid nanocapsule (LNC), which
encapsulated 188Re(188Re(S3CPh)2(S2CPh)[

188Re-SSS]) to form
a lipophilic complex that can be used as a new type of
A B

FIGURE 3 | (A) Schematic representation of the following conceptst: (i) internalization of nanoparticles by cells can lead to the down-regulation of proteins, including
thymidylate synthase (TS), important for DNA damage repair response; ii. due to the down-regulation of TS, the conversion of dUMP to dTMP is inhibited; iii.
subsequently, when the DNA is subjected to insult by ionizing radiation causing doublestrand breaks; and iv. the normally effective homologous recombination
pathway for repairing DSB’s in S-phase cells is also inhibited, leading to a biological mechanism of radiosensitization. (B) A cross-correlative methodology developed
provides a three-dimensional data set to compare cell populations and sub-populations with regard to nanoparticle dose−response at the single-cell level. Correlating
biological markers imaged with laser scanning confocal microscopy with elemental content from synchrotron X-ray fluorescence microscopy for cell populations
provides statistically significant, descriptive analysis of cell populations with regard to biological response for a quantified number of nanoparticles. For example, only
cells with comparable numbers of nanoparticles are compared, or only cells in a certain phase are compared. The population behavior can be described by fitting
functions and any individual cell from a population can be characterized by its biological markers coupled with its nanoparticle content (67).
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radiopharmaceutical carrier. The results showed that the median
survival of rats treated with 8Gy188Re-SSSLNC was significantly
improved. Compared with the control group, the median
survival time increased by about 80%, with 33% of long-term
surviving animals and when administered in LNC,188Re tissue
retention was greatly prolonged, with only 10% of the injected
dose being eliminated at 72h (74). Interestingly, another study
revealed that 188Re-activity gradient led to a bypass of
immunosuppressive barriers, which can be used to treat
glioblastoma (75).

Nano-Radiotherapy Sensitizer Combined
With Other Treatment Methods to Treat
Glioma
Nano-radiotherapy sensitizers can not only be enriched at the
tumor site by enhancing the penetration and retention effects
and improving the targeting effect on tumor tissues, but they
also can be combined with chemotherapy, immunotherapy,
and other treatment methods. Meanwhile, the specific
microenvironment of glioma is used to achieve effective drug
delivery (76), improving the therapeutic effect of glioma.

Nano-radiotherapy sensitizer in combination with
immunotherapy uses nano-delivery of inhibitory antibodies to
block immune checkpoints. Due to the ability of nanomaterials
to penetrate the BBB, immune-stimulating nanoradiation
sensitizers can penetrate the BBB well and accumulate in
glioma tissues. As mentioned above, lipid nanoparticles
containing PD-L1 antibody not only have targeted functions
but also inhibit PD-L1 and enhance T cell anti-tumor immunity
and kill glioma cells in synergism with radiotherapy (48)
(Figure 4). In addition, nanomaterials used as photosensitizers
combined with photodynamic therapy (PDT) for radiotherapy
have achieved significant effects on some other types of tumors
(77, 78), which can also similarly kill glioma cells (79). In a study
Frontiers in Oncology | www.frontiersin.org 6
of high-grade glioma treatment, we found that photodynamic
therapy (PDT) extended survival in patients, and in combination
with intraoperative radiation therapy (IORT), improved survival
even further (80). However, the application of nano-
photosensitizer combined with PDT to the radiotherapy for
glioma has not been reported in the literature.

Researchers found that enhanced autophagy of glioma
promoter cells (GICs) contributes to the elimination of
radiotherapy resistance (81). Liu et al. evaluated the
radiosensitization effect of silver nanoparticles (AgNPs) on
hypoxic glioma cells and found that the radiosensitization
ability of AgNPs in hypoxic U251 cells and C6 cells was higher
than that of normoxic U251 and C6 cells (82). The main reason
for hypoxic radiation sensitization induced by siNPS is the
promotion of cell apoptosis and the enhancement of
destructive autophagy, suggesting that AgNPs can be used as
excellent radiosensitizers in the treatment of hypoxic glioma.
Paradoxically, earlier studies have found that gamma-ray-
induced autophagy contributes to the radioresistance of these
cells, and autophagy inhibitors may be employed to increase the
sensitivity of GSCs to gamma-radiation (83).

Autophagy has a protective effect on inhibiting the
radiosensitization of STAT3. Inhibition of autophagy and
STAT3 may be a potential therapeutic strategy to improve the
radiosensitization of glioma cells (84). Therefore, the effect of
autophagy on radiosensitization of gliomas is still controversial
(85, 86).

Emerging nano-radiosensitizers have developed rapidly
currently. For example, near-infrared light combined with
radiotherapy that converts light energy into heat energy (87),
sonoporation sensitization radiotherapy (88), and nanoparticles
of heterojunction structure can avoid the recombination of
electrons and holes, improve photocurrent and photocatalytic
activity, etc. (89).
FIGURE 4 | Schematic representation of nano-targeting of glioma-associated TAMCs. (CTL, cytotoxic T lymphocyte; Teff, effector T cell; PD-1, programmed cell
death protein 1; IFNGR, IFN gamma receptor) (48).
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THE MAIN TYPES OF NANO-
RADIOSENSITIZERS IN THE TREATMENT
OF GLIOMAS

Nano-radiotherapy sensitizers can overcome a series of problems
such as high toxicity, non-specificity, and obvious side effects of
traditional sensitizers, making nano-radiosensitization
treatments become a popular treatment for various malignant
tumors including gliomas. According to the physicochemical
properties of nano-sensitizers in existing research, the common
nano-sensitizers (nanoparticles) in the treatment of glioma are
divided into the following categories: 1. High-Z metal nano-
radiotherapy sensitizers; 2. Common metal and its oxide nano-
radiotherapy sensitizer; 3. Semiconductor nano-radiotherapy
sensitizer; 4. Non-metallic nano-radiotherapy sensitizer
material; and 5. Multifunctional nano-radiotherapy sensitizer.
We draw a diagram (Figure 5) which summarizes the main
species of nano-radiosensitizers and more details are shown in
Table 1.

High-Z Metal Nano-Radiosensitizer
A high-Z metal nano-radiotherapy sensitizer is the most in-
depth research among various nano-material sensitizers because
high-Z elements have a strong X-ray attenuation ability (50),
which can increase the radiation dose of tumor cells in GBM
tissues, thereby achieving the therapeutic effect of sensitization
of radiotherapy (90). Gold, silver, platinum, and other
high-Z precious metals have the advantages of low toxicity,
Frontiers in Oncology | www.frontiersin.org 7
easy preparation, controllable size and morphology, easy
surface functionalization, high chemical stability, and good
biocompatibility (91), which have natural advantages of
of preparing bio-related nanomaterials. Recently, gold
nanomaterials, the most studied among high Z metals, have
been widely used in radiosensitization therapy of glioma (92).
Yan Liu et al. used a one-pot green syn-thetic method to
synthesize luminescent gold nanoclusters (AuNC) (93). Su-
Yang Yang et al. used the strategy of cross-linked stable lipid
nanocapsules (NCs) as a carrier to prepare a kind of inter-
membrane cross-linked multilayer lipid vesicle (ICMV)
containing amphiphilic gold nanoparticles (amph-NPs) to
form Au-NCs. In vivo experiments on mice showed that the
AU-NCS combined radiotherapy group had an obvious tumor-
killing effect compared with the radiotherapy alone group
(94). Yijin Liu et al. studied a mixed anisotropic nanostructure
composed of gold (Au) and titanium dioxide (TiO2). As a
radiosensitizer, Au-TiO2 nanoparticles (DAT) can significantly
enhance the effect of radiotherapy (77, 93). In addition to nano-
gold, nano-silver and nano-platinum materials have also been
extensively studied (95). Haiqian Zhang et al. prepared a silver
nanoparticle (AgNPs) for radiosensitization of hypoxic glioma
cells, with the results showing that AgNPs can significantly
improve the effect of radiotherapy in the radiotherapy of
hypoxic glioma (82). Eva Pagáˇ cová et al. analyzed effects on
radiation-induced gH2AX+53BP1 lesions of different
nanoparticle materials (platinum (Pt) and gold (Au)), cancer
cell types (HeLa, U87, and SKBr_3), and low-line energy transfer
FIGURE 5 | Representative nanomaterials and basic principles of action under types of nanoradiosensitizers.
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(LET) ionizing radiation (g- and X-rays) dose (up to 4Gy) to
evaluate its radiosensitization effect in gliomas (96). In addition
to the above high-Z precious metals, other high-Z metal
nanosensitizers also include gadolinium (Gd), hafnium (Hf),
tantalum (Ta), cerium (Ce), terbium (Tb), tungsten (W),
bismuth (Bi), and other metal elements with large atomic
coefficients (97). Particularly, lanthanide metal-based
nanoparticles are being developed and utilized due to their
strong X-ray attenuation ability. Verry, C et al. designed a
gadolinium (Gd)-based AGuIX nanoparticle for combined
radiotherapy for patients with brain metastases, showing that
the nanoparticle significantly improved the effect of radiotherapy
(98, 99). Chen has developed a nano-sensitizer of titanium
dioxide doped with gadolinium, which targets mitochondria
for effective radiation therapy. With X-ray irradiation,
nanosensitizers trigger the domino effect of ROS accumulation
in mitochondria (99). Géraldine et al. used 9L glioma cell line
(9LGS) tumor-bearing mice to inject a biodegradable
gadolinium-based ultrafine nanoparticle (AGuIX nanoparticles)
intravenously. They found that AGuIX particles do not leak out
of normal blood vessels, allowing more particles to accumulate
effectively in glioma tissue, increasing the sensitivity of radiation
therapy (100, 101).

In addition to the metal gadolinium (Gd), the metal hafnium
(Hf), as a high-Z metal, is often used in the X-ray manufacturing
industry because it easily emits electrons. Pure hafnium has the
advantages of plasticity, easy processing, high temperature
resistance, corrosion resistance, and so on. It is an important
material in the atomic energy industry, which has also been put
into medical research and use. Min-Hua Chen proposed a
nanoparticle that can enhance active oxygen: Hf-doped
hydroxyapatite (HF: HAP). After exposing (HF: HAP) to
Frontiers in Oncology | www.frontiersin.org 8
gamma rays, the generation of ROS in the cell increases
significantly (99). Jin J summarized the latest progress in
radiation therapy (RT) and immunotherapy of nanoparticles
(NPs) such as hafnium (Hf) and bismuth (Bi) and evaluated the
feasibility of high-Z metals as nano-radiosensitizers (102).

Among high-Z metals, tantalum (Ta) has been widely used in
the medical field because of its moderate hardness and excellent
ductility. The excellent corrosion resistance is mainly due to the
formation of s atable tantalum pentoxide (Ta2O5) protective film
on the surface, which has also been used in the field of
radiotherapy for glioma sensitization. Briggs discovered for the
first time that tantalum (Ta2O5) nanoparticles showed a dose-
enhancing effect on gliosarcoma cells with strong radiation
resistance under 10MV irradiation. It is believed that the
enhancement effect is due to the secondary electrons generated
by the photoelectric effect, which increases the biological effect
of radiation, indicating that tantalum Ta2O5 has a certain
radiosensitization effect in the radiotherapy for glioma (101).
Besides, cerium (Ce) is also a widely used high-Z metal in the
medical field as the most abundant rare earth element in the
earth’s crust. Xiaoyan Zhong prepared Ce (Ce)-doped NaCeF4:
Gd and Tb fluorescent nanoparticles (SCNP or fluorescent
scintillator). Due to the sensitization of Ce ions, Tb ions can
trigger X-ray sensitive fluorescence (XEF) under X-ray
irradiation to generate reactive oxygen species (ROS) in RDT,
thereby increasing the sensitivity to radiotherapy (103).
Runowski enriches the fluorescence effect of CeF3 nanoparticles
(NPs) by co-doping with Tb3+ and Gd3+ (CeF3: Gd

3+, Tb3+) for
the treatment of deep tumors such as intracranial tumors (104).

As a new high-tech material, tungsten (W) is another
high-Z metal that has been put into the medical field.
According to Wang, J’s research, tungsten sulfide (WS2QDs) is
a nanomaterial suitable for radiotherapy (RT) and photothermal
therapy (PTT), proving that tungsten (W) can be used as a nano-
radiosensitizer (105).

Bismuth (Bi) is a hot spot nano-radiotherapy material besides
nano-gold materials. Hossain, M controlled the concentration of
nanoparticles to 350 mg·g−1 under a radiation source of 50 kVp
and found that the radiosensitization effect of nano-bismuth was
1.25 times and 1.29 times stronger than that of nano-gold and
nano-platinum, respectively. Based on this, it is concluded that
bismuth nanoparticles have a stronger sensitizing effect than gold
and platinum nanoparticles with the same nanometer size,
particle concentration, and action site (106). In the presence of
bovine serum albumin (BSA), Fangxin Mao et al. synthesized
ultra-small biocompatible Bi2Se3 nanoparticles by reacting
hydroxyethylthioselenide and bismuth chloride in an aqueous
solution BSA-Bi2Se3 shows a strong wide absorption rate, high
light-to-heat conversion efficiency, and a strong radiation
sensitization effect in the near-infrared (NIR) window (107).
Huan Yu et al. synthesized bismuth sulfide nanoparticles (BiNP)
and coupled them with immunoactive Ganoderma lucidum
polysaccharide (GLP) and verified that GLP-BiNP has a dual
role in tumor treatment through radiosensitization and immune
activity (108). Guosheng Song used a partial cation exchange
method, which took MnSe nanocrystals as a template to replace
TABLE 1 | Lists the types of glioma nano-radiotherapy sensitizers mentioned in
the paper, including the type, name, and position of sensitizers.

Main types Based Nanomaterial References

High-Z metal nano-
radiosensitizers

Gold (Au) (92–94, 96, 125)
Silver (Ag) (82)

Platinum (Pt) (96)
gadolinium (Gd) (98, 100, 126)
Hafnium (Hf) (99)
Tantalum (Ta) (97, 98, 101)
Cerium (Ce) (103)
Terbium (Tb) (104)

Tungsten/Wolfram (W) (105)
Bismuth (Bi) (106–110)

Common metal and its
oxide nano-
radiosensitizer

Iron (Fe) (111, 112)
Copper (Cu) (113, 114)

Fe3O4 (64)
ZnFe2O4 (115)

Semiconductor
nanomaterial sensitizer

WO2.9-WSe2-PEG (wsp) (118)

Cu3BiS3 (CBS) (119)
Non-metallic
nanomaterial sensitizer

Selenium (Se) (107, 121)

Graphene (27, 122)
Multifunctional nano-
radiotherapy sensitizer

SLN+EGFR+siRNA (123)
PEG+PEI+siRNA (124)
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manganese with bismuth in the outer layer to form a Bi2Se3 shell,
to advance the blood supply of tumor tissue, increase
oxygenation significantly, improve the effect of radiotherapy
(RT), and kill tumor cells effectively (109). Fangmei Zhang
et al. designed and prepared a multifunctional bismuth-based
nano-olfactory, which was functionalized by S-nitrosothiol and
named Bi-SNO (NPs). X-rays can break down the S-N bond and
trigger the release of a large amount of NO (over 60mM). The
prepared Bi-SNO (NPs) with a small volume (36 nm) has the
ability to absorb and convert 808 nm near-infrared photons for
photothermal treatment, as well as the ability to increase X-ray
absorption and CT imaging sensitivity. Moreover, the synergistic
effect of Bi-SNO radiation, photothermal, and gas therapy in vivo
was further studied, to get a significant synergistic tumor
inhibition effect (110).

Common Metal and Its Oxide
Nano-Radiosensitizer
Other common metal types with nanoradiosensitization
effects include common non-high Z nanoradiosensitizers,
such as nanoradiosensitizers, iron nanoradiosensitizers, and
copper nanoradiosensitizers. Chengcheng Yang developed a
polydopamine (PDA) coated Ge11 peptide conjugated iron
oxide nanoparticles (Ge11-PDA-Pt@USPIOs) with cisplatin
as a carrier, based on ultra-small superparamagnetic iron
oxide nanoparticles (PAA@USPIos) coated with polyacrylic
acid, showing synergistic therapeutic effects of radiotherapy and
chemotherapy under low temperature in vitro (111). Muhammed
prepared SiO-MNP-coated iron oxide nanoparticles by co-
precipitation and other methods to enhance the radiation
sensitization effect by increasing the production of ROS (112).

For nano-copper sensitizers, Yu Fan et al. designed a therapeutic
nano-platform based on the complexation of pyridine (Pyr)
functionalized fifth-generation (G5) polyamidoamine dendrimers
with Cu2+, which is used for radio-enhanced T1-weighted magnetic
resonance (MR) imaging and coordinated radiotherapy and
chemotherapy for tumors and tumor metastases (113). Chenyang
Zhang designed a new smart radiosensitizer based on Cu2(OH)Po4
nanocrystals. Sensitizers can respond to both endogenous (H2O2)
and exogenous (X-rays) stimuli simultaneously and can finally
induce apoptosis and necrosis of cancer cells (114).

Some ferrite-based spinel structure nano-material sensitizers
have also been reported. For example, Alireza Meidanchi
synthesized superparamagnetic zinc ferrite spinel nanoparticles
ZnFe2O4 by a hydrothermal method which is used as a
radiosensitizer for cancer treatment. When exposed to gamma
rays, the low-energy electrons produced in the nanoparticles
further kill tumor cells. The use of biocompatible ZnFe2O4

nanoparticles (at a concentration of 100mg/ml) in radiotherapy
can produce a synergistic response to radiotherapy. The killing
efficiency of highly radiation-resistant cancer cells is 17 times
that of traditional radiotherapy, so it is a reliable radiation
sensitizer (115). Besides, the sensitizers of metal nanomaterials
for glioma include some special new nanometal materials, such
as metal-organic skeleton (Zr-MOF) nanoparticles (116) and
room temperature liquid nanometals (LMs) (117). Moreover,
some of the above nano metal materials not only directly affect
Frontiers in Oncology | www.frontiersin.org 9
the sensitization of radiotherapy but also act as multifunctional
adjuvants in auxiliary imaging, such as X-ray diagnosis (116).

Semiconductor Nanomaterial Sensitizer
In the field of semiconductor nanosensitizer materials, common
semiconductor materials include silicon (Si), germanium (Ge),
gallium arsenide (GaAs), and other compound semiconductors
doped or made into other compound semiconductor materials.
Among them, silicon is the most commonly used semiconductor
material. Semiconductors have the following in common. The
conductivity of a semiconductor is between a conductor and an
insulator, which will change significantly when it is stimulated
by external light and heat. Therefore, semiconductor materials
have great potential in the application of sensitization of radio
therapy. Dong Xinghua et al. discovered WO2.9-WSe2-PEG
semiconductor heterojunction nanoparticles (WSP NPs), which
can be combined with radiotherapy (RT), photothermal
therapy (PTT), and immune checkpoint suppression therapy
(CBT) to jointly enhance anti-tumor and anti-metastasis
effects. Under X-ray irradiation, the nanosystem catalyzes the
highly expressed H2O2 in TME, promotes the generation of
non-oxygen-dependent reactive oxygen species, and enhances
the effect of radiotherapy (118). Yiwei Kang et al. encapsulated
small semiconductor copper bismuth sulfide (Cu3BiS3, CBS)
nanoparticles and rare earth down-conversion (DC)
nanoparticles in larger size zeolite imidazole skeleton-8 (ZIF8)
nanoparticles and then loaded them with anticancer drugs
Doxorubicin (DOX). Under X-ray irradiation, a moderate dose
of CBS&DC-ZIF8@DOX composite material can achieve high
(87.6%) tumor suppression efficiency and synergistic
radiotherapy and chemotherapy (119).

Non-Metallic Nanomaterial Sensitizer
The development of non-metallic nanomaterial sensitizers in the
treatment of glioma has also been very rapid, such as selenium
(Se) nanoparticles, graphene nanomaterials, etc. (120). Qian
Huang et al. synthesized selenium nanoparticles by reducing
tin dioxide with vitamin C. The selenium nanoparticles were
used as sacrificial templates to react with copper ions to form
copper selenide nanoparticles. The results showed that the
dumbbell-like copper-gold selenide nanocrystals could be used
as an effective radiosensitizer for enhanced radiotherapy (121).

In the treatment of gliomas, graphene nanomaterials have
also made new progress in the field of sensitization and
radiotherapy. Sakine Shirvalilou et al. used magnetic graphene
oxide (NGO/SPIONs) nanoparticles (MNPs) coated with PLGA
polymers as dynamic nanocarriers for IUDR to achieve 5-iodo-2
deoxyuridine (IUdR) entry into the blood–brain barrier (BBB).
IUDR/MNPs were administered intravenously to tumor-bearing
rats of the C6 glioma cell line under a magnetic field of 1.3T, and
the synergistic effect of IUDR/MNPs and radiotherapy was
found. Compared with radiation alone, increasing the ratio of
Bax/Bcl-2 (2.13 times) can significantly inhibit tumor expansion
(>100%) and prolong survival time (>100%). Inhibit the anti-
apoptotic response of glioma rats, thereby enhancing the
sensitizing effect of tumor radiotherapy (27). Lei Chen et al.
developed 131I-labeled, polyethylene glycol (PEG) coated
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reduced graphene oxide (RGO) nanoparticle. After intravenous
injection, gamma imaging shows a significant accumulation of
131IRGO-PEG in tumor tissue. Reduced graphene oxide has a
strong near-infrared absorbance, which can effectively heat
tumors under near-infrared irradiation. The 131I emits high-
energy X-rays due to ionization, which induces tumor killing and
enhances the effect of radiotherapy on cancer cells (122).

Multifunctional Nano-Radiosensitizer
A simple nanoradiotherapy sensitizer cannot meet the needs of
clinical treatment for the characteristics of radiation resistance
and immunosuppression of glioma. Functional nanomaterials
can improve the radiotherapy sensitivity of gliomas in many
ways. Erel-Akbaba G has developed a cyclic peptide iRGD
(CCRGDKGPDC)-conjugated solid lipid nanoparticle (SLN) to
deliver epidermal growth factor receptor (EGFR) and PD-L1
small interfering RNA (SiRNA), binding to targeted and
immunotherapy for glioblastoma and enhancing the efficacy of
radiation therapy by regulating the immune system (123).
Forrest M. Kievit et al. prepared a nanoparticle (NP) composed
of superparamagnetic iron oxide core, biodegradable chitosan,
polyethylene glycol (PEG), and polyethyleneimine (PEI) coating.
The NP can bind to siRNA and protect it from degradation and
deliver siRNA to the area around the target nucleus to use an
siRNA vector to inhibit the expression of APE1 and enhance the
sensitivity of brain malignancies to RT (124). siRNA itself is a
radiotherapy sensitizer. By carrying a certain radiotherapy
sensitizer nanocarrier and combining immunotherapy, it can
achieve double or even multiple sensitizers, which is also the
research focus of future radiotherapy sensitizer nanocarrier.
OUTLOOK

In summary, the combined application of nanoparticles and
radiotherapy sensitizers can significantly improve the effect of
radiotherapy. The special biological characteristics of glioma
weaken the effect of traditional radiotherapy, and the excellent
targeting and good biocompatibility of nano-radiosensitizers
solve the difficulties of traditional radiotherapy for glioma. At
present, nano-radiosensitizers have developed rapidly in the past
few years, providing new research strategies for sensitization of
Frontiers in Oncology | www.frontiersin.org 10
radiotherapy and new ideas for radiotherapy for gliomas. As
mentioned earlier, nanoparticles as radiosensitizers have shown
great potential in tumor treatment. New drug delivery methods
can also improve the sensitizing effect of radiosensitizers (127).
Nano-radiosensitizers are characterized by low cytotoxicity, good
targeting, good biocompatibility, and easy functionalization.
They can pass the blood–brain barrier (BBB), and some of
them have been used as radiosensitizers in clinical treatment
(128). However, single-functional nanoparticles cannot fully
meet clinical needs, and more and more researchers have
focused on finding multifunctional nanoparticles that are more
conducive to clinical transformation. Furthermore, improving
the drug-carrying capacity of nanomaterials is a strategy to
develop multifunctional platforms. Research on the radiation
sensitization mechanism will provide targets for new radiation
sensitizers, and interdisciplinary research will promote the
further development of new radiation sensitizers (129).
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