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In the existing stages of diabetic kidney disease (DKD), the first stage of DKD is called the
preclinical stage, characterized by glomerular hyperfiltration, an abnormally elevated
glomerular filtration rate. Glomerular hyperfiltration is an independent risk factor for
accelerated deterioration of renal function and progression of nephropathy, which is
associated with a high risk for metabolic and cardiovascular disease. It is imperative to
understand hyperfiltration and identify potential treatments to delay DKD progress. This
paper summarizes the current mechanisms of hyperfiltration in early DKD. We pay close
attention to the effect of glucose reabsorption mediated by sodium–glucose
cotransporters and renal growth on hyperfiltration in DKD patients, as well as the
mechanisms of nitric oxide and adenosine actions on renal afferent arterioles via
tubuloglomerular feedback. Furthermore, we also focus on the contribution of the atrial
natriuretic peptide, cyclooxygenase, renin–angiotensin–aldosterone system, and
endothelin on hyperfiltration. Proposing potential treatments based on these
mechanisms may offer new therapeutic opportunities to reduce the renal burden in
this population.

Keywords: diabetic kidney disease, glomerular hyperfiltration, sodium–glucose cotransporter, tubuloglomerular
feedback, renal hemodynamics
Abbreviations: A1AR, A1 adenosine receptors; A2aAR, A2bAR, A2 adenosine receptors; AGE, advanced glycation end
product; Ang II, angiotensin II; Ang1-7, angiotensin 1-7; ANP, atrial natriuretic peptide; ATP, adenosine 5’-triphosphate;
CKD, chronic kidney disease; COX, cyclooxygenase; 51Cr-EDTA, 51Cr-labeled ethylenediaminetetraacetic acid; DKD, diabetic
kidney disease; ET-1, endothelin-1; GBM, glomerular basement membrane; GFR, glomerular filtration rate; GLUT, glucose
transporter; GLUT1, glucose transporter 1; HNF-1a, hepatocyte nuclear factor 1 alpha; 99mTc-DTPA, technetium-99m-
diethylenetriaminepentaacetic acid; NO, nitric oxide; NOS1, NO synthesis 1; Nrf2, nuclear factor erythroid 2-related factor 2;
ODC, ornithine decarboxylase; PGE2, prostaglandin E2; PGF2a, prostaglandin F2 alpha; PGI2. prostaglandin I2; PG,
prostaglandin; PKC, protein kinase C; RAAS, renin–angiotensin–aldosterone system; SGK-1, serum and glucocorticoid-
induced kinase-1; SGLT1, sodium–glucose cotransporter 1; SGLT2, sodium–glucose cotransporter 2; SGLT2i, SGLT2
inhibitor; SGLT3, sodium–glucose cotransporter 3; SGLT4, sodium–glucose cotransporter 4; SGLT5, sodium–glucose
cotransporter 5; SGLT6, sodium–glucose cotransporter 6; SGLT, sodium–glucose cotransporter; SNGFR, single nephron
glomerular filtration rate; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; TGF, tubuloglomerular feedback;
TGF-b, transforming growth factor-b; VEGF, vascular endothelial growth factor.

n.org May 2022 | Volume 13 | Article 8729181

https://www.frontiersin.org/articles/10.3389/fendo.2022.872918/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.872918/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.872918/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:gaosixu@163.com
https://doi.org/10.3389/fendo.2022.872918
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.872918
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.872918&domain=pdf&date_stamp=2022-05-19


Yang and Xu Pathogenesis of Diabetic Hyperfiltration
INTRODUCTION

Diabetic kidney disease (DKD) is the most common cause of
end-stage kidney disease, and its diagnostic standards include a
decline in renal function, diabetic retinopathy, urine albumin-
to-creatinine ratio increases, and a reduction in the glomerular
filtration rate (GFR) (1). Due to the rising incidence of diabetes,
the dominating cause of chronic kidney disease (CKD) in China
has changed from chronic glomerulonephritis to diabetes-
related CKD (2), with most developing from type 2 diabetes
(T2DM). DKD is a heavy societal burden on society since it is
detrimental to the health of affected patients. Despite lifestyle
modification and the use of hypoglycemic drugs, the prevention
and treatment of DKD still face severe challenges (2). One
challenge to overcome is the difficulty of diagnosing DKD in its
initial stages. Glomerular hyperfiltration usually occurs in an
early stage of renal damage before the appearance of
proteinuria (3, 4), without clinical manifestations. It is
considered to be a risk factor for DKD (5). Of course, not all
people with diabetes develop DKD; not everyone follows the
established DKD phasing either. A Thailand study shows that
nearly 40% of T2DM are already at stage 2 or worse when
diagnosed with DKD (6).

Glomerular hyperfiltration is observed in type 1 diabetes mellitus
(T1DM) and T2DM (7). At present, there is no clear cut-off value to
define hyperfiltration (8, 9). This paper summarizes the prevalence
of diabetic hyperfiltration in recent years (Table 1). On one hand,
different methods get different results. Researchers usually used
51Cr-labeled ethylenediaminetetraacetic acid (51Cr-EDTA) to
measure GFR in the 1990s (7), while its accuracy and precision
are lower than technetium-99m-diethylenetriaminepentaacetic acid
(99mTc-DTPA) clearance (22). On the other hand, biological
factors, such as glycemic control, body mass index, age, sex, and
ethnicity, can all influence GFR (8, 23). Notably, hyperfiltration can
also occur in prediabetics whose glucose is impaired (4). In T1DM
and T2DM, hyperfiltration may further exacerbate the decline in
renal function, causing a faster decrease in GFR compared to non-
hyperfiltration and ultimately resulting in CKD (5, 16, 19, 24). A
prospective study based on 1,014 T2DM patients showed that
baseline hyperfiltration is significantly associated with the odds of
rapid renal decline (16). Therefore, by improving our existing
knowledge about hyperfiltration, we can discover new strategies
to delay the occurrence of DKD.

To date, the most common hypothesis about the mechanisms
of diabetic hyperfiltration is the tubular event (7, 25–34). This
event refers to any process that affects the increase in proximal
tubule glucose reabsorption and involves the upregulation of
sodium–glucose cotransporters (SGLTs) and the growth of renal
tubule, then through tubuloglomerular feedback (TGF) to alter
GFR. Furthermore, some level of hormones and vasoactive
substances are increased in people with diabetes; these
substances control the contraction and dilation of the pre-
glomerular and post-glomerular arteriolar , causing
hyperfiltration by altering vascular resistance (7, 9, 28, 30, 35,
36). This review aims at elaborating on the interaction of the
above views on hyperfiltration and discussing the potential
therapies of DKD.
Frontiers in Endocrinology | www.frontiersin.org 2
EFFECT OF SODIUM–GLUCOSE
COTRANSPORTER ON RENAL
GLUCOSE REABSORPTION

Nearly 180 g of glucose is filtrated by the renal glomerulus every day,
and little-to-no concentration of glucose is present in the urine,
which is related to the reabsorption of the renal tubule. Glucose
appears in urine when filtered glucose surpasses themaximum renal
absorptive capacity. SGLTs are present in proximal tubules (37)
where sodium ions traveling intracellularly along the
electrochemical gradient carry glucose molecules in the same
direction. Next, glucose is transported to the renal interstitial fluid
through glucose transoporters (GLUTs) by the way of facilitated
diffusion and eventually backflow into the bloodstream (Figure 1).

There are two dominating SGLTs in the proximal tubule that
are responsible for glucose reabsorption, SGLT2 and SGLT1
(41). Evidence indicates that the renal reabsorption of glucose
was significantly lower in SGLT2 knockout mice (42) and their
urinary glucose excretion is significantly higher (43). David et al.
demonstrated that the 24 h urinary glucose excretion of SGLT1
and SGLT2 knockout mice accounted for ~2% and ~30% of the
double gene knockout mice, respectively (44). Further evidence
suggests that familial renal glycosuria is caused by the
individuals’ mutations of the SGLT2 gene, which is featured
with persistent glycosuria without hyperglycemia or any
symptom of renal tubular dysfunction (45). On the contrary,
SGLT1 mainly mediates intestinal glucose absorption, so genetic
defects in SGLT1 are more likely to cause neonatal diarrhea and
rarely with glycosuria (38, 46). In summary, low-affinity, high-
capacity SGLT2 localized at the brush border of the early
proximal tubule plays a major role in glucose reabsorption (43,
47) while high-affinity, low-capacity SGLT1 plays an
indispensable role in complementing SGLT2 in distal proximal
tubule-mediated glucose transport (42).

Different from SGLT1 and SGLT2, it has been shown earlier
that SGLT3 is not a glucose transporter but a glucosensor (48).
One study showed SGLT3 overexpression in HK-2 cells in
diabetic patients, which increased intracellular Na+ levels and
induced diabetic hyperfiltration and kidney injury (49). Both
SGLT4 and SGLT5 are thought to be kidney mannose and
fructose transporters. Meanwhile, SGLT5, also involved in
controlling glucose reabsorption, may be related to the level of
1,5-anhydroglucitol (50). The location of SGLT6 in the kidney is
not clear; it primarily transports myo-inositol rather than
glucose (51). SLC5A11, encoding SGLT6, may play a role in
human autoimmune diseases by interacting with immune
genes (52).
TUBULAR MECHANISMS FOR
HYPERFILTRATION IN EARLY DIABETIC
KIDNEY DISEASE

Increased Reabsorption
People with diabetes typically have higher blood glucose in
comparison to normal people, and to balance homeostasis,
May 2022 | Volume 13 | Article 872918
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more glucose needs to be reabsorbed to ensure the absence of
glycosuria, which primarily depends on the upregulation of
SGLTs and GLUTs (53–55). When comparing the diabetic rats
to the normal ones, the mRNA of SGLT2 and SGLT1 was
increased by 36% and 20%, respectively (56). Other evidence
demonstrates that more expression of SGLT2 is present within
the urine from a human who has non-insulin-dependent
diabetes (57). With the increases of renal tubule reabsorption,
the sodium and chloride delivered to the macula densa decreases;
Frontiers in Endocrinology | www.frontiersin.org 3
reducing the signal for TGF leads to the elevation of the single
nephron glomerular filtration rate (SNGFR) (25, 32). The
published concentration of sodium chloride on the macula
densa of the diabetic nephron is less than normal (25, 29),
which shows an evidence of hyperreabsorption.

Excessive glucose stimulates the transcription level of serum
and glucocorticoid-induced kinase-1 (SGK-1), which, in turn,
excites many carriers including the Na+/H+ exchanger NHE3,
SGLT1, GLUT1 to decrease glycosuria (39, 58). In the SGK-1-
FIGURE 1 | Overview of glucose transport in proximal tubules. Sodium–glucose cotransporter 1/2 (SGLT1, SGLT2) protein located on the brush border membrane
is responsible for reabsorption of glucose and sodium in the early renal proximal tubule (S1) and distal proximal tubule (S3), respectively. The glucose on the S1 and
S3 correspondingly combined with glucose transporter 2/1 (GLUT2, GLUT1) into the renal interstitial (38). Na+-K+-ATPase, located in the basolateral membrane
maintains the potential gradient and concentration gradient of sodium ions and promotes the passive transport of sodium ions. Under hyperglycemia conditions,
hepatocyte nuclear factor 1 alpha (HNF-1a), serum, and glucocorticoid-induced kinase-1 (SGK1) stimulate the upregulation of SGLT2 and SGLT1, respectively,
thereby increasing glucose reabsorption (39, 40).
TABLE 1 | Prevalence of diabetic hyperfiltration in recent years.

Study author(s) Publish year N Total study
population

GFR method Criteria for hyperfiltration Prevalence of hyperfiltration, %

T1DM
Bulum et al. (10). 2013 – 313 CKD-EPI GFR≥125 ml/min/1.73 m2 12
Ficociello et al. (11) 2009 104 426 Cystatin C-GFR GFR≥134 (M)/149 (F) ml/min/1.73 m2 24
Molitch et al. (12) 2019 106 446 125I-iothalamate GFR≥140 ml/min/1.73 m2 24
Naqvi et al. (13) 2016 52 121 CKD-EPI GFR≥100 ml/min/1.73 m2 42.9
T2DM
Ekinci et al. (14) 2015 29 383 Iohexol GFR>144 ml/min/1.73 m2a 23.2
Jin et al. (15) 2006 16 93 Iohexol GFR>mean GFR + 1.96 SD of control subjectsa 17
Low et al. (16) 2018 53 1,014 CKD-EPI GFR≥120 ml/min/1.73 m2 5.2
Premaratne et al. (17) 2005 110 662 99mTc-DTPA GFR>130 ml/min/1.73 m2a 16.6
Pruijm et al. (18) 2010 – 363 Inulin GFR>140 ml/min/1.73 m2 52.8
Ruggenenti et al. (19) 2012 90 600 Iohexol GFR≥120 ml/min/1.73 m2 15
Shilpasree et al. (4) 2021 43 1,031 CKD-EPI >95th percentile in normal controlsb 8.7
T1DM+T2DM
Hong et al. (20) 2018 809 15,918 CKD-EPI >95th percentile in normal controlsb 5.1
Zhao et al. (21) 2015 340 3,492 99mTc-DTPA GFR>128.97 ml/min/1.73 m2 9.7
May 2
N, number of people with glomerular hyperfiltration; GFR, glomerular filtration rate; CKD-EPI, chronic kidney disease epidemiology; M, males; F, females; 99mTc-DTPA, 99mTc-diethylene-
triamine-penta-acetic acid.
aAfter age adjusted.
bAfter age and sex adjusted.
022 | Volume 13 | Article 872918

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Yang and Xu Pathogenesis of Diabetic Hyperfiltration
knockout mice, the excretion of urinary glucose is higher (58).
Moreover, SGK1 is also involved in promoting the fibrosis of
diabetic kidneys (39). Similarly, enhanced SGLT2 mRNA in
diabetes is positively correlated to the activation of hepatocyte
nuclear factor 1 alpha (HNF-1a) (40). This observation was
supported, when subsequent data showed that the expression of
SGLT2 is lower in HNF-1a-null mice (59). Hence, there is reason
to believe that SGK-1 and HNF-1a have a certain impact on the
development of DKD. At the same time, excessive filtration
increases oxygen consumption; continuous reabsorption
further worsens tubular hypoxia and tubulointerstitial
fibrosis (60).

The contribution of a newly oral antidiabetic drug, SGLT2
inhibitors (SGLT2is), has been well established in T1DM and
T2DM. It recovers the signal of TGF by increasing the
concentration of sodium in macula densa, ameliorating
glomerular hypertension and hyperfiltration to the same extent as
the tubular hypothesis (61). Reducing the glucose levels is the vital
pharmacologic action that it provides. The reduction of
hyperglycemia mitigates renal tubular transport; it also reduces
renal oxygenation at the corticomedullary junction, resulting in the
accumulation of hypoxia-inducible factors, which is beneficial for
the production of serum erythropoietin (34). In addition, SGLT2is
also lead to weight loss and a drop in blood pressure, thereby
significantly reducing the incidence of cardiovascular events (34).
Existing clinical trials have demonstrated that SGLT2is reduce the
risk of renal failure and cardiovascular outcomes (62–65). A
multinational observational cohort study showed 114 and 237
cases of eventual renal outcomes after the application of SGLT2is
and other hypoglycemic agents, respectively, during the follow-up
period, with the former showing a significantly lower risk (65).
Notably, most trails enrolled patients whose GFR is low, with few
early-stage patients (62–64). Future studies of SGLT2is should target
more patients with an early stage of DKD; after all, hyperfiltration is
a cause of DKD progress.

While SGLT1, as a main protein carrier of intestinal glucose
absorption, also has great therapeutic potential (66), a dual
SGLT1/2 inhibitor, licogliflozin, reduces blood glucose by
changing urinary glucose excretion and hemodynamics decline
(67). Larger and longer clinical trials are needed to investigate the
long-term safety, efficacy, and potential beneficial effects of
this drug.

Kidney Growth and Salt Paradox
At the onset of diabetes, kidneys grow due to expanded nephron
size; renal hypertrophy occurs mainly in the cortex of the diabetic
kidney and is linked to subsequent proximal tubular
hyperreabsorption (25, 55). Uehara−Watanabe et al. showed
that the kidney weight, proximal tubules, and glomeruli size
were significantly higher in streptozotocin-induced rats (55).
Greater glomerular volume and glomerular basement membrane
(GBM) width were also demonstrated in patients with early DKD
(68). The elevated surface density of peripheral GBM and
glomerular filtration surface area are closely related to
glomerular hyperfiltration (68). Kidney growth is most likely
caused by various cytokines and growth factors stimulating
various signal pathways to respond to hyperglycemia, including
Frontiers in Endocrinology | www.frontiersin.org 4
the transforming growth factor-b (TGF-b) system, which is crucial
for mesangial cell hypertrophy, fibrosis, and glomerulosclerosis
(69). The vascular factor and protein glycation products amplify
the expression of TGF-b on diabetes (69), from cell proliferation to
hypertrophy to cellular senescence (28, 29, 31). It is well known
that hyperglycemia plays a key role in the progression of DKD by
activating advanced glycation end products (AGEs), protein
kinase C (PKC), and the aldose reductase pathway (70). Cell
growth, fibrosis, and tissue damage are related to increased PKC
activity, especially in diabetes (71). In a diabetic mice model, the
selective inhibitor of PKC-b, ruboxistaurin, amelioration
overexpression of TGF-b improved glomerular hyperfiltration
and reduced albuminuria (71, 72). Ruboxistaurin has been
certified as beneficial to DKD therapy in a short time of clinical
studies but not in long-term studies (72).

Based on a renal tubule growth phenotype, researchers found
an inverse relationship between dietary NaCl intake and GFR,
which is called salt paradox (73). In other words, the lower the
NaCl intake of diabetics, the higher their GFR. The possible
explanation is that after high salt intake, the concentration of
sodium chloride reaching the macula densa is increased; the TGF
signal is reactivated, which reduces SNGFR (26, 73). Persistent
hyperglycemia makes reabsorption increase sensitivity to dietary
NaCl (73). The activity of ornithine decarboxylase (ODC) is
increased many times in diabetic rats (32, 74); it is required for
the salt paradox (75). After using an ODC inhibitor, the proximal
tubule hyperresponsiveness to salt was remedied, tubular growth
was limited, and proximal reabsorption was attenuated, all of
which improved hyperfiltration (32, 75). Therefore, ODC is
necessary for renal growth and salt paradox.

Adenosine–Tubuloglomerular Feedback
TGF is a negative feedback system, which is modulated by
sensing the concentration of sodium chloride in the macula
densa (76, 77). TGF is a major controller of GFR changes in the
tubular hypothesis (27, 30, 31). The physiological function of
TGF is reliant on the adenosine 5’-triphosphate (ATP) and
adenosine (76, 77). When the macula densa detects an increase
in sodium chloride concentration in the tubule fluid, it stimulates
ATP hydrolysis to adenosine and extracellular release, which, in
turn, acts on A1 adenosine receptors (A1AR) in afferent
arterioles. TGF can then be activated, leading to the
contraction of the afferent arteriole followed by decreased GFR
(31, 76). Therefore, the role of adenosine cannot be ignored, but
the exact effect of A1AR for TGF on diabetic hyperfiltration has
yet to be clarified. In some A1AR knockout diabetic mice, the
degree of diabetic hyperfiltration was the same as the control
groups (78, 79), which does not support TGF-mediated increase
in GFR. Another point of view is that A1AR knockout diabetic
mice reduce the activity of TGF (80, 81) and ameliorates
hyperfiltration (82). The difference between two viewpoints is
the interference of confounding factors like blood pressure and
severe hyperglycemia (29). The use of empagliflozin validates the
response of A1AR to TGF (83).

Except for A1AR-mediated vasoconstriction in the low
concentration range, the adenosine diphasic response has been
shown in the isolation and perfusion of renal glomerular
May 2022 | Volume 13 | Article 872918
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arterioles (84). Another subtype of adenosine receptor A2,
involving A2aAR and A2bAR, mediates vasodilation at higher
concentrations (76). Under normal circumstances, compared to
A2bAR, A2aAR has a higher affinity for efferent arterioles and
preferentially dilates the efferent arterioles, maintaining GFR in a
normal range (85, 86). Interestingly, in diabetes, the effect of
adenosine A2aAR is diminished, increasing the resistance of
efferent arterioles leading to the elevation of the filtration fraction
and GFR (86, 87). Recently, Patinha et al. demonstrated that the
decrease in plasma glucose, reduction in proteinuria, and
improvement in renal fibrosis in diabetic mice may be
associated with the upregulation of A2aAR, which may serve
as a promising therapeutic target for hypertension-DKD (88).
Furthermore, the absence of A1AR does not influence the effect
of TGF changes on the activation of the A2aAR on the efferent
arterioles (31). Whether hyperfiltration can be controlled by
stimulating A2aAR in the clinic, it may be a new alternative
treatment that can delay the progression of DKD; more
experiments must be conducted to confirm this.

In addition, A2bAR has a pathogenic effect in early
glomerular dysfunction in diabetic rats (89). An experiment
model shows the A2bAR-mediated overproduction of the
vascular endothelial growth factor (VEGF) in early DKD rats
(89), which is associated with hyperfiltration, proteinuria, and
the ultrastructural changes of glomerulus (90). VEGF also
promotes endothelial cell damage, which is the first barrier to
the glomerular filtration membrane and may lead to the
production of microalbuminuria (91). However, VEGF is an
important mediator in the recovery from other kidney diseases
(92). A2bAR blockers may be a novel alternative for the
treatment of DKD patients.

SGLT1-NO Synthesis1 Pathway
NO was thought to be a powerful vasodilator (93). The increased
expression of NO, which is associated with hyperfiltration, was
reported in diabetic kidneys (94–96). Zhang et al. used the
selective GLUT1 antagonist and NOS inhibitor, respectively, to
block the response of the vascular and afferent arterioles to
hyperglycemia successively; it indicated that vasodilation
induced by hyperglycemia is achieved through the GLUT1-
mediated endothelium-dependent production of NO (97).

Recent research has proposed a novel idea that increased
production of NOS-dependent NO in the macula densa results
from sensing elevated glucose concentration in the luminal of
macula densa through SGLT1, thereby reducing TGF activity
resulting in hyperfiltration (98–100). Raising GFR through the
SGLT1-NOS1-GFR pathway maintains the urinary sodium and
fluid excretion and volume balance (31). Normally, the
concentration of glucose in luminal can be ignored; however, in a
high-sugar environment or the use of the inhibitor of SGLT2, there
is an elevated glucose concentration at the lumen of the macula
densa when filtrated glucose exceeds the maximum reabsorption
capacity. One study found that elevated GFR induced by acute
hyperglycemia was significantly attenuated in mice without NOS1
(99). There was another experiment with SGLT1 knockout mice,
whose GFR, kidney weight, glomerular size, and proteinuria were
reduced (98). Those discoveries established the decisive factor of
Frontiers in Endocrinology | www.frontiersin.org 5
macula densa NOS1 and SGLT1 in glomerular hyperfiltration
related to high glucose and may provide evidence for potential
new therapeutic targets, but whether it exists in chronic mild
hyperglycemia is not clear; after all, increased glucose delivery to
macula densa is generally found only in the medium-to-high blood
glucose situations.

Meanwhile, this pathway can also be activated after a high-
protein meal (101). According to a retrospective cohort study of
forty-three kidney donors in Tokyo, Oba et al. found that high
protein intake is positively related to SNGFR and leads to
hyperfiltration (102). They measured GFR at the level of a single
nephron as a representative parameter on renal hemodynamic
change (102), avoiding the number of functioning glomeruli
affecting total renal filtration. Compared to animal protein, plant-
sourced protein shows a strong beneficial effect in DKD (103). Thus,
diabetic patients should not only strictly limit their sugar intake but
also animal protein intake to avoid accelerating the progression of
this disease (Figure 2).
VASCULAR MECHANISMS FOR
HYPERFILTRATION IN EARLY DIABETIC
KIDNEY DISEASE

Cyclooxygenase
The COX-metabolite of arachidonic acid is prostaglandins
(PGs); it plays a pivotal role in regulating the renal blood flow
and GFR. Several observations in the diabetic mice model have
verified that renal PGs are increased, including prostaglandin E2
(PGE2), prostaglandin I2 (PGI2), prostaglandin F2 alpha
(PGF2a), and thromboxane B2 (104, 105). Increased PGs alters
diabetic renal hemodynamics in a way of dilating renal afferent
arterioles. Increased glomerular capillary pressure heightens the
tensile stress on the capillary wall, resulting in an increase of the
length and area of GBM, while an increased ultrafiltrate, in turn,
elevates the shear force on the podocyte foot processes and body
surface (106). Both mechanical stresses eventually lead to
podocyte shedding, extensive GBM exfoliation, and segmental
sclerosis, exacerbating kidney function damage (106).

Indomethacin, a nonselective COX inhibitor, partially
reduced GFR (107). Further experimental demonstrated that
COX2 inhibitors significantly reduce GFR; despite the lack of
normalization (108), but selective COX1 inhibitors did not affect
renal hemodynamics in diabetic rats (109). Nevertheless, Craven
et al. considered that the hyperfiltration mediated by PGs
occurred within 2 weeks of streptozotocin-induced diabetic
mice; PG production did not increase after 4 weeks, so
persistent hyperfiltration was not mediated by PGs, suggesting
that sustained effects may be mediated by other factors (105).
COX2 is a pivotal component in stimulating renin release by the
macula densa, possibly through the release of renin-stimulating
PGE2 and PGI2 (110). Consistent with this view, the level of
renin decreased in COX2 knockout mice, suggesting that the PGs
produced by COX-2 could affect the renal hemodynamic balance
by regulating the activity of the renin–angiotensin–aldosterone
system (RAAS) (111).
May 2022 | Volume 13 | Article 872918
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Atrial Natriuretic Peptide
ANP can cause the dilation of renal afferent arteriolar and
constriction of efferent arteriolar (112) and was hypothesized to
be a potential mediator of diabetic hyperfiltration as early as the
1980s (113). In diabetic mice, afferent arteriolar resistance is
reduced more than the efferent to increase intraglomerular
pressure and GFR (107). ANP contributes to the hyperfiltration
as documented by the elevated level of plasma concentration in
diabetic mice and patients and by the reduction of GFR that
followed the injection of the ANP-specific antiserum or antagonist
(107, 114, 115). Liu et al. showed that the level of plasma ANP is
significantly associated with the secretion of cytokines, which
promotes the progression of DKD (115). Moreover, ANP also
increases urinary albumin excretion in normoalbuminuric T2DM
(116). The dual effect of ANP on hyperfiltration and proteinuria
may be a predictor of the development of DKD in the long term.

However, on the other hand, ANP showed benefit in
preventing and reversing kidney injury. Sacubitril/valsartan, as
a dual inhibitor of neprilysin and the angiotensin II (Ang II)
receptor, strengthens the effect of ANP and mitigates the
hyperfiltration and renal tubular injury in the animal models
of early DKD (117). This may counteract the dilated effect of
ANP due to the inhibition of the vasoconstrictive effect of Ang II,
resulting in a slight decrease in intraglomerular pressure and
thus a protective effect on the kidney. In addition, the effect of
this drug is limited to patients with heart failure (118). Therefore,
more studies are needed in diabetic patients without heart failure
or varying stages of DKD to explore the prognosis of this drug on
the kidney.

Renin–Angiotensin–Aldosterone System
Regarding the intrarenal hemodynamic alterations, the role of
RAAS cannot be ignored (119–121). Ang II, which is the key
substance in RAAS, mediates the contraction of the afferent and
Frontiers in Endocrinology | www.frontiersin.org 6
efferent arteries. When RAAS is activated, it causes intraglomerular
pressure rises, damages tissue, stimulates fibrosis, promotes the
mesangial matrix increases, and ultimately leads to diabetic
glomerulosclerosis (121, 122). The SGLT2is also decreased the
activation of RAAS to reduce hyperfiltration (61). Notably, after
the use of the RAAS inhibitor, GFR did not fall to normal levels.
This was due to the vasoconstriction effect of Ang II that may be
regulated by a vasodilator, including NO and PGs, which also have
an influence on hyperfiltration (123). One of the effects of sacubitril/
valsartan described above is the inhibition of the Ang II receptor,
which influences hemodynamic changes by dilating the efferent
arterioles. It has become a hot topic of research due to its reduced
risk of renal insufficiency compared with RAS inhibitors
alone (124).

Furthermore, angiotensin 1-7 (Ang1-7)-mediated production
by angiotensin- converting enzyme2 is also associated with
hyperfiltration (125). Ren et al. found that Ang1-7 has
vasodilation on afferent arteriole in isolated rabbits, further
increases the intraglomerular pressure as well as stimulus
production of PGs and NO (126). This function eliminated by
the NOS inhibitor rather than COX means that the vasodilatory
effect of Ang1-7 is dependent on the production of endothelial
NO (126). Until now, RAAS inhibitors have been the gold
standard therapy in DKD, since on one hand, they reduce
efferent arterial contraction and blood pressure and thereby
improve hyperfiltration (127). On the other hand, they prevent
fibroblast activation, which delays the development of
nephropathy (128).

Endothelin
Another endodermal material, endothelin-1 (ET-1), is vital in
maintaining the homeostasis of sodium and water, as well as
controlling the glomerular vascular tone and hemodynamics
(129). Like Ang II, ET-1 can induce inflammation and prompt
FIGURE 2 | Mechanisms of hyperglycemia in renal tubular events leading to hyperfiltration and progression of nephropathy. SGLT1, sodium–glucose
cotransporter1; SGLT2, sodium–glucose cotransporter2; [MD]NaCl, the concentration of sodium chloride in macula densa; TGF, tubuloglomerular feedback; PBOW,
hydraulic pressure in Bowman’s space; [MD]Glucose, the concentration of glucose in macula densa; NOS1, nitric oxide synthase1; NO, nitric oxide; A1AR, A1
adenosine receptor; A2aAR, A2 adenosine receptor; PKC, protein kinase C; AGE, advanced glycation end products; TGF-b, transforming growth factor-b; ↑, elevate
or increase; ↓, decrease or reduce.
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fibrosis (129); both factors are involved in diabetic kidney growth
that is associated with the activation of TGF-b (69). ET-1 combined
with ETA receptor located on the vascular smoothmuscle stimulates
vascular constriction, whereas the release of NO and PG triggers
vasodilation through the ETB receptor (129, 130). Under normal
conditions, the small amount of ET produced by vascular
endothelium has little effect on systemic hemodynamics (131).
Elevated plasma ET-1 levels have been found in T2DM, which
leads to endothelial dysfunction (132). Recently, in a three-clinical-
trial analysis, the kidney hemodynamic profile in adults with type 2
diabetes showed that endothelial dysfunction is associated with
glomerular hyperfiltration (133). Evidence suggests that the
vasoconstrictive effect of endothelin is amplified in DKD (129,
130). Renal vascular resistance and filtration fraction increased
compared with the control group after exogenous ET
administration, which indicates the presence of renal
hyperfiltration (35, 131). Endothelin-receptor antagonists have
been shown in several clinical trials and experimental models to
prevent diabetic hyperfiltration, reduce proteinuria, and delay the
progression of renal damage (134–136). Despite some
complications of this antagonist, more trials are being explored
with the promise of this new drug treating DKD (121) and whether
it has greater pharmacological benefits in combination with drugs
such as SGLT2is (Figure 3).
CONCLUSION

With increasing attention to the DKD, there is growing
evidence that hyperfiltration affects the progression of DKD.
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It occurs through a variety of mechanisms, including glucose
reabsorption mediated by SGLTs, renal growth, the adenosine
signal, and SGLT1-NOS1-pathway; all of these elevate GFR
through weakened TGF signaling. While vasoactive mediators
cause changes in GFR by altering the vascular resistance of the
afferent and efferent arterioles, we attempt to propose
underlying therapies to improve hyperfiltration. Clinical
trials have demonstrated the renal protective effect of
SGLT2is and RAAS inhibition. Upregulated A2aAR, PKC-b
inhibitors, and endothelin-receptor antagonists provide new
ideas for delaying the progression of DKD, but their
limitations also need to be considered. Further studies of
renal prognosis are needed to assess the long-term
effectiveness and safety of these strategies.
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