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A Statistical Test for Differential 
Network Analysis Based on Inference 
of Gaussian Graphical Model
Hao He1, Shaolong Cao1,2, Ji-gang Zhang1, Hui Shen1, Yu-Ping Wang1,2 & Hong-wen Deng1

Differential network analysis investigates how the network of connected genes changes from one 
condition to another and has become a prevalent tool to provide a deeper and more comprehensive 
understanding of the molecular etiology of complex diseases. Based on the asymptotically normal 
estimation of large Gaussian graphical model (GGM) in the high-dimensional setting, we developed 
a computationally efficient test for differential network analysis through testing the equality of two 
precision matrices, which summarize the conditional dependence network structures of the genes. 
Additionally, we applied a multiple testing procedure to infer the differential network structure with 
false discovery rate (FDR) control. Through extensive simulation studies with different combinations 
of parameters including sample size, number of vertices, level of heterogeneity and graph structure, 
we demonstrated that our method performed much better than the current available methods in 
terms of accuracy and computational time. In real data analysis on lung adenocarcinoma, we revealed 
a differential network with 3503 nodes and 2550 edges, which consisted of 50 clusters with an FDR 
threshold at 0.05. Many of the top gene pairs in the differential network have been reported relevant 
to human cancers. Our method represents a powerful tool of network analysis for high-dimensional 
biological data.

It is well-acknowledged that a complex disease is rarely a consequence of an abnormality of a single gene prod-
uct, but involves various pathological processes that interact in a complex network1. The better understanding 
of the effects of molecular and cellular network in disease etiology has multiple potential biological and clinical 
applications. It will help identify pivotal disease risk genes and pathways and provide better targets for drug 
development.

Previous methods for network analysis mainly focused on correlation-based metrics to measure the strength 
of association between gene pairs in a network2–4. However, these methods, which only explore marginal correla-
tions, cannot distinguish direct or indirect relationships between genes. Gaussian graphical model (GGM) is a rel-
atively more realistic way to present complex network because of its interpretation with conditional dependence 
between two variables after removing the effects of all other variables5. GGM can filter out all high correlations 
which are attributed to other genes, and also can lead to genes highly related in terms of partial correlations with 
other neighboring genes5. GGMs are closely linked to precision matrices, which describe the graphical structure 
of the corresponding Gaussian graph. It is a great challenge to construct biological networks through GGM in 
high-dimensional setting, in which the number of variables or features is much larger than the sample size. The 
basic idea behind it is that high-dimensional biological data are sparse in the sense that only a small number of 
genes will regulate one specific gene of interest5. This scenario leads to the construction of an undirected graph of 
conditional dependencies which is sparser than a correlation network5.

During the last decade, many methods for estimating GGM in the high-dimensional settings have been devel-
oped based on certain sparseness assumptions. One of the most widely used methods was the graphical Lasso 
(GLasso) method through the use of L1 (lasso) regularization6. Cai et al. developed a constrained L1 minimiza-
tion approach to estimate sparse precision matrix7. More recently, Ren et al. proposed a novel method to obtain 
asymptotically normal and efficient estimation of large GGM under a minimal sparseness condition8, which is 
the first theoretical study to estimate partial correlations as well as p-value and confidence interval for each edge 
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in the graph. In addition, a fast algorithm, named “FastGGM9”, as an exact implementation to the asymptotically 
normal and efficient estimation established by Ren et al.8, showed that the inference of partial correlation between 
genes becomes computationally feasible for whole-genome data sets9. All of these methods addressed the problem 
of estimating and constructing a single Gaussian graphical model.

Differential network analysis, which investigates how the network of connected genes changes from one con-
dition to another, has become a prevalent tool to provide a deeper and more comprehensive understanding of 
complex diseases10. Several recent studies have demonstrated the power of differential network analysis for eluci-
dating fundamental and key biological responses, revealing that the architecture of gene network can be rewired 
during a cellular or adaptive response10–12. It is of great biological interest in many applications to estimate the 
precision matrices and the corresponding graphical structures over different groups or conditions. A differential 
network between two groups can be constructed by the difference between the two precision matrices, which is 
interpreted as the differences in the partial covariances of each pair of genes between the two groups. It’s notable 
that the gene network in different groups are often similar to each other, the graphical structures would share 
many common edges. In the differential network, the significant connections are discovered to differentiate from 
one condition to the other while weak and common ones are removed10. A joint graphical lasso (JGL) has been 
proposed to preserve the common graphical structure while allowing differences across groups13. This method 
is based on maximizing a penalized log likelihood with a fussed Lasso or group Lasso penalty. However, there 
was no theoretical justification on the statistical convergence rate of the estimators in the method and the results 
were heavily dependent on the choice of tuning parameters. Recently, a pathway-based differential network anal-
ysis model (DINGO: Differential Network Analysis in Genomics) has been developed to jointly estimate the 
group-specific conditional dependencies by decomposing them into global and group-specific components14. 
However, the computational time involved in model fitting made it impractical to handle more than 2000 genes. 
Moreover, these approaches assumed that precision matrices in different groups were sparse without considering 
the structure of real gene network. For example, real regulatory gene network often contains hub nodes, therefore 
the rows and columns of precision matrix corresponding to hub nodes have many nonzero entries, possibly vio-
lating the sparsity condition15.

In the present study, through the GGM framework, we developed a computationally efficient test to infer the 
differential network structure through testing the equality of two precision matrices in the high-dimensional 
setting and applied a multiple testing procedure with FDR control. We evaluate our method and compare it with 
other estimation approaches via simulations under different parameter settings. Then we applied our method to 
a lung cancer dataset. Using both simulated and real data sets, we demonstrate that our method is a powerful tool 
for differential network analysis in high-dimensional biological data.

Methods
Notation and basic model.  Let = … ∈ ×RX x x[ , , ]n T n p1 1 1  and = … ∈ ×RY y y[ , , ]n T n p1 2 2 , denote the 
data matrices. Note that { …x , , xn1 1} and { …y , , yn1 2} are independent observations from two populations. 
Assume that = x xx [ , ]i i

P
i T

1  and = y yy [ , ]j j
P
j T

1  for ith and jth individual is an independently and identically 
distributed sample from a Gaussian distribution ΣN(0 , )P 1  and ΣN(0 , )P 2 , respectively, where 0P is a vector of P 
0’s and ∑1 and ∑2 is a P × P covariance matrix. Let Ω ω= = ∑−( )d ij d d,

1 for d = 1, 2 be the precision matrix for X 
and Y, respectively.

It is known that the precision matrix (inverse covariance matrix) Ω = Σ−1 represents a GGM, where the 
non-zero (or zero) value for ωk,l in the (k, l)th entry of Ω represents the presence (or absence) of edges between 
kth and lth variable. A GGM associated with X is a graph, where the node set V = {x1, x2, …, xp} has p components 
and the edge set E such that any edge between xk and xl if and only if xk and xl are conditional dependent given all 
other variables. Similarly, a GGM associated with Y is also a graph. The methodology of the present study is based 
on GGM and translates the differential network analysis with a binary trait D into the statistical inference and 
comparison of two high-dimensional precision matrices.

Inference of GGM.  The problems of estimating a large sparse precision matrix have drawn considerable 
recent attention. Recently, Ren et al. and Sun et al. made important advancements in the statistical inference in 
the GGM8,16. Especially, Ren et al. proposed an adaptive estimator of individual ωij and proved its asymptotic nor-
mality and efficiency under the sparseness assumption of the graph8. The efficient estimator of the individual ωij 
was then used to construct fully data-driven procedures to recover the support of and to make statistical inference 
about latent variables in the graphical model.

Briefly, consider an index set A = {i,j} with i ≠  j. In the Gaussian setting the precision matrix can be described 
in terms of regression models. For n1 × p data matrix X, we regress the ith and the jth columns XA against the 
remaining columns XAc . Specifically, we may write β= +X XA A Ac  , where the true coefficients 
β β Ω Ω= = − −

A A A A A A, , ,
1

c c  and rows of A  are i.i.d. Gaussian vectors with mean zero mean and covariance Ω−
A A,

1 . 
Scaled Lasso was used for the regression to obtain the estimator β̂ of β and the residual  β= − ˆˆ X XA A Ac . 

Therefore, for X the estimated precision matrix Ω
ω ω

ω ω
=











= ′
−ˆ ˆ ˆ

ˆ ˆ
ˆ ˆ( )A A A A

ii ij

ij jj n,
, 1 1

  . Note that scaled Lasso provides 

scale-free simultaneous estimation of the regression coefficients and noise level. It is a tuning-free penalized 
approach so that it can avoid the cross-validation procedures8. The estimator ω̂ij is asymptotically efficient,

ω ω− →ˆ ˆnF N( ) (0, 1), (1)ij ij ij
D
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where ω ω ω= +
−ˆ ˆ ˆ ˆ( )Fij ii jj jj

2 1
. F̂ij is the estimator of Fij, which is the Fisher information for estimating ωij. The lower 

bound is established through Le Cam’s lemma8. Partial correlation, which is used to measure the strength of con-
ditional dependence, is calculated as γ ω ω ω= −ˆ ˆ ˆ ˆ/ij ij ii jj  with the property

γ γ γ− − → .
−

ˆ ˆ( )n N1 ( ) (0, 1) (2)ij ij ij
2 2 D

It is worthwhile to point out that the asymptotic efficiency result is obtained without the need to assume the irrep-
resentability condition or the L1 constraint of the precision matrix which are commonly required in the literature.

Hypothesis testing of differential networks.  Let = … ∈ ×RX x x[ , , ]n T n p1 1 1  and = … ∈Y y y[ , , ]n T1 2

×Rn p2 , denote the data matrices. Note that { …x , , xn1 1} and { …y , , yn1 2} are independent observations from two 
populations. Let Ω ω= = ∑−( )d ij d d,

1 for d = 1, 2 be the precision matrix for X andY, respectively. The difference 
between two precision matrices from X and Y, respectively, is called the differential network and denoted by 

δ Ω Ω ω ωΔ = = − = −ij ij ij1 2 ,1 ,2. We aim to make statistical inference of each edge in the differential network, 
or equivalently of each δij by testing the hypothesis

− = − ≠ ≤ ≤ ≤H Hw w w w i j p: 0 versus : 0, 1 (3)ij ij ij ij ij ij0, ,1 ,2 1, ,1 ,2

Based on the inference of GGM and asymptotic normality of ωij, we derive the test statistics as

ω ω
=

−

+
ω ω ω ω ω ω+ +

ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ

Wij
ij ij

n n

,1 ,2

ii jj jj ii jj jj,1 ,1 ,1
2

1

,2 ,2 ,2
2

2

Shown in the section of Inference of GGM, as the network graph is sufficiently sparse, the estimator ω̂ij  is 
asymptotically efficient in the sense that ω ω− →ˆ ˆnF N( ) (0, 1)ij ij ij

D . where ω ω ω= +
−ˆ ˆ ˆ ˆ( )Fij ii jj jj

2 1
. F̂ij is the estima-

tor of Fij, which is the Fisher information for estimating ωij. Equivalently, the asymptotic normality of the estima-
tor ω̂ij has mean ωij and variance ω ω ω+−n ( )ii jj ij

1 2 . Note that { …x , , xn1 1} and { …y , , yn1 2} are independent 
observations from two populations. ωij,d for d = 1, 2 be the precision matrix for X and Y, respectively. The estima-
tor ω̂ij,d is asymptotically efficient that

ω ω− → .ˆ ˆnF N( ) (0, 1)ij d ij d ij d, , ,
D

w h e r e  ω ω ω= +
−ˆ ˆ ˆ ˆ( )Fij d ii d jj d jj d, , , ,

2 1
.  I n t u i t i v e l y,  ω ω−ˆ ˆ ~ Nij ij,1 ,2 ( ω ω− ,ij ij,1 ,2 [ ω ω ω+ +−n ( )ii jj ij1

1
,1 ,1 ,1

2  
ω ω ω+−n ( )ii jj ij2

1
,2 ,2 ,2

2 ]). Under the null H0,ij variables {Wij} would follow standard normal distributions.

Multiple testing with false discovery rate (FDR) control.  For testing p(p − 1)/2 hypotheses, multiple 
testing procedures using Bonferroni correction or naive false discovery rate corrections may lose power. In order 
to carry out simultaneous testing on the structure of the differential network Δ with FDR control, we used the 
following multiple testing procedure17.

	 1.	 For a given pre-specified level α, calculate α= ≤ ≤ ≤ϕ− −ˆ { }t t pinf 0 2(log ) t p p
R t

1
2

2{1 ( )}( ) / 2
( )v1

2
. If t̂  does not 

exist, set =t̂ p2(log )
1
2 .

	 2.	 For1 ≤ i ≤ j ≤ p, reject H0,ij if and only if ≥ ˆW tij .

Note that t is the threshold level such that H0,ij is rejected if |Wij| ≥ t. ϕ(t) is a standard normal cumulative 
distribution function and = ∑ ≥≤ ≤ ≤R t I W t( ) ( )i j p ij1  denotes the total number of rejections17. The ideal choice 
of t would reject as many true positives as possible in the meantime of controlling the FDR at the given 
pre-specified level α.

Simulation study.  To evaluate the performance of our method, we designed realistic simulations. In the set-
ting of n < p, we simulated two group data from multivariate normal distributions with different undirected graph 
structures, including hub, scale-free, and random graphs, in which some of the edges are common to both groups.

Suppose we had two groups d = 1 and 2, respectively. First, a common undirected graph structure was simu-
lated for the two groups. A precision matrix Ω was generated using huge.generator in the R package Huge18. As the 
common graph, we considered three different graph structures, including hub, scale-free, and random graph. The 
off-diagonal elements of the precision matrix were set to be 0.5 and a positive number added to the diagonal ele-
ments of the precision matrix was 0.2. The number of hubs in the hub graph and the probability that a pair of 
nodes had an edge in the random graph were default values set in the function huge.generator18. The scale-free 
graph was generated using Barabasi-Albert algorithm implemented in the function huge.generator18,19. Second, 
set Ω1 = Ω2 = Ω and replace a randomly chosen entry from the zero entries in Ω1 and Ω2 with a uniform random 
sample. Third, repeat the second step γ × M times, where M is the number of nonzero entries in Ω and γ is the 
heterogeneity of the graphs, which is used to control the ratio of the number of individual edges to the number of 
common edges. Fourth, generate xi and yi for ith individual in two groups from the distributions Ω −N(0 , )P 1

1  and 
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Ω −N(0 , )P 2
1 , respectively. A workflow of simulation steps was shown in Supplementary Fig S1 and the details of 

the simulation settings were shown in the Table 1. In each scenario, the datasets were simulated with 100 replica-
tions based on four parameters including the sample size n, the number of vertices p, the level of heterogeneity γ 
and graph structure.

Results
Note that Ren et al. had reported better performance of the tuning-free inference methodology than the existing 
L1 penalized methods in the estimation of the precision matrix8,9. Additionally, we compared its performance 
with JGL and DINGO in scenarios of different undirected graph structures, in which some of the edges are com-
mon to both groups. We evaluated the estimation of nonzero elements in true precision matrices Ω1 and Ω2, as 
well as in true Δ. Receiver Operating Characteristic (ROC) curve was generated using the estimated p-values and 
the true zero/nonzero elements in the precision matrix. And then the Area Under the Curve (AUC) was averaged 
over 100 replications to measure the performance of the estimation. For JGL, there were two tuning parame-
ters. We first chose optimal tuning parameters by Bayesian information criterion (BIC) and then calculated the 
averaged AUC for the ROC curves based on a sequence of tuning parameters. For the DINGO, ROC curve was 
generated based on the cutoffs of the estimated group-specific partial correlations and the differential score of the 
differential network.

As to the estimation of the underlying precision matrices from the simulated data matrices of Ω1 and Ω2, 
Table 1 showed the mean AUC averaged over 100 replications for each combination of sample size n, the number 
of vertices p, the level of heterogeneity γ and graph structure. The AUCs in our method were much larger than 
those in the DINGO and JGL, suggesting that our method had more accurate estimations of the conditional 
dependencies than the DINGO and JGL methods. When n, p and γ were fixed, AUC in our method was small-
est in scale-free graph among three graph structures, but still large enough to demonstrate the accuracy of the 
estimations.

For the differential network structure, our method performed much better than the DINGO method. Note 
that in the paper of DINGO14, it only focused on the performance in the estimating the group-specific component 
and didn’t examine the performance of the differential scores proposed for determining the edges in the differen-
tial network. Here in our simulation, it showed that the differential scores performed poorly (Table 1). Besides, 
it was estimated that DINGO would take more than 50 hours as p > 2000 (using a Linux server with a 2.67 GHz 
Intel processor and 96GB of RAM). The computation time in DINGO increased exponentially as p increases. In 
step 2 of DINGO the group-specific component was estimated using expectation–maximization (EM) algorithm 
and in step 3 of DINGO differential scores were calculated from the bootstrap procedure. Both are computation-
ally intensive. Therefore, it was impractical for DINGO to deal with genome-wide data which normally have the 
number of genes p > 10,000. In contrast, our test statistics, which was directly used to test the differential network 
structure, performed much faster than DINGO (Supplementary Fig S2). In particular, our method is still feasible 
even number of genes p = 8000.

Real data analysis.  Lung cancer is the leading cause of cancer death worldwide and adenocarcinoma is 
its most common histological subtype20. Here, we applied our algorithm to perform genome-scale differential 
network analysis for lung adenocarcinoma, aiming to find important molecular implications for lung cancer 
treatment. Gene expression profiling of 58 lung adenocarcinoma tumors and their matched histologically normal 
lung tissue samples were analyzed using Illumina HumanWG-6 v3.0 expression beadchip. We downloaded the 
normalized data from the NCBI GEO database, GSE3286321. Statistical analyses were limited to probes retained 
after applying the following filters: non-detectable expression in ≥90% of samples using a detection P-value 
cut-off of 0.01. We averaged the expression values of multiple probes matched to the same genes in each sample. 
After these data pre-processing, 7827 genes were remained for the subsequent analyses. First, we inferred the 
gene network by estimating the corresponding GGMs of genes for lung adenocarcinoma tumors and lung normal 

Sample size 
n1 = n2

Number of 
vertices p

Level of 
heterogeneity γ

Graph 
structure

Our 
methoda DINGOa JGLb

Our 
methodb DINGOb

50 100 0.25

Random 0.832 0.718 0.508 0.643 0.522

Hub 0.844 0.807 0.521 0.632 0.521

Scale-free 0.777 0.644 0.505 0.640 0.514

50 100 0.75

Random 0.815 0.708 0.532 0.660 0.516

Hub 0.799 0.727 0.563 0.640 0.513

Scale-free 0.769 0.616 0.510 0.653 0.519

100 200 0.25

Random 0.828 0.657 0.505 0.648 0.515

Hub 0.868 0.799 0.527 0.637 0.513

Scale-free 0.734 0.592 0.502 0.645 0.505

100 200 0.75

Random 0.835 0.680 0.537 0.677 0.513

Hub 0.832 0.740 0.595 0.658 0.515

Scale-free 0.756 0.580 0.510 0.665 0.518

Table 1.  Comparison of estimating the group specific precision matrix and differential network. Note: JGL, 
joint graphical lasso; DINGO, Differential Network Analysis in Genomics. aAUC values group specific precision 
matrix. bAUC values for differential network.
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tissues, respectively. Then, we performed the differential network analysis by investigating the difference between 
two precision matrices. Table 2 listed the top 10 most significant pairs of genes in the differential network analy-
sis. For each pair of genes in Table 2, we showed the corresponding element in the precision matrix and p-value 
in case and control group, respectively, as well as the corresponding partial correlation and p-values. Note that 
many genes have been reported previously relevant to human cancers. For example, GRN is a potent mitogen 
and growth factor implicated in many human cancers22. A somatic RRAS mutation (p.Gln87Leu substitution) 
had previously been reported as a rare somatic event in lung carcinoma23. Most gene pairs with very significantly 
strong partial correlations in control group didn’t have significant partial correlation in case group. It indicated 
that the connection of genes in disease samples was weaker than that in healthy samples. It was interesting to 
point out that there were two special pairs, LOC284230 ~RPL23 and GDI2~LOC651816. Both pairs had signifi-
cant partial correlation in both case and control, however, the direction of partial correlation in case was opposite 
to that in control. RPL23, a tumor metastasis-related gene, was found to induce high invasiveness of a human lung 
adenocarcinoma cell line24. GDI2 overexpression reduced lung metastasis25.

As a comparison, we also applied DiffCoEx, a method for identifying marginal correlation-based pattern 
changes, which builds on the commonly used Weighted Gene Coexpression Network Analysis (WGCNA) 
framework for coexpression analysis2. We selected the default parameters, such as the soft power and minimum 
module size in network construction and module detection. In total, 19 modules were detected, shown in the 
Supplementary Fig S3. Based on our proposed procedures, at a false discovery rate level of 0.05, it resulted in 
a differential network with 3503 nodes and 2550 edges, which consisted of 50 clusters, which had the maximal 
connected sub-networks with number of nodes ≥10.

From this differential network, we can directly know the network structure. For DiffCoEx method, however, 
we cannot derive any detail of the network structure within each module. It is known that analyzing network 
differences of gene networks between the disease and healthy conditions could be helpful for understanding the 
genetic mechanisms of the disease. In terms of differential network structure, our method is much better for us to 
understand the mechanism of the disease. By using the partial correlation approach, in contrast, our differential 
network analysis resulted in much sparser network. As the partial correlation quantified the correlation between 
two genes after controlling other genes’ effects, which provided with useful information to distinguish the causal 
correlations in the network. Functional analysis for the differential network showed that the top significantly 
enriched KEGG pathways were “Metabolic pathways” (hypergeometric test, p value = 6.43e–63) and “Pathways 
in cancer” (p value = 1.59e–24). The full results of functional enrichment analysis of the differential network and 
clusters from DiffCoEx were shown in the Supplementary Tables 1 and 2, respectively, to illustrate the functional 
compositions of two methods. For simple illustration and visualization, we showed a large cluster from the dif-
ferential network in the Fig. 1.

Discussion
Motivated by an important biological question that how the network structure of cellular interactome change 
from one condition to another, we derived a formal statistical test for the differential network analysis based 
on the inference of GGM. Our method not only provided statistical inference of the difference of edge strength 
between graph nodes in the differential network analysis, but also a multiple testing procedure for simultaneously 
testing the large number of tests with FDR control to infer the structure of the differential network. The source 
code of the implementation is available at Supplementary File 1.

The hypothesis testing of differential network was directly based on estimator of ωij,1 − ωij,2. First, we imple-
mented the asymptotically normal and efficient estimation of GGM. Then we performed the hypothesis test-
ing of differential network by comparing the difference between two precision matrices from two conditions, 
respectively. Moreover, we performed a multiple testing procedure with FDR control for simultaneously testing 
p(p − 1)/2 hypotheses. The procedure for the differential network analysis we present here had the advantage in 
a global and unbiased manner.

First, our method provided with a rigorous statistical test for the difference of conditional dependence 
between two different conditions. It represented a major improvement over earlier procedure, which built two 

Gene Gene ω̂ij,1

p value for 
ω̂ij,1 γ̂ij,1

p value for 
γ̂ij,1 ω̂ij,2

p value for 
ω̂ij,2 γ̂ij,2

p value for 
γ̂ij,2 W p value

GRN TSPO −1.220 1.603E-01 0.197 1.366E-01 −58.002 7.369E-06 0.781 2.287E-48 6.224 4.837E-10

CARHSP1 RRAS −0.776 2.804E-01 0.150 2.642E-01 −89.694 2.145E-05 0.719 2.539E-27 6.163 7.148E-10

COMMD5 DLC1 0.399 4.554E-01 −0.103 4.481E-01 76.557 2.567E-05 −0.709 3.822E-25 −6.130 8.791E-10

CIP29 ZCCHC17 2.551 1.144E-01 −0.222 8.888E-02 −78.504 1.450E-05 0.741 3.985E-33 5.941 2.833E-09

CUTA MRPS24 −1.061 3.074E-01 0.142 2.929E-01 −115.204 2.623E-05 0.707 6.723E-25 5.920 3.223E-09

LOC284230 RPL23 −10.744 1.777E-03 0.475 7.822E-06 −174.241 3.781E-06 0.822 4.563E-76 5.913 3.357E-09

CRBN SERINC3 6.459 1.393E-02 −0.359 2.709E-03 −22.954 8.653E-05 0.640 2.793E-15 5.872 4.299E-09

HTRA2 RPL7L1 −0.724 6.184E-01 0.069 6.159E-01 201.324 5.377E-05 −0.667 2.353E-18 −5.814 6.089E-09

PCTK3 SUSD1 −0.351 6.442E-01 0.064 6.422E-01 −51.450 2.156E-05 0.719 2.925E-27 5.808 6.333E-09

GDI2 LOC651816 −12.125 4.843E-03 0.420 2.084E-04 39.698 2.959E-04 −0.573 5.365E-10 −5.802 6.538E-09

Table 2.  Top 10 most significant pairs of genes in the differential network analysis from the lung cancer study. 
Note: ω̂ij d, , d = 1, 2, for case and control group, respectively.
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global gene networks for the disease and healthy samples respectively under the GGM framework with a FDR 
threshold for determining the existence of edges, and then compared the topological changes with the unique 
edges that belonged to only one of the networks9. Our method directly resulted in the differential network struc-
ture with statistical estimation and inference of the difference of edge strength between graph nodes. Second, 
we adopted a multiple testing procedure for simultaneously testing the large number of tests with FDR control 
to infer the structure of the differential network, as the standard Bonferroni or naive FDR corrections would 
lose power. For the multiple testing problem, we proposed to threshold test statistics directly rather than using 
p-values as in Benjamini and Hochberg (BH)26, mainly because the BH method for controlling FDR required the 
independence between p-values, while our test statistics may be weakly dependent of each other, which is natural 
in GGM estimation17. Third, through the realistic simulation studies with different combinations parameters of 
sample size, number of vertices, level of heterogeneity and graph structure, we demonstrated that our method 
performed much better than the current available methods in terms of accuracy and computational time. Then 
we applied it on a real data set and successfully constructed the differential network for lung adenocarcinoma. The 
differential network analysis can help reveal how the architecture of gene network is rewired during a cellular or 
adaptive response and elucidate fundamental molecular mechanism of biological processes. Especially for cancer 
research, our method will be very helpful for identifying novel driver genes or pathways. In our real data analysis 
on the lung adenocarcinoma, we revealed a differential network with 3503 nodes and 2550 edges, which consisted 
of 50 clusters with a FDR threshold at 0.05. Especially, for the top gene pairs in the differential analysis, many of 
them have been reported relevant to human cancers. Our method can be a powerful tool of network analysis 
based on GGM, especially for high-dimensional biological data.

However, there were several limitations of our method. First, the inference of GGM relies on the Gaussian 
assumption on the data. Nowadays, high-throughput RNA sequencing (RNA-seq) is the standard tool for gene 
expression analysis. Analyzing RNA-seq data depends on estimates of read count variability, which are statisti-
cally modeled as the negative binomial distribution27. Second, currently our method can only be applied to the 
study of differential network analysis between two conditions. We will extend our differential network approach 
for sequence data as well as multiple conditions in future studies.

Conclusion
In summary, we derived a formal statistical test for the differential network analysis based on the inference of 
GGM, as well as a multiple testing procedure for simultaneously testing the large number of tests with FDR 
control to infer the structure of the differential network. Through simulation studies, we demonstrated that our 
method performed much better than the current available methods in terms of accuracy and computational time. 
Our method will be very helpful in differential network analysis for identifying novel driver genes or pathways in 
high-dimensional biological data.

Figure 1.  One cluster in the differential network between lung adenocarcinoma tumors and healthy samples. 
The sizes of nodes are proportional to their degrees. The widths of the edges are proportional to the W statistics.
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