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The consequences of systemic inflammation are a significant burden after traumatic brain
injury (TBI), with almost all organs affected. This response consists of inflammation and
concurrent immunosuppression after injury. One of the main immune regulatory organs,
the spleen, is highly interactive with the brain. Along this brain–spleen axis, both nerve
fibers as well as brain-derived circulating mediators have been shown to interact directly
with splenic immune cells. One of the most significant comorbidities in TBI is acute ethanol
intoxication (EI), with almost 40% of patients showing a positive blood alcohol level (BAL)
upon injury. EI by itself has been shown to reduce proinflammatory mediators dose-
dependently and enhance anti-inflammatory mediators in the spleen. However, how the
splenic immune modulatory effect reacts to EI in TBI remains unclear. Therefore, we
investigated early splenic immune responses after TBI with and without EI, using gene
expression screening of cytokines and chemokines and fluorescence staining of thin
spleen sections to investigate cellular mechanisms in immune cells. We found a strong
FLT3/FLT3L induction 3 h after TBI, which was enhanced by EI. The FLT3L induction
resulted in phosphorylation of FLT3 in CD11c+ dendritic cells, which enhanced protein
synthesis, maturation process, and the immunity of dendritic cells, shown by pS6, peIF2A,
MHC-II, LAMP1, and CD68 by immunostaining and TNF-a expression by in-situ
hybridization. In conclusion, these data indicate that TBI induces a fast maturation and
immunity of dendritic cells which is associated with FLT3/FLT3L signaling and which is
enhanced by EI prior to TBI.

Keywords: traumatic brain injury, spleen, FLT3, dendritic cell, ethanol
INTRODUCTION

Traumatic injury to the brain has acute, large-scale systemic consequences (1) that affect almost all
organs and may lead to a compromised function of the heart, lung, gastrointestinal tract, liver,
kidney, bones, lymphoid organs, and others, without direct systemic injury or infection (2, 3). The
systemic response to TBI is characterized by inflammation and, at the same time, a net systemic
org February 2022 | Volume 13 | Article 8244591
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immunosuppression (4–6). Although brain injury results in a
systemic increase of inflammatory mediators and cytokines in
both patients (7–9) and rodent models of TBI (10–12), there
remains ample evidence point ing toward systemic
immunosuppression post-TBI, with a decrease in immune cells
in the periphery (13–18). Generalized immunosuppression is
highly relevant on clinical grounds, since it may contribute to an
enhanced vulnerability to infections observed after severe
tissue injury.

The spleen is one of the most important immune regulatory
organs, involved not only in red blood cell clearance but also in
the facilitation of interactions between antigen-presenting cells
(APCs) and T and B lymphocytes (19). Prior investigation of the
brain–spleen axis has revealed the interaction and regulation of
splenic responses initiated by the central nervous system by
either circulating mediators whose receptors are located on APCs
(20) or by autonomic nerve fibers associated with splenic
immune cells (21). There have been reports of sympathetic and
parasympathetic fibers innervating dendritic cells (DCs) in the
spleen (22). Furthermore, vagus nerve stimulation can reduce
macrophage-induced TNF alpha release in the spleen through a
so-called cholinergic anti-inflammatory pathway (23). However,
it remains poorly understood whether the spleen is directly and
rapidly involved in the early response to TBI.

Ethanol intoxication (EI) is a frequent comorbidity in brain
injury, with almost 40% of patients showing a positive blood
alcohol level (BAL) upon admission (24). Notably, the largest
majority of patients showing EI in the context of TBI are not
chronic alcohol consumers but rather young and often episodic
weekend drinkers (the so-called “drink-and-drive” patients).
Recent studies revealed that acute EI can have beneficial effects
on the neuroimmunological response following experimental
TBI (25–27), these findings have been supported by clinical
evidence (28–30). However, some clinical studies have reported
the opposite (31, 32). Animal models have demonstrated that
high doses of EI reduce spleen size (33) and pro-inflammatory
cytokines IL-1b and IL-6 but increase the anti-inflammatory
cytokine IL-10 (34). Furthermore, EI has been shown to
suppress antigen presentation by DCs (35), reflecting the
immunosuppressive effects of ethanol intoxication on the spleen.

Is acute EI posited to interfere or rather to amplify the TBI-
induced systemic immunoregulation, and in particular, is EI
modulating TBI-induced immune reactions in the spleen? Given
the high prevalence of EI in TBI patients, this question has direct
clinical relevance. In this study, we investigated the effect of a
single high-dose ethanol exposure prior to experimental TBI in
adult mice with a focus on the immediate immunological
responses in the spleen.
MATERIAL AND METHODS

Animals, Traumatic Brain Injury Model,
and Ethanol Treatment
This study represents a post-hoc analysis of spleen samples
obtained from previous studies (25, 26, 36, 37). Investigations
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with these samples have never been reported before, and this
study was undertaken in accordance with the 3R principle, to
reduce the number of mice in animal experimentation but
increase the scientific output from animal sacrifice. These
experiments have been approved by Ulm University Animal
Experimentat ion Oversight Committee and by the
Regierungspräsidium Tübingen (license number 1222). Male
wild-type mice (B6-SJL) were bred locally under standard
housing conditions (24°C, 60%–80% humidity, 12/12 light/
dark cycle, with ad libitum access to food and water). TBI was
performed on wild-type (WT) male mice aged p60–90, in
agreement with epidemiological data in human TBI (38–40).
Experimental TBI was performed as previously reported (25, 26,
36, 37). Briefly, mice were administered buprenorphine (0.1 mg/
kg by subcutaneous injection) and anesthetized with sevoflurane
(2.5% in 97.5% O2), after which the mice were subjected to a
closed head weight drop TBI model. Animals were positioned in
the weight-drop apparatus, and the TBI was delivered by a
weight of 333 g free falling from a height of 2 cm, targeting the
parietal bone (41). Directly after the TBI, mice were administered
100% O2, and apnea time was monitored. Control mice (sham
group) had the same treatment and procedures (analgesia,
anesthesia, skin incision, and handling), but without the
trauma being administered. Ethanol treatment was performed
as previously described (42, 43). Briefly, 100% synthesis grade
ethanol was diluted in 0.9% NaCl saline to a final dilution of 32%
volume/volume (32 µl of 100% ethanol and 68 µl of saline). Mice
(20–25 g) were administered a volume of 400–500 µl of diluted
ethanol (to obtain a concentration of 5 g/kg) by oral gavage 30
min before TBI. Four experimental groups were investigated:
saline administered, subjected to sham surgery (saline-sham, SS);
saline administered, subjected to TBI (saline-TBI, ST); ethanol
administered, subjected to sham surgery (ethanol-sham, ES); and
ethanol administered, subjected to TBI (ethanol-TBI, ET).

Tissue Isolation
Three hours post-trauma, mice were euthanized by cervical
dislocation and organs were harvested for further processing.
The spleen was dissected quickly and snap frozen in dry ice
for further processing. Tissue was used for either RNA isolation
and quantitative RT-PCR, for tissue sectioning and
immunofluorescence staining.

RNA Isolation and Quantitative RT-PCR
RNA was isolated from the spleen using QIAzol (Qiagen,
Germany) by disrupting and homogenizing the tissue in 1 ml
QIAzol, after which 200 µl of chloroform was added and
vortexed for 15 s. The samples were placed at RT for 10 min
and centrifuged for 10 min 12,000×g at 4°C to achieve phase
separation. The top layer (containing RNA) was moved to
another tube and precipitated with the same amount of
isopropanol. The samples were placed at RT for 10 min and
centrifuged for 10 min 12,000×g at 4°C. The isopropanol was
removed and 1 ml of 75% ethanol in DEPC-treated dH2O was
added and mixed. The samples were centrifuged for 10 min
8,000×g at 4°C, ethanol was removed, and the samples were air
dried. The RNA pellet was redissolved in 20 µl RNAse-free
February 2022 | Volume 13 | Article 824459
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dH2O. RNA concentration was determined by NanoDrop.
Reverse transcription was performed by adding 5 µl random
hexamers (Biomers, Germany) to 0.75mg RNA (total volume 40
µl diluted in dH2O) and incubated for 10 min at 70°C. The
samples were placed on ice and a master mix of 0.5µl reverse
transcriptase (Promega, Germany), 0.5 µl RNase Inhibitor
(RiboLock, Thermo Scientific, Germany), 2 µl dNTPs
(Genaxxon, Germany), and 12 µl reverse transcriptase buffer
(Promega, Germany). The samples were incubated for 10 min at
RT and placed in a water bath for 45 min at 42°C. The samples
were incubated for 3 min at 99°C, placed on ice, and frozen until
further use.

The primers used in the present study were designed using
the primer blast tool from NCBI (National Center for
Biotechnology Information, USA), and sequences were found
through the NCBI nucleotide search tool, GenBank. Sequences
were copied into the primer blast tool and parameters were set
to achieve the most optimal PCR product for the in-house
lightcycler (Roche LightCycler 480 II). Briefly, the PCR product
size was set from a minimum of 70 to a maximum of 140, the
primer melting temperature (Tm) was set at 60°C ± 3°C, the
exon junction span was set at no preference, and finally,
the correct organism (Mus musculus) was set. The primer
pair with the most optimal Tm, self-complementarity, and
self-3′ complementarity was chosen. The chosen primer pairs
were double-checked in the primer blast tool, to ensure
specificity for the target gene. Primers were ordered from
Biomers (Germany) and were validated, by performing a run
on test samples together with the corresponding controls
(samples without RNA and samples without reverse
transcriptase) to verify the Ct value and thereby the
selectivity and functioning of the primer before using them
for the experiments. The detailed list of the primer sequences
for each gene tested is reported in Supplementary Table 1.

qPCR was performed on the LightCycler 480 II (Roche) with
the Power PCR TB green PCR master mix (Takara, Japan). Two
microliters of sample cDNA was used in a total volume of 10 µl
(3 µl primer mix and 5 µl of TB green) in a 96-well plate, all
samples were duplicated, and the housekeeping gene GAPDH
was used as a control (for a complete overview of cytokine
sequences, see Supplementary Table 1). The Ct values obtained
from the lightcycler were normalized according to the following
equation: 2−DCt (DCt = Cttarget gene − CtGapdh) =
relative mRNA.
Tissue Sectioning and
Immunofluorescence Staining
Frozen spleen tissue was embedded in OCT (Tissue-Tek, The
Netherlands), and 10 mm sections were cut with the cryostat and
mounted on glass slides. Slides were stored for 24 h at −80°C and
washed in 1× PBS, followed by a 10-min fixation step of the
sections in 4% PFA. Target retrieval was performed in sodium
citrate buffer pH 8.5, followed by blocking of the sections in
blocking buffer (3% BSA, 0.3% Triton X-100; PBS) for 2 h at RT.
The primary antibodies (for a complete overview of antibodies
used, see Supplementary Table 2) were diluted in blocking buffer
Frontiers in Immunology | www.frontiersin.org 3
and incubated for 48 h at 4°C, followed by 3 × 30 min washes in
PBS at RT. The secondary antibodies were diluted in blocking
buffer and incubated for 2 h at RT, followed by 3 × 30 min washes
in PBS, and the sections were mounted using Fluorogold prolong
antifade mounting medium (Invitrogen, Germany).

Single mRNA In-Situ Hybridization
Fluorescence in-situmRNA hybridization was used as previously
reported (44) in agreement with the manufacturer’s instructions
(ACDBio, RNAscope, Newark, CA, USA fluorescence in-situ
hybridization for fresh frozen tissue, all reagents and buffers were
provided by ACDBio), with small modifications (25). Briefly,
frozen spleen tissue was embedded in OCT (Tissue-Tek, the
Netherlands), and 10 mm sections were cut with the cryostat and
mounted on Superfrost Plus glass slides. Slides were stored for
24 h at −80°C and fixed for 10 min in 4% PFA at 4°C. Sections
were covered by protease IV and incubated for 30 min at 40°C
followed by 2 × 2 min washing in PBS. Both probes (TNF-a and
ADRB2) were added and incubated for 4.5 h at 40°C followed by
2 × 2 min washing step with wash buffer. Then, amplification 1
was added to the sections and incubated for 30 min at 40°C
followed by 2 × 2 min washing step with wash buffer. Next,
amplification 2 was added to the sections and incubated for
15 min at 40°C followed by 2 × 2 min washing step with wash
buffer. As a final amplification step, amplification 3 was added
and incubated for 30 min at 40°C followed by 2 × 2 min washing
step with wash buffer. Finally, the detection step was performed
by adding detection reagent 4A to the sections and incubated for
45 min at 40°C followed by 2 × 2 min washing step with wash
buffer, and then, the sections were blocked in blocking buffer (3%
BSA, 0.3% Triton X-100; PBS) for 1 h at RT followed by an
overnight incubation with primary antibodies diluted in blocking
buffer. The sections were washed 3 × 30 min in PBST and
incubated with secondary antibodies diluted in blocking buffer
for 2 h at RT. A final washing step 3 × 30 min in PBST was
performed and the sections were counterstained with DAPI and
mounted using Fluorogold prolong antifade mounting medium
(Invitrogen, Germany).

Image Acquisition and Image Analysis
Immunofluorescence staining was imaged with a Keyence BZ-
X800 microscope (Keyence, Japan) equipped with a ×100 oil
objective, and a single optical section with 3 × 3 tile scan was
made spanning an area covering a splenic follicle and the red
pulp. Acquisition parameters were set to avoid hyper- or
hyposaturation and kept constant for each experimental set.
Images were merged with the BZ-II analyzer software
(Keyence, Japan) and analyzed using the ImageJ software.
Fluorescence intensity was assessed by manually tracing the
CD11c+ cells and measuring the mean gray value. Density was
assessed by using the ImageJ plugin cell counter. The analyzed
marker was assessed as high or low expressing, by thresholding
the signal. Each picture was analyzed by making a ratio between
total CD11c+/CD45+ cells and the imaged marker or the ratio
between CD11c−/CD45+ cells and the imaged marker.

Single mRNA in-situ hybridization images were acquired
using an LSM-710 (Carl Zeiss, Germany) microscope with a
February 2022 | Volume 13 | Article 824459
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×40 oil objective with optical thickness fitted to the optimum
value. A z-stack of 8 images were acquired at 1,024 × 1,024 pixel
resolution and 16-bit depth. Acquisition parameters were set to
avoid over- and undersaturation and kept the same for each
experimental set. TNF-a and beta-2 adrenergic receptor
(ADRB2) mRNA density in CD11c+ cells were assessed by
using the ImageJ plugin cell counter.
Frontiers in Immunology | www.frontiersin.org 4
Statistical Analysis
Statistical analysis for the gene expression data sets (Figures 1, 2)
was performed using the IBM software suite, using a two-way
multivariate ANOVA (with Wilk’s l parameter), because the
experiment included multiple dependent variables (cytokines or
chemokines) and two independent variables (TBI and ethanol
treatment). The post-hoc comparisons were performed with
A B C D

E F G H

I J K L

FIGURE 1 | Ethanol intoxication (EI) enhances the selective cytokine expression after traumatic brain injury (TBI). Cytokine expression screening in the spleen of
saline sham (SS), ethanol sham (ES), saline TBI (ST), and ethanol TBI (ET)-treated mice 3 h after trauma. (A–D) Bar plots show the relative expression of Th2 cell and
anti-inflammatory markers: IL-13, IL-4, IL-10, and IL-19. IL-13 expression showed a significant downregulation after TBI (SS vs. ST; p < 0.0005); ethanol
pretreatment did not alter the TBI-induced effect on IL-13 (ST vs. ET; p > 0.05). IL-4, IL-10, and IL-19 were not affected by any treatment. (E–H) Bar plots show the
relative expression of Th1 cell and pro-inflammatory markers: IL-12, IL-17, IL-23a, and IFN-y. TBI with or without ethanol pretreatment showed no significant
differences. (I–L) Bar plots show the relative expression of dendritic cell (DC)–monocyte-specific mediators: FLT3, FLT3R, CX3CL1, and CX3CR1. TBI resulted in a
significant increase of FLT3 (SS vs. ST; p < 0.037), FLT3L (SS vs. ST; p < 0.045), and CX3CR1 (SS vs. ST; p < 0.01). Ethanol pretreatment resulted in a further
significant enhancement of FLT3 (ST vs. ET; p < 0.026) and CX3CL1 (ST vs. ET; p < 0.006). Data shown as bar plots and individual data points. Group size: SS N =
8, ES N = 10, ST N = 14, ET N = 13. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
February 2022 | Volume 13 | Article 824459
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two-way ANOVA with Tukey’s post-hoc correction. All groups
were tested for normality using the Shapiro–Wilk test.
Correlation matrices of gene expression data were made with
the Prism analysis suite (GraphPad Prism version 8), and
Frontiers in Immunology | www.frontiersin.org 5
Pearson r coefficient and p-values for every correlation were
assessed. For the histological datasets, two-way ANOVA was
performed with Tukey’s post-hoc comparison, since two
independent treatments were done (saline/ethanol and sham/
A B C D
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FIGURE 2 | Splenic chemokine expression shows a fast response to TBI and EI. Chemokine expression data in the spleen of saline sham (SS), ethanol sham
(ES), saline TBI (ST), and ethanol TBI (ET)-treated mice 3 h after trauma. (A–D) Bar plots show the relative expression of modulators of DC biology: CCL2,
CCL3, CCL4, and CCL12. TBI resulted in a significant upregulation of CCL3 (SS vs. ST; p = 0.028), and ethanol pretreatment significantly reduced the TBI-
induced CCL3 expression (ST vs. ET; p = 0.0006). Ethanol by itself resulted in a significant downregulation of CCL2, independent of TBI (SS vs. ES, p = 0.0021;
ST vs. ET, p = 0.014). ET resulted in a significant upregulation of CCL4 compared with SS (SS vs. ET; p = 0.042). CCL12 expression was not affected by any
treatment. (E–H) Bar plots show the relative expression of modulators of Th cells: CCL1, CCL22, CXCL10, and CCL20. TBI resulted in a significant upregulation
of CCL1 (SS vs. ST; p = 0.019) and CCL22 (SS vs. ST; p = 0.039), and ethanol pretreatment significantly reduced the TBI-induced CCL1 expression (ST vs. ET;
p = 0.037) but not for CCL22 (ST vs. ET; p = 0.35). ET resulted in a significant downregulation of CXCL10 compared with SS (SS vs. ET; p = 0.014). CCL10
expression was not affected by any treatment. (I–L) Bar plots show the relative expression of modulators of leukocytes and NK cells: CCL6, CCL24, CXCL3,
and CXCL16. TBI with or without ethanol pretreatment showed no significant differences. Data shown as bar plots and individual data points. Group size: SS N
= 8, ES N = 10, ST N = 14, ET N = 13. *p < 0.05; **p < 0.01; ***p < 0.001.
February 2022 | Volume 13 | Article 824459
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TBI). Statistical significance was set at p <0.05 after multiple-
comparison correction.
RESULTS

TBI Induces a Rapid and Selective
Induction of Cytokine Upregulation in the
Spleen, Enhanced by Concomitant EI
Systemic immune functions are quickly modulated by the
occurrence of neurological conditions through pathways
conceptualized as the “brain–spleen axis” (45–47). We set out
to verify if any rapid modification in the splenic immune
responses would take place upon mild/moderate TBI and, most
importantly, if the comorbidity of EI would significantly interact
with such responses.

As an entry point, we screened the induction of the mRNA of
several cytokines (with the acknowledged limitation that mRNA
levels may not directly represent protein levels) in whole-spleen
extracts obtained 3 h after TBI (or sham surgery), pretreated (30
min) either with saline or with ethanol (5 g/kg).

We considered three sets of cytokines: prototypical Th1-
cellular-immunity-directed, pro-inflammatory mediators (IL-
12, IL-17, IL-23a, and IFN-y); prototypical Th2-B-cell-directed,
anti-inflammatory mediators (IL-4, IL-10, IL-13, and IL-19); and
prototypical DC–monocyte mediators (FLT3, FLT3L, CX3CL1,
and CX3CR1) (48–51). Surprisingly, we identified a significant
effect of both the TBI itself and EI (two-way MANOVA; TBI: F =
7.379, Wilks’ l = 0.253, p = 0.0001; EI: F = 4.599, Wilks’ l =
0.352, p = 0.0001), and the interaction of the two parameters
showed no significance in the two-way MANOVA (F = 1.801,
Wilks’ l = 0.581, p = 0.09). This could be attributed (two-way
ANOVA, Tukey corrected) to the significantly increased
expression of FLT3L upon TBI alone (F(3, 34) = 9.771; SS vs.
ST; 100 ± 27 vs. 163 ± 44; p = 0.045; Figure 1I), FLT3 (F(3, 36) =
4.266; SS vs. ST; 100 ± 46 vs. 239 ± 119; p = 0.037; Figure 1J), and
CX3CR1 (F(3, 41) = 6.825; SS vs. ST; 100 ± 16 vs. 134 ± 18; p =
0.01; Figure 1L), whereas IL-13 was significantly downregulated
(F(3, 37) = 7.499; SS vs. ST; 100 ± 35 vs. 42 ± 16; p = 0.0005;
Figure 1A). Ethanol intoxication before TBI resulted in a
significant further enhancement of the expression of FLT3L
(ST vs. ET; 163 ± 44 vs. 233 ± 56; p = 0.026; Figure 1I) and
CX3CL1 (ST vs. ET; 98 ± 25 vs. 168 ± 53; p = 0.006; Figure 1K),
whereas FLT3 and CX3CR1 were unaltered in ET compared with
ST (FLT3: ST vs. ET, 239 ± 119 vs. 266 ± 124, p = 0.93, Figure 1J;
CX3CR1: ST vs. ET, 134 ± 18 vs. 146 ± 34, p = 0.52, Figure 1L).
Most notably, no effect was observed on any of the other
cytokines considered.

These screening data not only point toward a rapid activation
of splenic immune cells upon TBI but also reveal a pattern
compatible with a selective effect on innate immunity.

Rapid Modulation of the Splenic
Chemokine Pattern by TBI and by EI/TBI
We sought to confirm and further extend the rapid effect of TBI
on splenic immune cells, particularly on DCs. We assessed the
Frontiers in Immunology | www.frontiersin.org 6
expression of a set of chemokines known to be strong modulators
of innate immune responses (52, 53). The focus was set,
particularly on DC biology (and other APCs: CCl2, CCL3,
CCl4, and CCL12) (54–56), Th cells (CCL1, CCL20, CCL22,
and CXCL10) (57–60), or leukocytes and NK cells (CCL6,
CCl24, CXCL3, and CXCL16) (61–64). We could identify a
significant effect of TBI (two-way MANOVA: F = 4.494, Wilks’
l = 0.357, p = 0.0001) and EI (F = 4.956, Wilks’ l = 0.335, p =
0.0001), and the interaction of the two parameters showed no
significant effect in the two-way MANOVA (F = 1.776, Wilks’
l = 0.585, p = 0.099). However, post-hoc analysis (Tukey
corrected) showed that TBI alone significantly increased the
expression of CCL3 (F(3, 37) = 8.910; SS vs. ST; 100 ± 13 vs.
161 ± 42; p = 0.028; Figure 2B), CCL1 (F(3, 39) = 4.156; SS vs. ST;
100 ± 63 vs. 244 ± 116; p = 0.019; Figure 2E), and CCL22
(F(3, 37) = 7.483; SS vs. ST; 100 ± 30 vs. 159 ± 47; p = 0.039;
Figure 2F). On the other hand, concomitant EI significantly
downregulated CCL3 (ST vs. ET; 161 ± 42 vs. 84 ± 42; p = 0.0006;
Figure 2B) and CCL1 (ST vs. ET; 244 ± 116 vs. 134 ± 101; p =
0.037; Figure 2E), but CCL22 was unaffected by EI and remained
upregulated (ST vs. ET; 159 ± 47 vs. 128 ± 50; p = 0.35;
Figure 2F). The ET group presented a distinct chemokine
profile: a significant upregulation of CCL4 was observed only
in the ET group but not in the ST and ES groups alone (F(3, 39) =
6.093; SS vs. ET, 100 ± 35 vs. 155 ± 54, p = 0.042; Figure 2C).
Conversely, the ET group displayed the downregulation of
CXCL10 expression (F(3, 41) = 3.458; SS vs. ET; 100 ± 78 vs.
37 ± 18; p = 0.014; Figure 2G). Finally, ethanol exposure alone
caused a downregulation of CCL2 in both sham and TBI groups
(F(3, 36) = 9.679; SS vs. ES, 100 ± 61 vs. 29 ± 25, p = 0.0021; ST vs.
ET, 66 ± 37 vs. 17 ± 8, p = 0.014; Figure 2A).

As an additional exploration of the complex immunological
interactions taking place in the spleen upon TBI with or without
concomitant EI, we performed a cross-correlation analysis of the
expression levels of the tested cytokines and chemokines
(Supplementary Data File 1). We detected a significant
correlation among the expression levels of IL-17, IL-23, IL-19,
and IFN-g (known to constitute a unified pathway) (65, 66) in ST
and ET samples, underscoring the relevance of this cytokine
module in TBI. Interestingly, FLT3 and FLT3L expression was
correlated in ET but not in ST samples. Furthermore, the
expression levels of several chemokines (such as CCL2, CCL3,
and CCL4 vs. CCL1, CCL20, and CCL24) were significantly
correlated in ET but not in ST samples, further underscoring
the peculiar immunological milieu determined by the
concomitant TBI and EI.

These data not only confirm the rapid engagement of the
brain–spleen axis upon TBI but also show that EI displays a
substantial modulatory effect on innate and adaptive immunity,
particularly on APCs.

TBI Induces the Phosphorylation of FLT3
and Its Downstream Signaling Partner BTK
in DCs, Which Are Both Enhanced by EI
Our expression screening indicated a possible upregulation of
FLT3 signaling in association with a cytokine pattern compatible
February 2022 | Volume 13 | Article 824459
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with the involvement of DCs. Considering the well-known role
of FLT3/FLT3L in regulating DC immunobiology (67), we
sought direct confirmation of enhanced Flt3 engagement in
splenic DCs upon TBI and ET. For this a im, we
immunostained thin sections of the spleen from the four
treatment groups for the pan-DC marker CD11c (21), for the
pan-leukocyte marker CD45 (68), and phosphorylated FLT3
(pFLT3, Y589/591; Figure 3A). In agreement with the
expression of CD45 in DC subpopulations (69), >95%
of CD11c+ cells were also CD45+ (Supplementary
Figures 1D, E). Phospho-FLT3 immunoreactivity was highly
inhomogeneous in the spleen sections, with a comparatively
small number of cells highly positive for pFLT3 localized
around follicles and a minor number of cells with moderate
pFLT3 immunoreactivity scattered in the parenchyma. Initial
immunostainings revealed that CD11c density was not altered by
TBI or concomitant EI (two-way ANOVA, F(3, 12) = 0.9360; p =
0.45; Supplementary Figures 1B, C). Co-immunostaining with
CD11c and CD45 revealed that nearly all the pFLT3high cells
(upon binning) were CD45+ (Supplementary Figures 1F, G).
However, when investigating the density of pFLT3high cells in
CD45+/CD11c− subpopulations (labeling leukocytes other than
DC), we found no significant difference among treatment groups
(two-way ANOVA, F(3, 12) = 0.8446; p = 0.50; Supplementary
Figures 1F, G). Although the fluorescence intensity of pFLT3 in
CD11c+ DCs was not altered across the four treatment groups
(two-way ANOVA, F(3, 588) = 2.541; p = 0.06; Figure 3B), the
number of pFLT3high/CD11c+ cells was significantly affected by
TBI and treatment (two-way ANOVA, F(3, 12) = 45.84; p <
0.0001), and post-hoc comparison (Tukey corrected) revealed a
significant increase in pFLT3high/CD11c+ cells after TBI alone
(SS vs. ST; 20% ± 1% vs. 48% ± 4%; p < 0.0001; Figure 3C) and,
interestingly, a substantial further enhancement in ET (ST vs.
ET; 48 ± 4% vs. 65 ± 3%; p = 0.0061; Figure 3C), confirming that
ST alone and, in particular, ET strongly induce FLT3 signaling in
DCs. In order to verify that the phosphorylation of the FLT3
receptor corresponded to the functional engagement of signal
transduction pathways, we monitored the phosphorylation of
Bruton’s tyrosine kinase (BTK), an established downstream
target of FLT3 (70). Immunostaining of thin spleen sections
for phosphorylated BTK (pBTK, Y223; Figure 3D) revealed a
pattern closely resembling that of pFLT3. The fluorescence
intensity of pBTK in CD11c+ cells showed a significant
difference between treatment groups (two-way ANOVA, F(3,
444) = 123.5; p < 0.0001), and a post-hoc comparison (Tukey
corrected) showed a significant increase after TBI (SS vs. ST; 44 ±
9 vs. 48 ± 9; p = 0.0008; Figure 3E). ET resulted in a further
increase of pBTK fluorescence intensity (ST vs. ET; 48 ± 9 vs. 62
± 11; p < 0.0001; Figure 3E). Likewise, quantification of the
number of pBTKhigh/CD11c+ cells revealed a significant effect in
the treatment groups (two-way ANOVA, F(3, 12) = 68.07; p <
0.0001), due to the massive increase of pBTKhigh/CD11c+ cells in
the ST compared with the SS group (Tukey’s post-hoc; SS vs. ST;
31% ± 6% vs. 58% ± 5%; p < 0.0001; Figure 3F), which was
further increased in the ET group (ST vs. ET; 58% ± 5% vs. 67% ±
2%; p = 0.022; Figure 3F). Taken together, these data
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demonstrate that TBI causes fast (3 h) elevation of the
phosphorylation of the FLT3 receptor (and its downstream
target BTK) in splenic DCs and that this effect is substantially
amplified by concomitant EI. Since CD11c+ cells were nearly
always CD45+, we performed further investigations using the
CD11c marker alone to identify DC.

TBI and Concomitant EI–TBI Strongly
Induce Protein Synthesis in Splenic DCs
Activation of DCs is characterized by a substantial remodeling of
their metabolic rates and is particularly associated with the
upregulation of protein synthesis (71) which, in turn, brings
about the long-term adaptation of the cellular metabolism to the
immune function (72). Since FLT3 is a strong regulator of mTor
(73), a major driver of protein synthesis, we set out to determine
if the upregulation of FLT3 signaling observed upon TBI, and
enhanced by ET, was accompanied by the activation-associated
increase in protein synthesis. First, we considered the levels of
phosphorylated S6 ribosomal protein (pS6), a proxy of mTOR
activation directly involved in increasing ribosomal translation of
mRNA. Immunostaining of thin spleen sections for
phosphorylated-S6 (pS6, S235/236; Figure 4A) revealed a
diffuse immunopositivity in the cytoplasm in nearly every cell;
however, upon TBI, CD11c+ cells stood out for having a massive
increase in pS6 immunofluorescence intensity (two-way
ANOVA, F(3, 465) = 418.3; p < 0.0001). The post-hoc
comparison (Tukey corrected) showed a significant increase
after TBI (SS vs. ST; 44 ± 6 vs. 70 ± 13; p < 0.0001; Figure 4B)
and further enhanced in the ET group (ST vs. ET; 70 ± 13 vs. 98 ±
23; p < 0.0001; Figure 4B). This effect corresponded to the
significant increase in the number of CD11c+ displaying high
levels of pS6 (two-way ANOVA, F(3, 12) = 26.09; p < 0.0001) due
to the substantial elevation of pS6 occurring after TBI (Tukey’s
post-hoc; SS vs. ST; 32% ± 4% vs. 58% ± 8%; p = 0.0002;
Figure 4C) but not further increased in ET compared with ST
alone (ST vs. ET; 58% ± 8% vs. 65% ± 7%; p = 0.34; Figure 4C).
Thus, ET magnifies the increased pS6 levels in all sensitive
CD11c+ cells upon TBI but does not increase the number of
cells responding to TBI itself.

Furthermore, the levels of the cellular stress-related
phospho-eIF2A (71, 74) show a significant difference in
fluorescence intensity in CD11c+ cells within treatment
groups (two-way ANOVA, F(3, 444) = 8.553; p < 0.0001,
Figure 4D) due to a significant increase upon TBI (Tukey’s
post-hoc; SS vs. ST; 48 ± 10 vs. 54 ± 10; p < 0.0001; Figure 4E),
again with no difference between ET and ST (ST vs. ET; 54 ± 10
vs. 52 ± 11; p = 0.78; Figure 4E). Colocalization of peIF2Ahigh

cells with CD11c+ cells reveals a significant difference within
treatment groups (two-way ANOVA, F(3, 12) = 40.50; p <
0.0001). The post-hoc comparison (Tukey corrected) shows a
significant increase after TBI (SS vs. ST; 39% ± 8% vs. 60% ± 4%;
p = 0.0001; Figure 4F) with a further increase in ET compared
with ST alone (ST vs. ET; 60% ± 4% vs. 67% ± 6%; p = 0.01;
Figure 4F). Thus, TBI induces a substantial increase in protein
synthesis, with some alteration of cap-dependent translation in
DCs, and this effect is amplified by EI.
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FIGURE 3 | TBI induced the phosphorylation of FLT3 and the downstream signaling partner BTK is further enhanced by EI. Immunofluorescence staining of pFLT3
and pBTK with DC marker CD11c on thin spleen sections of saline sham (SS), ethanol sham (ES), saline TBI (ST), and ethanol TBI (ET)-treated mice 3 h after trauma.
(A–C) Immunofluorescence staining of pFLT3 colocalized with CD11c resulted in no significant difference in fluorescence intensity between treatment groups (p =
0.06). However, the amount of FLT3high/CD11c+ cells revealed a significant increase after TBI (SS vs. ST; p < 0.0001) and a further significant enhancement in the
ET group (ST vs. ET; p = 0.006). (D–F) Immunofluorescence staining of pBTK colocalized with CD11c resulted in a significant increase in fluorescence intensity upon
TBI (SS vs. ST; p = 0.0008), with a further significant increase in the ET group (ST vs. ET; p = 0.006). Likewise, the number of BTKhigh/CD11c+ cells revealed a
significant increase after TBI (SS vs. ST; p < 0.0001) with a further significant increase after ET (ST vs. ET; p < 0.0001). Data shown as scatter plots or bar plots with
individual data points. Group size: SS N = 5, ES N = 5, ST N = 5, ET N = 5. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Scale bar overview: 50 µm; scale
bar insert: 20 µm.
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FIGURE 4 | TBI induced the metabolic rate and protein synthesis is further enhanced by EI. Immunofluorescence staining of pS6-RP and peIF2A with DC marker
CD11c on thin spleen sections of saline sham (SS), ethanol sham (ES), saline TBI (ST), and ethanol TBI (ET)-treated mice 3 h after trauma. (A–C)
Immunofluorescence staining of pS6-RP colocalized with CD11c resulted in a significant increase in fluorescence intensity upon TBI (SS vs. ST; p < 0.0001), with a
significant enhancement in the ET group (ST vs. ET; p < 0.0001). The amount of pS6-RPhigh/CD11c+ cells revealed a significant increase after TBI (SS vs. ST; p <
0.0001), but no significant difference in the ET group (ST vs. ET; p = 0.34). (D–F) Immunofluorescence staining of peIF2A colocalized with CD11c resulted in a
significant increase in fluorescence intensity upon TBI (SS vs. ST; p < 0.0001), with no difference in the ET group (ST vs. ET; p = 0.78). The number of peIF2Ahigh/
CD11c+ cells revealed a significant increase after TBI (SS vs. ST; p = 0.0001), with a further significant increase in the ET group (ST vs. ET; p = 0.0107). Data shown
as scatter plots or bar plots with individual data points. Group size: SS N = 5, ES N = 5, ST N = 5, ET N = 5. *p < 0.05; ****p < 0.0001; ns, not significant. Scale bar
overview: 50 µm; scale bar insert: 20 µm.
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TBI and EI Cooperate to Enhance the
Maturation of Splenic DCs
DC maturation occurs on stimulation with pathogen-associated
molecular patterns or danger-associated molecular patterns
(PAMPs or DAMPs) (75, 76). Maturation of DCs is
accompanied by an increase of antigen presentation and by
lysosomal activity. Antigen presentation of DCs (and
macrophages) can be visualized by quantifying MHC-II
expression in CD11c+ cells (77). Furthermore, enhanced
antigen presentation in DC has been associated with increased
phagocytic and lysosomal activity, and upregulation of lysosomal
markers, including CD68 and LAMP1, has been associated with
increased antigen presentation and induction of T-cell responses
(78–81). We wondered if the signaling events and metabolic
reprogramming observed in splenic DCs after TBI also
corresponded to the appearance of a “mature” APC phenotype.
Spleen sections were stained for MHC-II and CD11c
(Figure 5A), which reveals a high amount of MHC-II in DCs
upon TBI, resulting in a significant increase of fluorescence
intensity within treatment groups (two-way ANOVA, F(3, 444)

= 118.0; p < 0.0001). Post-hoc analysis (Tukey corrected)
indicated a significant increase after TBI (SS vs. ST; 26 ± 9 vs.
41 ± 11; p < 0.0001; Figure 5B) with a further increase in the ET
group (ST vs. ET; 41 ± 11 vs. 45 ± 13; p < 0.0001; Figure 5B).
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Furthermore, when assessing the density of colocalizing MHC-
IIhigh with CD11c+ cells, we found a significant increase within
treatment groups (two-way ANOVA, F(3, 12) = 60.83; p < 0.0001)
due to a massive increase upon TBI (Tukey corrected; SS vs. ST;
44% ± 6% vs. 74% ± 5%; p < 0.0001; Figure 5C) and a further
increase in the ET group (ST vs. ET; 74% ± 5% vs. 84% ± 4%; p =
0.045; Figure 5C). Thus, both the number of CD11c+ cells
expressing MHC-II and the levels of such expression increase
upon TBI and are further increased by EI.

We also assessed the lysosomal activity of splenic DCs by
investigating CD68 and LAMP1 in our samples (82, 83).
Immunostaining of CD68 and CD11c (Figure 6A) on spleen
sections revealed a significant difference in intensity within
treatment groups (two-way ANOVA, F(3, 444) = 79.68; p <
0.0001) with a strong increase after TBI (Tukey corrected, SS
vs. ST; 36 ± 13 vs. 51 ± 13; p < 0.0001; Figure 6B) and an even
further enhancement in the ET group (ST vs. ET; 51 ± 13 vs. 63 ±
22; p < 0.0001; Figure 6B). When assessing the density of
CD68high cells colocalized with CD11c+ DCs, the treatment
resulted in a significant difference within groups (two-way
ANOVA, F(3, 12) = 41.25; p < 0.0001) due to TBI which
resulted in an increase in the amount of CD68high/CD11c+
cells in the spleen (SS vs. ST; 25% ± 9% vs. 36% ± 6%; p =
0.0007; Figure 6C) and a further significant increase in ET (ST
A B

C

FIGURE 5 | TBI induces antigen presentation on DCs, which is further enhanced by EI. Immunofluorescence staining of MHC-II with DC marker CD11c on thin
spleen sections of saline sham (SS), ethanol sham (ES), saline TBI (ST), and ethanol TBI (ET)-treated mice 3 h after trauma. (A–C) Immunofluorescence staining of
MHC-II colocalized with CD11c resulted in a significant increase in fluorescence intensity upon TBI (SS vs. ST; p < 0.0001), with a significant enhancement in the ET
group (ST vs. ET; p < 0.0001). Likewise, the amount of MHC-IIhigh/CD11c+ cells revealed a significant increase after TBI (SS vs. ST; p < 0.0001), with a significant
enhancement in the ET group (ST vs. ET; p = 0.045). Data shown as scatter plots or bar plots with individual data points. Group size: SS N = 5, ES N = 5, ST N = 5,
ET N = 5. *p < 0.05; ****p < 0.0001. Scale bar overview: 50 µm; scale bar insert: 20 µm.
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FIGURE 6 | Lysosomal activity in DCs is increased by TBI and further enhanced by EI. Immunofluorescence staining of CD68 and LAMP1 with DC marker CD11c
on thin spleen sections of saline sham (SS), ethanol sham (ES), saline TBI (ST), and ethanol TBI (ET)-treated mice 3 h after trauma. (A–C) Immunofluorescence
staining of CD68 colocalized with CD11c resulted in a significant increase in fluorescence intensity upon TBI (SS vs. ST; p < 0.0001), with a significant enhancement
in the ET group (ST vs. ET; p < 0.0001). The amount of CD68high/CD11c+ cells revealed a significant increase after TBI (SS vs. ST; p = 0.0007), with a significant
enhancement in the ET group (ST vs. ET; p = 0.002). (D–F) Immunofluorescence staining of LAMP1 colocalized with CD11c resulted in a significant increase in
fluorescence intensity upon TBI (SS vs. ST; p < 0.0001), with a significant increase in the ET group (ST vs. ET; p < 0.0001). The number of LAMP1high/CD11c+ cells
revealed a significant increase after TBI (SS vs. ST; p = 0.0007), with a further significant increase in the ET group (ST vs. ET; p = 0.01). Data shown as scatter plots
or bar plots with individual data points. Group size: SS N = 5, ES N = 5, ST N = 5, ET N = 5. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Scale bar overview:
50 µm; scale bar insert: 20 µm.
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vs. ET; 36% ± 6% vs. 46% ± 9%; p = 0.002; Figure 6C). Similarly,
immunostaining of LAMP1 and CD11c (Figure 6D) on spleen
sections revealed a significant effect on intensity within treatment
groups (two-way ANOVA, F(3, 444) = 214.9; p < 0.0001) due to a
significant increase upon TBI (Tukey corrected; SS vs. ST; 24 ± 6
vs. 38 ± 12; p < 0.0001; Figure 6E), and a further significant
increase was detected in the ET group (ST vs. ET; 38 ± 12.3 vs.
49.2 ± 7.6; p < 0.0001; Figure 6E). The density of LAMP1high cells
colocalized with CD11c+ cells exhibited a significant effect
within the treatment groups (two-way ANOVA, F(3, 12) =
43.02; p < 0.0001). The post-hoc comparison within the
treatment groups (Tukey corrected) showed a strong
significant upregulation after TBI (SS vs. ST; 30% ± 4% vs.
54% ± 6%; p = 0.0007; Figure 6F) and a further significant
enhancement in ET (ST vs. ET; 54% ± 6% vs. 67% ± 8%; p = 0.01;
Figure 6F). The convergence of MHC-II, LAMP1, and CD68
upregulation indicates that upon TBI, APC functions are
upregulated in splenic DCs and they are further enhanced by
concomitant EI.

TBI Strongly Induces the Immunogenic
Function of Splenic DCs
The increased antigen presentation and lysosomal activity on
CD11c+ DC, shown by the increase in MHC-II, CD68, and
LAMP1, strongly suggest that TBI and EI induce a rapid
maturation of splenic DC. However, the functional aspects of
these mature DCs after TBI remain unclear. Initial evidence
suggested that immature DCs are tolerogenic to T cells and
mature DCs increase T-cell response and immunity (84, 85);
however, other evidence points toward mature DCs with
tolerogenic function (86, 87). To further explore the
immunostimulatory phenotype of splenic DC in trauma, we
assessed the expression levels of TNF-a in CD11c+ DCs. TNF-a
is upregulated in DC by interaction with antigens and by
stimulation of TLRs, and it is a major inducer of T-cell
responses (88–90). We also considered the expression of the
beta-2 adrenergic receptor, a marker associated with tolerogenic
DC (91–93), under the hypothesis that expression of beta-2
adrenergic receptor and TNF-a should be inversely correlated.
Fluorescence single mRNA in-situ hybridization was performed
on spleen sections for ADRB2 and TNF-a (Figure 7A). Density
analysis of single mRNA TNF-a in CD11c+ DCs revealed a
significant difference within treatment groups (two-way
ANOVA, F(3, 267) = 79.5; p < 0.0001), due to a strong increase
after TBI (Tukey corrected, SS vs. ST; 13 ± 6 vs. 22 ± 8; p < 0.0001;
Figure 7B), with a further increase in the ET group (ST vs. ET; 22
± 8 vs. 29 ± 10; p < 0.0001; Figure 7B). Furthermore, when
assessing ADRB2 in CD11c+ DCs, density analysis revealed a
significant difference within treatment groups (two-way ANOVA,
F(3, 267) = 18.99; p < 0.0001), due to a significant decrease after TBI
(Tukey corrected, SS vs. ST; 14 ± 5 vs. 10 ± 4; p < 0.0001;
Figure 7C). Interestingly, the ET group showed a strong increase
in ADRB2 compared with the ST group (ST vs. ET; 10 ± 4 vs. 16 ±
7; p < 0.0001; Figure 7C). These data suggest that TBI induces an
increase in immunogenic function of splenic DCs, shown by the
increased TNF-a expression and decreased ADRB2 expression.
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Upon EI, the immunogenic function is further enhanced, shown
by the increased TNF-a expression; however, the increase of
ADRB2 suggests a simultaneous high sensitivity to adrenergic
dampening of inflammation after EI.
DISCUSSION

Our data show that shortly (3 h) after TBI, splenic DCs undergo
a maturation process that involves FLT3/FLT3L signaling,
enhanced protein synthesis, increased phagocytotic and
lysosome activity as well as upregulated expression of MHC-II,
and finally, increased inflammatory properties, shown by TNF-a
expression. Most notably, in the case of concomitant high-dose
EI, the maturation process is enhanced, with increased
expression of FLT3L and larger fractions of CD11c+ cells
displaying elevated protein synthesis and signs of immune
function activation, however with a simultaneous increased
ADRB2 expression. Thus, not only does the TBI set in motion
events that influence an important compartment of the systemic
immune response, and even though concomitant EI is capable of
substantially amplifying these cascades, it also simultaneously
shows a rapid autonomic innervation.

Maturation of DCs is conceptualized as the phenotypic
change from a state characterized by high endocytic capacity,
low expression of co-stimulatory molecules and MHC-II, and
weak induction of T-cell responses (immature dendritic cells) to
a state of downregulated phagocytosis, high expression of MHC-
I and MHC-II, and effective stimulation of naive T cells (77).
Furthermore, maturation of DCs also involves a substantial
remodeling of their metabolism, with increased mTOR-
dependent protein synthesis (71, 73) and increased use of
glycolytic pathways (94). DC maturation is also associated with
a significant modification in the protein degradation flux, with
upregulation of lysosomal markers such as LAMP3 (78) but
reduced autophagy (95). Furthermore, the maturation process is
intertwined with the upregulation of cytokine secretion such as
TNF-a (88) and IL-12 (96). Therefore, with the demonstration of
increased FLT3 phosphorylation, upregulation of protein
synthesis markers, and increased expression of MHC-II and
lysosomal proteins LAMP1 and CD68, we believe to provide
substantial evidence to state that TBI induces a quick
upregulation of the splenic DC maturation process, from
steady-state cells to effective APCs. Several other markers are
commonly applied to the study of DC maturation, such as CD40,
CD80, and CD86 (97), which are often upregulated along with
MHC-II [e.g., (98–100)]. These markers were not included in the
present study and further characterization of the phenotype of
splenic DC cells activated upon TBI may reveal their dynamics.

What drives such an induction of maturation? The
maturation process of DCs is set in motion, among others, by
PAMPs or DAMPs (75, 76), i.e., proteins released either by
bacterial or viral pathogens, or by damaged tissue of the body.
Indeed, the levels of brain tissue proteins and damaged markers
are already elevated at 3 h in the serum of mice subject to TBI
(including GFAP, NSE, S100B, and NFL) (37, 101). In particular,
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HMGB1, an alarmin located in the nucleus of neurons and glial
cells and released upon brain tissue disruption (102, 103), is
highly and rapidly elevated in serum after TBI (104, 105). Not
only has HMGB1 been found to contribute to local
neuroinflammation upon neurotrauma (106, 107), but also it is
induced in non-cerebral tissues post-TBI and contributes to the
subsequent systemic inflammation following TBI (10). Notably,
HMGB1 is also a major inducer of DC maturation, an effect that
appears to be relevant in the context of lung injury (through
mTOR signaling) (108) and in liver injury (109). Nevertheless,
recent evidence has demonstrated the strong involvement of the
autonomic system in controlling splenic responses through
adrenergic and cholinergic inputs (20, 22, 45, 110, 111).
Moreover, the adrenergic activation of DCs is rather associated
with limited expression of MHC-II and CD86 but strongly
increases the secretion of IL-10 (112). Likewise, adrenergic
stimulation of DCs substantially decreases the release of IL-12
and, in turn, suppresses the secretion of IFN-g by Th1
Frontiers in Immunology | www.frontiersin.org 13
lymphocytes (92). Thus, a role for the autonomic innervation
in contributing to TBI-induced splenic DC maturation may take
place along with the effect of systemic blood-borne cytokines.

What are the possible consequences of TBI-induced
maturation of splenic DCs on local and systemic immune
activation following brain injury? The net effect of the
activation of the brain–spleen axis in TBI (either by circulating
cytokines or by the dys-autonomia associated with TBI) seems to
be detrimental, since immediate splenectomy results in an
improved survival, reduced brain, and systemic cytokine
response, ameliorated brain edema, and preservation of
cognitive abilities in experimental rat TBI (4, 113). These
effects were correlated with the decrease in NF-kB activation at
the injury site (114). Similar beneficial effects of splenectomy
have been reported in the context of spinal cord injury (SCI)
(115) and stroke (20). However, the actual contribution of DC
maturation may not necessarily be detrimental and may strongly
depend on their activation status (immature, semi-mature, or
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FIGURE 7 | TBI enhances TNF-a expression in splenic DCs and EI shows high sensitivity to adrenergic dampening. Fluorescence in-situ mRNA hybridization of
TNF-a and beta-2 adrenergic receptor (ADRB2) with co-staining of DC marker CD11c on thin spleen sections of saline sham (SS), ethanol sham (ES), saline TBI
(ST), and ethanol TBI (ET)-treated mice 3 h after trauma. (A, B) Fluorescence in-situ hybridization of TNF-a resulted in a significant increase in mRNA density upon
TBI (SS vs. ST; p < 0.0001), with a significant enhancement in the ET group (ST vs. ET; p < 0.0001). (A–C) Fluorescence in-situ hybridization of ADRB2 resulted in a
significant decrease in mRNA density upon TBI (SS vs. ST; p < 0.0001); however, ET shows a significant increase (ST vs. ET; p < 0.0001). Data shown as
scatterplots. Group size: SS N = 5, ES N = 5, ST N = 5, ET N = 5. ****p < 0.0001. Scale bar overview: 50 µm; scale bar insert: 10 µm.
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mature) (77). It was shown that DCs pulsed with myelin-basic
protein could drive a protective T-cell response in SCI (116); on
the other hand, autoimmune responses following TBI are
associated with detrimental outcomes (117). Interestingly, DC
maturation is impaired in SCI patients (118). Thus, our findings
suggest that TBI causes a rapid recruitment of DCs in the spleen.
Given the central role of these cells as APCs, they may be
substantial contributors to the systemic imbalance of immune
functions following TBI.

What is the contribution of EI-driven enhanced DC
maturation upon TBI? EI has been reported to be dose-
dependently associated with a reduced inflammatory response
(with decreased cellular inflammation and altered cytokine
pattern) at the injury site (25–27) in murine TBI models.
Importantly, EI also rapidly (already at 3 h) dampens the
systemic inflammatory response triggered by TBI. In
particular, in murine TBI, the levels of HMGB1 and IL-6 are
decreased in the liver of mice subject to ET compared with TBI
alone (but IL-1b is upregulated) (10). In contrast, in the lungs, EI
decreases the levels of HMGB1, IL-6, IL-1b, and TNF-a, while it
moderately increases IL-10 (10). In line with this evidence, EI is
associated with reduced systemic IL-6 levels and less pronounced
leukocytosis in human TBI patients (119) and in patients after
major traumas (including TBI) (120), as well as increased levels
of IL-10 (121). Our findings suggest that EI results in an
increased number of splenic DCs undergoing a maturation
process, driven by increased FLT3 phosphorylation and
demonstrated by the larger fraction of CD11c+ cells displaying
upregulated protein synthesis (pS6) and lysosomal markers
(LAMP1, CD68) as well as the induction of high levels of
TNF-a mRNA. It must be stressed that our model takes into
consideration an acute consumption of a high dose of ethanol
(“binge”), and therefore, our findings are not directly comparable
with the reports of reduced DC ability to stimulate T cells upon
chronic ethanol exposure (122, 123). Nevertheless, the
combination of in-vitro and in-vivo data about the effects of EI
on trauma-associated inflammation suggests an overall
immunosuppressive effect of EI, in agreement with the impact
of chronic ethanol on DC function. If this extrapolation is sound,
then the enhanced maturation of splenic DCs seen in EI/TBI
samples may result in a DC phenotype with inflammation-
resolution properties. This hypothesis is supported by the
observed upregulation of the beta-2 adrenergic receptor in DC.
Nevertheless, the combination of increased TNF-a and ADRB2
mRNA (not previously described) may correspond to a peculiar
state of activation characterized by high immune-stimulatory
properties and, at the same time, quick dampening from
autonomic innervation. Thus, the impact of EI-driven
expansion of DC maturation may ultimately contribute to the
reduced systemic immune reactivity seen in TBI upon
ethanol intoxication.

The present work is not without limitations. First, the
ultimate evaluation of the DC function would require an active
immunization protocol in vivo or an ex-vivo naive T-cell
stimulation assay, which was beyond the technical scope of the
present project. Second, the use of CD11c+ marker does not
Frontiers in Immunology | www.frontiersin.org 14
distinguish the subpopulation of myeloid DC or the
plasmacytoid DC; we have nevertheless maintained a
consistent selection of the region of interest in correspondence
of the marginal zone (124).

In conclusion, our findings show that induction of maturation
markers in splenic DC takes place rapidly after TBI and is highly
correlated with the phosphorylation of FLT3; we further
demonstrate that concomitant EI amplifies the maturation
process of splenic DC post-TBI. Thus, our findings identify
DC as a new player in the immunomodulation occurring upon
EI in TBI.
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Supplementary Figure 1 | CD11c+ DC density is unaffected by TBI and EI. FLT3
phosphorylation remains unaltered in CD45+/CD11c- cells. Immunofluorescence
staining of thin spleen sections of saline-sham (SS), ethanol-sham (ES), saline-TBI
(ST) and ethanol-TBI (ET). (A) Immunofluorescence staining of CD11c in control
groups reveals inhomogeneous distribution in thin spleen sections. With a high
localisation around the follicles. (B, C) Density of CD11c+ cells remain unaltered 3h
between treatment groups (p = 0.45). (D, E) Immunofluorescence staining of
CD11c and CD45 shows that 95.3% of CD11c+ cells are CD45+. (F, G)
immunofluorescence staining of CD45, CD11c and pFLT3 reveals unaltered
phosphorylation levels of FLT3 in CD45+/CD11c- cells between treatment groups
(p = 0.50). Data shown as barplots with individual data points. Group size: SS N = 5,
ES N = 5, ST N = 5, ET N = 5. Scale bar overview A: 200 µm; scale bar insert A: 50
µm; scale bar overview B and D: 50 µm; scale bar insert D: 20 µm; scale bar
overview B: 50 mm; scale bar insert F: 20 mm.
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Supplementary Table 1 | Primer sequences used for gene expression analysis
(RT-qPCR).

Supplementary Table 2 | Primary and secondary antibodies used for
immunostaining (IF).

Supplementary Data File 1 | Correlation matrices corresponding to Figures 1,
2. Correlation matrices to investigate possible correlation between cytokine and
chemokine expression patterns within the treatment groups saline-sham (SS),
ethanol-sham (ES), saline-TBI (ST) and ethanol-TBI (ET). A significant correlation in
both ST and ET was detected between IL-19 and IL-17 (ST: p < 0.0001; ET: p <
0.0001), IL-19 and IL-23a (ST: p = 0.0011; ET: p < 0.0001), IL-19 and IFN-y (ST: p <
0.0001; ET: p < 0.0001), IL-17 and IL-23a (ST: p = 0.0002; ET: p < 0.0001), IL-17
and IFN-y (ST: p < 0.0001; ET: p < 0.0004) and between IL-23a and IFN-y (ST: p =
0.0011; ET: p = 0.0011). FLT3L was significantly correlated with FLT3 in the ET
group, but not in the ST group (p = 0.0028). A significant correlation only in ET, but
not ST, was detected between CCL2 and CCL1 (p = 0.012), CCL2 and CCL20 (p =
0.018), CCL3 and CCL1 (p = 0.0005), CCL3 and CCL22 (p = 0.049), CCL3 and
CCL20 (p = 0.015), CCL4 and CXCL10 (p = 0.007), CCL4 and CCL20 (p = 0.044),
CCL4 and CCL24 (p = 0.005). Data shown as correlation matrices with Pearson r
coefficient and p-values for every correlation individually.
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