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Abstract

The allocation of limited resources such as time or energy is a core problem that organisms face when planning complex
actions. Most previous research concerning planning of movement has focused on the planning of single, isolated
movements. Here we investigated the allocation of time in a pointing task where human subjects attempted to touch two
targets in a specified order to earn monetary rewards. Subjects were required to complete both movements within a limited
time but could freely allocate the available time between the movements. The time constraint presents an allocation
problem to the subjects: the more time spent on one movement, the less time is available for the other. In different
conditions we assigned different rewards to the two tokens. How the subject allocated time between movements affected
their expected gain on each trial. We also varied the angle between the first and second movements and the length of the
second movement. Based on our results, we developed and tested a model of speed-accuracy tradeoff for sequential
movements. Using this model we could predict the time allocation that would maximize the expected gain of each subject
in each experimental condition. We compared human performance with predicted optimal performance. We found that all
subjects allocated time sub-optimally, spending more time than they should on the first movement even when the reward
of the second target was five times larger than the first. We conclude that the movement planning system fails to maximize
expected reward in planning sequences of as few as two movements and discuss possible interpretations drawn from
economic theory.
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Introduction

A central concern shared by microeconomics, behavioral ecology,

psychology, and neurobiology is how well organisms allocate limited

resources. For economists, knowing how buyers allocate their

financial budgets is essential for understanding consumer behavior

[1]. In animal foraging, behavioral ecologists seek to formalize how

animals allocate time and energy constraints to maximize survival [2].

There are several previous studies showing that human subjects

can adjust the duration of single movements so as to maximize

reward or nearly so [3–5]. However, almost all previous studies of

movement planning have focused on planning just one reach or

grasp [6–14]. Many everyday tasks consist of discrete movements

carried out in a sequence. Very few studies, however, have

investigated sequential movement planning [15,16].

In this study, we examined human ability to allocate time in

more complex tasks that model the kinds of tradeoffs we make

every day. In these tasks, the subject can invest more or less time in

any of several activities in succession but the total amount of time

available is fixed. Solving this sort of problem falls within the

domain of optimal search theory [17] and statistical decision

theory [18,19]. We have translated this sort of problem into an

experimental design to investigate human ability to allocate time

among successive movements.

In our experiment, subjects had a very limited time window

(400 ms) to complete two successive reaching movements to two

targets in a specified order. A schematic of the task can be seen in

Figure 1. At the start of each trial subjects first placed their finger

on a red dot and, as soon as they were ready, moved rapidly to

touch a blue target and a green target in that order. In this

experiment, we manipulated the change of direction between

movements, movement distance, and the rewards assigned to each

of the targets. The blue target was always at the center. The green

target could be at any of eight locations as shown but only one

green target was present on each trial. Subjects could take as much

time as desired to plan their movements before initiating

movement, but, once they began moving, they had only 400 ms

to complete both movements.

We wanted to force subjects to at least attempt to hit both targets

on each trial. Accordingly, we marked a larger circular region around

each target. Subjects knew that, if they did not touch within both

large circular regions on a trial, they would receive no reward for any

targets they hit on that trial. See Materials and Methods for details.

If subjects completed their movements within the time limit and

hit within both large circles around the targets, they received a

monetary reward for each target they actually touched. We varied

the monetary rewards associated with the green targets, the

location of the green target, and the distance between the blue and
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the green targets (See Materials and Methods for details). Subjects

always knew the potential rewards associated with each of the two

targets and the locations of both targets before the start of each

trial. To avoid any effect of concurrent feedback on the

movements, visual feedback specifying which targets were hit

was provided only after the termination of the second movement

(see [15] for a discussion on the effect of concurrent feedback on

sequential movements).

A Model of Optimal Sequential Movement Planning
We developed a model of optimal time allocation based on

statistical decision theory [18,19] and previous work on movement

planning [8,9]. The full model is described in Materials and Methods.

Here we lay out critical concepts and intuitions necessary for the

readers to understand the model. We use the terms ‘‘gain’’ and

‘‘reward’’ interchangeably, and we used the terms ‘‘optimal’’ and

‘‘ideal’’ to describe behavior maximizing expected gain.

Our goal was to predict the allocation of time among movements

that maximizes the subject’s expected gain. We use this criterion

(maximization of expected gain) as a benchmark and we compare

human performance to this benchmark. This sort of comparison has

a celebrated history in the study of perception and action (see e.g.

Geisler [20], Ernst & Banks [21]). This class of models is central to

optimal foraging theory (behavioral ecology) [2] and serves as

benchmarks in economic decision making (maximum expected

gain, maximum expected utility) [1]. In considering any human

performance it is natural to first ask how close performance comes

to maximizing expected gain or expected utility.

The intuition behind the model is the following: the more time

the subjects spend on moving to a given target, the more likely

they are to hit it. This is a consequence of speed-accuracy tradeoff

(SAT). Due to the fixed total time constraint, the tradeoff in time

between the two movements introduces a tradeoff in accuracy

between the two movements. In Figure 2A, we plot examples of

SAT curves describing the probability of hitting the first target pA

(blue) and the probability of hitting the second target pB (green) as

functions of the proportion of time allocated to the first target

tA
�

T . Tdenotes the mean of total movement time: movement

time to the first target A plus movement time to the second target

B. Since each subject typically had a different value of T , we

express time in terms of relative time tA
�

T .

The probability pA is plotted as a blue curve that increases when

the time spent on the first target increases. The probability of

hitting target B, pB, is plotted as a green curve that decreases when

the time spent on the first target increases since time allocated to

the first movement comes at the expense of time allocated to the

second. This plot captures the tradeoff in accuracy between the

two movements as a function of how total time is divided.

Figure 1. Sequential movement task. In a visually guided
sequential pointing task, subjects started every trial by placing their
index finger on the starting position (red dot). The subject’s task was to
hit the blue target (referred as target A in the main text) and the green
target (target B) in sequence within 400 ms. The green target was
located in one of the eight possible locations as shown. The eight
possible locations of the green target were determined by the four
possible angle changes (h) between the first and second movement
and the two possible distances between the first and second targets.
We emphasize that only one green target was present on each trial.
doi:10.1371/journal.pone.0008228.g001

Figure 2. Maximizing expected gain. A. The probability of hitting the first target A (blue) and the second target B (green) for subject YCC were
plotted as functions of the proportion of time allocated to the first movement (tA

�
T ). As more time was spent on the first movement, the probability

of hitting the first target increased, while the probability of hitting the second target decreased. B. The sum of the expected gain of the two targets
was plotted as functions of tA

�
T . Here, the reward for hitting the first and the second target were bot $10. The maximum on the orange curve

($15.90) corresponded to tA
�

T~0:49. C. The same format as Figure 2B, but now hitting the first target earns a reward of $10 while hitting the
second earns a reward of $50. Compared with the condition where the target rewards were equal, the maximum on the orange curve ($51.29) has
shifted to the left with tA

�
T~0:34, indicating that subject YCC should allocate more time on the more rewarding target in order to maximize

expected gain. The vertical arrows represent the loss to the subject that results from allocating time non-optimally expressed as a percentage of
maximum expected gain.
doi:10.1371/journal.pone.0008228.g002

Time Allocation in Movements
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Although we present Figure 2 as a hypothetical example, it is

based on actual data from one subject.

Now, suppose the subject receives a reward of $10 for each target

hit. We compute expected gain for target A (EGA~pA|$10) and

expected gain for target B (EGB~pB|$10) as functions of tA
�

T .

At any tA
�

T , the total expected gain from both targets in a trial is

just the sum EG~EGAzEGB. It is plotted in orange in Figure 2B

as a function of tA
�

T .

When the target rewards are equal (Figure 2B), EG is at its

maximum ($15.90) when tA
�

T is about 0.49. What about when the

target rewards are not equal? In Figure 2C we compute expected

gain as in Figure 2B, but now the first target is worth $10 and the

second is worth $50. The second target is five times as rewarding as

the first one and the optimal tA
�

T shifts to about 0.34. By spending

less time on the first movement, the subject can spend more time on

the second, more rewarding movement and the maximum expected

gain from both targets together is now $51.29.

In Figure 2C we also illustrate the loss in expected gain resulting

from allocating time non-optimally by vertical arrows together with the

reduction in expected gain expressed as a percentage of the maximum.

Estimating Speed-Accuracy Tradeoffs for Multiple
Movements

Figures 2BC capture the qualitative predictions of the model. In

order to develop quantitative predictions concerning optimal time

allocation we need to be able to predict the SAT curves in

Figure 2A for each condition and for each subject. Accordingly,

we developed and tested a model of SAT for two successive

movements that is a natural extension of existing SAT models for

single movements [22–27]. This model allowed us to predict the

allocations of time that maximized expected gain for each

condition and to compare human performance to ideal.

Results Summary
The results of the experiment were as follows.

First, we found clear evidence that the outcomes of the two

movements in succession were statistically independent, each

depending only on the time invested in the corresponding

movement. This allowed us to model the two movements as

independent, linked only by the constraint that more time

allocated to the first movement left less time for the second.

Second, in estimating the SAT, we found that movement error

along the direction of movement increased more rapidly as a

function of speed than that orthogonal to the movement direction.

Third, in contrast to our expectations, we found clear, qualitative

failures in subjects’ allocation of the fixed time budget across the two

successive movements. We emphasize that the subject was allowed

as much time as desired to plan the two movements on each trial;

timing did not start until the subject began to move. Nevertheless,

subjects did not allocate appreciably more time to the movement

towards the more valuable of the two targets even when the ratio of

target values was as extreme as five to one.

We conclude that, while single movements may be planned

optimally (or nearly so), as past research indicates, the movement

planning system fails to maximize expected gain in planning

sequences of as few as two movements, a limitation on movement

planning that could be construed as a form of bounded rationality

[28,29]. We discuss possible connections with temporal discount-

ing in economics [30,31] and the possible effects of training.

Results

We first tested hypotheses needed to develop a model of the

subject’s movement error and speed-accuracy tradeoff. The

outcomes of these tests allowed us to formulate an accurate model

of SAT for each of two successive movements. Given this model, we

could then compare human performance to ideal performance

maximizing expected gain.

Movement Independence
In our task, subjects made two successive movements, allocating

time to each. We varied the change in movement direction

between the successive movements (4 conditions), movement

distance (2 conditions), and reward profiles (2 conditions). Hence,

there were a total of 16 conditions. See Materials and Methods for

details. Given a fixed total time constraint, the first question we

were trying to address was, would the trial-to-trial spatial

variability in the first movement affect the outcome in the second?

In other words, would errors propagate from the first movement to

the second? The second question was whether the probabilities of

hitting the two targets were statistically independent, affected only

by the time allocated to each movement. We therefore tested

independence in two ways.

First, we examined the correlation between the first and second

movement endpoints. For each subject, we computed the

correlation separately for the x and y directions and for each

condition and found no correlation in most cases (p-value

Bonferroni-corrected at 0.0015 for 32 total conditions for each

subject). Across subjects, only 2 out of 32 conditions on average

had correlations significantly different from 0. This outcome

indicates that the first and second movements conditional on the

time allocated to each were effectively independent for almost all

conditions.

We then performed a second analysis to test statistical

independence of the outcome of the two movements. For each

distance and reward condition (See Materials and Methods for details

on the design), we computed the proportion of times the subject hit

target B (the second target attempted) after hitting target A (the first

target), denoted p BjA½ �, and the proportion of times the subject hit

target B after missing target A, denoted p Bj�AA
� �

. The graph in

Figure 3 plotted estimates of p Bj�AA
� �

against estimates of p BjA½ �
across subjects. Each point represented a combination of distance

and reward condition for a subject. If the two movements were

independent, hitting or missing the first target should not affect the

chance of hitting the second target. Hence, we would expect each

point to fall on the diagonal line. Qualitatively, this was what we

observed across subjects, as most points lie close to the diagonal line.

We also attempted to examine independence quantitatively. It is

obvious that the distance between each data point and the diagonal

line indicates the extent of deviation from independence. The

greater the distance is, the more the two movements deviate from

independence. We used a bootstrap method to obtain confidence

intervals [32]. For each point on the graph, we resampled the

corresponding data 10,000 times to compute the confidence interval

for the distance. None of the points significantly deviated from the

diagonal line (p.0.0125, Bonferroni corrected for the number of

combinations of conditions for each subject).

We concluded that, the two movements on each trial, at least in

terms of hitting or missing the targets, could be modeled as two

statistically independent movements, linked only by the constraint

on the time allocated to each movement. This independence

allowed us to develop a simple model of optimal allocation

described in Materials and Methods.

Movement End Points
We next verified that the distribution of movement end points

was close to bivariate Gaussian as found in previous work [33].

Second, we tested whether subjects aimed at the center of the

Time Allocation in Movements
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targets. We rejected the hypothesis that subjects aimed at the center

of the target (aim point assumption) for all 5 subjects in at least one

condition. However, the estimated deviations were small compared

to the size of the target and the size of the finger pad. The radius of

the target was 5.88 mm. The mean deviation in the horizontal

direction across subjects and conditions was 0.0518 mm, and

0.7182 mm in the vertical direction. These small failures may

simply reflect a difference between what the touch screen records as

the end point of a movement and what the subject considers to be

the end point. In ‘‘Estimating speed-accuracy tradeoff (SAT)’’

below, we compared subjects’ probability of hitting the targets to

that predicted by the model with the aim-point assumption. We

found that these small deviations had negligible effect on subjects’

estimated probabilities of hitting targets. See also the discussion

related to Estimating speed-accuracy tradeoff.

Estimating Speed-Accuracy Tradeoff (SAT)
As described in the Introduction, we modeled SAT for

sequential movements based on past work [22–27] for single

movements. We assumed that the standard deviation (accuracy) of

movement error increased as a linear function of average speed.

We denoted accuracy as s. The key to estimating SAT here is to

model the SAT for movements separately in 2 orthogonal

directions. We separately computed the standard deviation of

movement end points parallel to the direction of movements,

denoted sE, and the standard deviation of movement end points

orthogonal to the direction of movements, denoted s\. See

Materials and Methods for details of the coordinate system we defined

for movement end points.

For each direction condition, we first estimated s\ and sE
separately as a function of average speed (Eq. 4 in the model

section under Materials and Methods). Direction here refers to the

change in movement direction between movement to the first

target and movement from the first target to the second target.

There were four possible directions (00,900,{900,1800) as shown in

Figure 1. In Figure 4, we plotted the estimated SAT function

separately for each direction from a single subject (AI). Different

directions were coded with different colors. In Figures 4A, sE was

plotted against averaged speed. In Figure 4B, s\ was plotted

against averaged speed. In general, we observed that (1) sE
increased more sharply as a function of speed than s\ and (2)

direction had negligible effect on the SAT profile. Across subjects

and conditions, the mean R2~0:72 for the fit of sE, while the

mean R2~0:42 for the fit of s\. We conjecture that the lower

goodness of fit revealed by R2 for s\ was partly due to the fact that

the regression slope of s\ as a function of time was much

shallower than that of sE, and in 12 of the 20 conditions across

subjects (4 direction conditions for each subject, 5 subjects) it did

not differ from 0 (p.0.05). The lower goodness of fit revealed by

R2 is likely due to the reduced dynamic range of s\ as a function

of speed with random variation of s\ across conditions resulting in

smaller R2.

The covariance matrix for errors parallel to the direction of

movement and errors orthogonal to the direction of movement is

Figure 3. Statistical independence of movements. The probabil-
ity of hitting the second target given that the first target was missed
p̂p Bj�AA
� �

was plotted against the probability of hitting the second target
when the first target was hit p̂p BjA½ �. Each point represented a
combination of reward and distance conditions from a subject. As
most points are distributed symmetrically about the diagonal line, the
outcomes of the two movements can be treated as statistically
independent. See text.
doi:10.1371/journal.pone.0008228.g003

Figure 4. Speed-accuracy tradeoff (SAT). A. Spatial variability parallel to the direction of movement sE
� �

was plotted as a function of the
average speed of the movement (mm/sec) from subject AI. Different colors coded for different direction conditions. Each data point represents a
single condition. The lines represented the best fitted linear SAT functions (Eq. 4). B. Spatial variability perpendicular to the direction of movement
s\ð Þ was plotted against average speed from the same subject.

doi:10.1371/journal.pone.0008228.g004
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denoted S~
s2

E rsEs\

rsEs\ s2
\

� �
. We tested whether the correla-

tion rð Þ between parallel and orthogonal errors was 0. We found

that across subjects, the correlation between x and y endpoints was

generally not different from 0 (p.0.0016, Bonferroni corrected for

the number of conditions for each subject). Three out of five subjects

had no significant correlations across all conditions. For those who

showed significant correlation in more than one conditions,r was

significantly different from 0 in only one out of 32 conditions for

subject AI, and in 2 out of 32 conditions for subject SAS.

If r were zero in most cases, then it should not vary as a

function of speed as well. An additional analysis that regressed r
against speed was performed. The regression analysis revealed that

both the slope and the intercept were not significantly different

from 0 in all 5 subjects. We thus concluded that there was no

correlation between x and y endpoints and hence the covariance

matrix could be expressed simply as S~
s2

E 0

0 s2
\

� �
.

The results just described allowed us to accurately predict the

SAT for each movement for each subject in each condition given

the time allocated to the movement. In Figure 5 we illustrate

simulated end points for movements of two different durations in

two different directions (marked by black arrows) based on the SAT

model of subject AI in Figure 4. The ‘‘spread’’ of end points was

greatest along the direction of movement as sEws\ and r~0.

We used the estimated SAT to predict the probability of hitting

either target as a function of the time allocated to the corresponding

movement. The computation was described in detail in Materials and

Methods (see the discussion surrounding Eq. 3). In Figure 5, we illustrate

how we performed this computation. Suppose that, on a particular

trial, the subject moves to the first target (target A) at a mean speed of

710 mm/sec. This effectively determines the spatial variability of the

first movement at sE~4:3 mm and s\~2:9 mm (the blue dashed

line in Figure 5A) shown in Figure 5A. Due to the fixed time constraint,

choosing this speed effectively determines the maximum time available

for the second movement and therefore the minimum possible average

speed toward target B, 1008 mm/sec. With this speed, the spatial

variability of the second movement would be sE~6:2 mm and

s\~3:3 mm (the green dashed line in Figure 5A). We simulated this

possible tradeoff 10,000 times assuming that (1) subjects aimed at the

center of the targets and that (2) movement end points were distributed

as bivariate Gaussian. In Figure 5B, we plotted the simulated

movement end points. For each target, we estimated the probability

of hitting the target by counting the number of trials where the end

points fell within the target. The estimated probability of hitting the first

and the second target was pA~0:72 and pB~0:57 respectively.

We next verified that these predicted values matched subjects’

actual performance. In Figure 5C, we plotted the estimated

probability of hitting the target along with the actual fraction of

hitting the target for subject AI. Different colors represented different

direction conditions. If our assumptions (aiming at center and end

points distributed as bivariate Gaussian) were correct and the

estimated SAT were accurate, we would expect to see a close match

between the estimated probability of hitting and actual performance.

This was what we generally observed. We found that the estimated

probability of hit matched the subjects’ actual probability of hit. We

also observed that direction had little effect on the probability of

hitting the target and the estimated SAT. Nevertheless, we took into

account these directional effects in predicting optimal performance

(Eq. 5 in the model section under Materials and Methods).

Model Comparison
We next compared actual performance to model predictions. In

Figure 6, we plotted the actual proportion of time subjects allocated to

the first movement, tA
�

T , against the predicted optimal time in the

two reward conditions. Figure 6A shows the model comparison when

target rewards were equal. When the distance from the start position to

the first target dA and the distance from the first target to the second

target dB were equal (green dots), the model predicted that the subjects

should allocate the time roughly equally between targets. This was not

what the subjects did. Instead, we saw a tendency to spend more time

on the first target even when both the movement distance and the

rewards were equal between the two targets. When the second

movement length increased (orange dots), the model predicted that

subjects should speed up the first movement in about half of the

conditions (across subjects) and slow down in the other half. This was

not what we observed in our subjects.

In Figure 6B, actual performance was compared to the model

prediction when the second target was five times more rewarding

than the first. The model predicted that subjects should spend

considerably more time on the second movement (optimal tA
�

T

Figure 5. Predicting the Probability of Hitting a Target. We
illustrate how we predicted the probability of hitting targets using data
from one subject (AI). A. Suppose that the subject chooses the speed of
the first movement marked in blue (710 mm/sec). Then, due to the time
constraint, the speed of the second cannot be less than that marked in
green (1008 mm/sec). For each movement, its speed can then be
mapped onto the accuracy based on the SAT estimated from each
subject and each condition. B. Based on the accuracy profile described
in 5A, we simulated 10,000 points for each of two movements and
plotted them as shown. As a consequence of speed-accuracy tradeoff,
the time constraint, and the size of the targets, the probability of hitting
the first was .72 and that for hitting the second was .57. The arrows
represented the direction of movement. C. We plotted the probability
of successfully touching targets estimated from the obtained speed-
accuracy tradeoff with the actual proportion of the targets with 95%
confidence interval as a function of average speed. Different colors
coded for different direction conditions.
doi:10.1371/journal.pone.0008228.g005
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below 0.5 across all conditions and subjects). As the second

movement distance became longer, the model predicted an even

greater increase in the time spent on the second target, as most

orange dots (coding for the unequal-distance conditions) were to

the left of the green dots (coding for the equal-distance conditions).

When the second movement distance increased, subjects did

increase the time spent on the second movement. However, this

increase was far from optimal. We also found that across subjects and

distance conditions in Figure 6B, there was a tendency to slow down

the first movement when subjects should speed up and vice versa. To

test for this possibility, we modeled actual performance as a linear

function of model prediction and performed separate linear regressions

for the equal-distance and unequal-distance conditions. In both

conditions the estimated slopes of the fitted lines were negative (slope

values 20.669 for the equal-distance condition and 21.177 for the

unequal-distance condition) and significantly different from 0 (p,0.05),

confirming that subjects changed their time allocations but in doing so

they reduced rather than increased expected gain.

We wish to emphasize that by comparing actual performance

with model prediction separately for each condition, we effectively

controlled for confounding factors such as motivation due to

difference in total payoffs between the equal-reward and the

unequal-reward conditions. If subjects were more motivated in the

unequal-reward condition where total payoffs were higher, they

should be closer to optimal than in the equal-reward condition.

We found this not to be the case, thus excluding differences in

motivation due to payoff differences as a possible interpretation of

the sub-optimal performance we observed.

To further demonstrate sub-optimality, we analyzed the effect of

randomly speeding up the first movement on total payoff. In the

unequal-reward condition where the second target’s reward was 5

times greater than the first target, the model predicted that subjects

should allocate much less time to the first movement. We found

that, in 4 out of 5 subjects, the average payoff was slightly higher

when subjects spent relatively less time on the first movement

compared with trials where subjects spent more time on the first

movement. Consistent with the model prediction on spending less

time on the first target when the second target rewards became

larger, this result indicates that even randomly speeding up the first

movement could marginally improve the total payoffs. This result,

along with the model comparison results explained earlier (Figure 6),

clearly indicates sub-optimal performance.

Movement Times and Dwell Time
In Figure 7, we reported mean movement time to the first target

(�ttA), to the second target (�ttB), the mean dwell time (�ttD), i.e. the time

the finger was on the first target before initiating movement to the

second target, and the mean of total time (�ttT ) (the sum of the previous

3 time variables) from all subjects and conditions. In Figure 7A, we

plotted �ttA of the unequal-reward conditions against �ttA of the equal-

reward conditions. Different colors (green and orange) were used to

code for different distance conditions. Green represents equal-

distance condition, while orange represents unequal-distance condi-

tion. Each data point represents a combination of distance, direction,

and reward conditions from a single subject. By plotting the data this

way, we can easily compare the effect of different reward conditions

and the effect of different distance conditions on movement times and

dwell time. We emphasize that the optimal solution maximizing

expected gain is computed with each particular condition’s mean

total time, not with mean total time averaged across conditions.

If the subjects did not change movement times and dwell time in

response to different reward conditions, we would expect all the

data points to fall close to the diagonal line in all the plots. To test

whether the data points deviated significantly from the diagonal

line, we performed a simple regression on unequal-reward trials

against equal-reward trials separately for �ttA, �ttB, �ttD, and �ttT . Except

for�ttA, we found that the slope was indistinguishable from 1 (p.0.05)

and that the intercept was not significantly different from 0 (p.0.05)

for �ttB, �ttD, and �ttT . For �ttA, the intercept was 35 ms, suggesting that

the subjects spent more time on the first target when the target

rewards were unequal (the second target reward was 5 time the first

target reward). This was consistent with the results in Model

Comparison where we noted that subjects spent more time on the first

target when the optimal solution was to spend less time on the first

target as a result of an increase in the value of the second target.

By similar logic, if distance had no effect on movement times

and dwell time, we would expect strong overlap between the

distribution of green dots (indicating equal-distance) and the

distribution of orange dots. We observed that subjects sped up the

first movement when the second movement distance increased

Figure 6. Model comparison across subjects. A. Equal-reward condition. In the equal-reward condition, the first and the second target had
equal amount of rewards. The actual proportion of time subjects allocated to the first movement tA

�
T was plotted against the optimal tA

�
T . Each

point represented a unique combination of distance and reward conditions. The different colors represented distance conditions, with the green
representing the equal-distance condition and the orange representing the unequal-distance condition. B. Model comparison for the unequal-
reward condition. In the unequal-reward condition, the second target was worth five times more than the first target.
doi:10.1371/journal.pone.0008228.g006
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(7A), but distance seemed to have little effect on second movement

time (7B), dwell time (7C), and total time (7D).

In addition to the plots shown in Figure 7, we reported that the

mean dwell time across subjects was 97 ms. Across subjects, the

maximum dwell time was 130 ms, while the minimum dwell time

was 68 ms.

To summarize, the results of movement times and dwell time

indicate that, first, different reward conditions did not alter

movement time to the second target, dwell time, and total time.

When the reward of the second target was 5 times greater than the

first, subjects spent more time on the first target compared with

when the rewards were equal. This result was consistent with the

results reported in Model Comparison. Second, we found that across

subjects and conditions, rewards and distance conditions had little

effect on dwell time. Third, we found that across all subjects and

conditions, total time (the sum of mean movement time to the first

target, mean movement time to the second target, and the mean

dwell time) was significantly smaller than the time limit (400ms) as

it must be if the subject is to complete both movements within

400 msec on most trials.

Discussion

Recent studies concerning movement planning have compared

how humans plan movements to the predictions of decision-

theoretic models of ideal movement that maximizes expected gain

[3–5,8–14]. Battaglia and Schrater [3] examined how humans

trade off viewing time and movement time to minimize

visuomotor variability; Dean, Wu and Maloney [5] looked at

how humans trade off speed against accuracy in tasks where

subjects were rewarded for both speed and accuracy. Together,

the evidence thus far indicates a near-optimal planning system that

takes into account visual and motor variability when solving the

tradeoff problem (but see Wu et al. [14], Mamassian [34] and

Burr, Banks & Morrone [35] for examples of suboptimal

performance in perceptual and motor tasks).

Most studies to date, however, have focused primarily on

investigating and modeling single movements. In this study, we

investigated how humans plan sequential movements and whether

they could do so optimally. In our task, two targets carrying

monetary rewards were presented. Subjects had a time window of

400 milliseconds to hit the targets in pre-specified order. Subjects

were required to finish both movements within the time limit but

allowed to freely allocate more or less time to one movement at the

expense of the other. We varied movement distance, directional

change between the movements, and target rewards to further

investigate how these variables could affect performance.

We extended previous work concerning SAT for single

movements and used the resulting SAT model to develop an

optimal model of time allocation for the sequential task. In

developing the latter model, we started with the evident constraint

that, the more time spent on one movement, the less time

remained for the other. Given the speed-accuracy tradeoff

typically observed in single movement, the accuracy of each

movement is determined by the time it is taken to perform (when

distance is controlled for). Taken together, the task introduced a

tradeoff in accuracy between the two movements: improving the

accuracy of one movement is achieved by sacrificing the time and

hence the accuracy of the other movement.

Figure 7. Movement times and dwell time. For each subject and condition, we plotted the mean movement times and dwell time of the
unequal-reward conditions against those of the equal-reward conditions. Different colors were used to represent different distance conditions. Green
represented equal-distance condition, while orange represented unequal-distance condition. A. Mean movement time to the first target �ttA . B. Mean
movement time to the second target �ttB. C. Mean dwell time �ttD . D. Mean total time �ttT . Error bars represented +2 standard error of the mean.
doi:10.1371/journal.pone.0008228.g007
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In everyday life, the goal of movement often goes beyond

minimizing movement variability [36,37]. Maximizing expected

gain requires that we take into account the rewards and penalties

associated with different movement outcomes.

We now summarize our results. First, error along the direction

of movement tended to increase more rapidly as a function of

speed than error orthogonal to the direction of movement.

Second, the correlation between these two directional errors was

close to 0 and does not change as a function of speed. Third, we

found no evidence that success in the second movement was

dependent on success in the first or duration of the first, suggesting

that the consequence of the two movements were independent of

one another.

Based on these results, we developed a model of SAT for multiple

sequential movements that allowed us to predict the optimal

allocation of time for each condition and subject. We compared

subjects’ actual performance to ideal and found that subjects failed

to divide time optimally both in conditions where the target rewards

were equal and in conditions where they were not.

We found that subjects allocated more time than they should on

the first movement. When the target rewards were equal, subjects

could have earned more had they divided the time equally, but

generally the average earning did not differ much from the

maximum expected gain. However, as the second target became

much more rewarding than the first, favoring the first target would

lead to a marked reduction in expected gain. Comparing subjects’

choice of allocation with the optimal in the unequal-reward

condition (Figure 6B), we found that subjects not only spent more

time on the first target, but they also tended to allocate time contrary

to the model prediction. We observed that across subjects, the

more the model predicted the subjects should favor the second

target, the less time the subjects actually spent on the second

movement and vice versa. We emphasize once again that subjects

could spend as much time as they wished planning their

movements before initiating the first movement: timing did not

start until subjects began to move.

In the work reported here we tested whether subjects allocate

total time between the two movements so as to maximize their

expected gain. We tested this claim given whatever choice of total

time subjects made. In any case, optimal allocation of total time

between two movements is independent of the question whether

the planned total time is optimal. In theory we could also test

whether their choice of total time was optimal by working out the

proportion of times-outs that should occur with optimal choice of

total time. But estimating rates of an event with very low

probability of occurrence is difficult without more data than we

have. The actual time out rates (proportion of trials) are low (less

than 3% in general). Moreover, this analysis would require that we

accept that temporal uncertainty is Gaussian far out in the tails of

the distribution where we have little data to support the

distributional assumption.

Compared to previous results on human movement planning, in

this study, we found a clear, patterned deviation from optimality in

motor performance. We next discuss 4 possible explanations for

the tendency to spend too much time on the first movement.

The Effect of Experience
It is possible that how subjects allocated time in the training

session (Session A) played a role in their time allocation in the

experimental session (Session B). In Session A we did not reward

subjects for touching targets. Subjects were simply told to learn the

time constraint and to try to hit the targets as often as they could.

In Figure 8A, we compared data from Session B with data from

Session A across subjects. The proportion of time allocated to the

first movement tA
�

T in the experimental session was plotted

against that in the training session. Different symbols were used to

code distance (equal or unequal), while different reward conditions

(equal or unequal) coded by color. Since there were no rewards in

Session A, data from the Session A was used twice to plot for the

two reward conditions in Session B. Overall, the majority of the

subjects spent more time on the first target in the training session

as most points fell between 0.5 and 0.7. The subjects actually

allocated the time very similarly in the training and the

experimental session. It remains to be seen if subjects would

perform better in situations where they had to spend less time on

Figure 8. Detailed comparisons. A. A comparison of time allocation in the training session with the experimental session. We plotted the
proportion of time subjects allocated to the first movement tA

�
T in the experimental session against that in the training session. If tA

�
T were similar

between the experimental and the training session, most points would fall symmetrically about the diagonal line. Colors were used to code for the
reward conditions (blue: equal-reward condition; red: unequal-reward condition). Different symbols were used to code distance conditions (dot:
equal-distance condition; cross: unequal-distance condition). B. The estimated probability of hitting target B (second movement) (p̂pB) was plotted
against the mean movement time (ms) to target A (the first movement) separately for the top 25% fastest movements (in red) and for the bottom
25% movements (in green). Each data point in the graph represented a combination of reward and distance condition from a subject. The duration of
the first movement had little effect on the probability of success of the second movement.
doi:10.1371/journal.pone.0008228.g008
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the first target had we explicitly trained them to vary their time

allocation in the training session.

The Possible Benefit of Slowing Down the First
Movement

It is also possible that slowing down the first movement

improves the accuracy of the second movement. Hence, increasing

the first movement time marginally might be beneficial to the

second movement. To analyze this conjecture, in Figure 8B, we

plotted the probability of hitting target B (second target), p̂pB, as a

function of the mean movement time (ms) to target A (first target)

separately for the top 25% (fastest) first movements (in red) and the

bottom 25% (slowest) movements (in green). Each data point

represents a unique combination of reward and distance condition

from a subject. If there were a benefit of marginally slowing down

the first movement on the probability of hitting the second target,

we should expect to see, across conditions and subjects, that p̂pB is

an increasing function of mean movement time to target A. We

did not find this to be the case (r = 20.002, p.0.05 when tested

against r = 0). This graph also demonstrated the lack of tradeoff in

time between the two movements. If subjects were optimal, we

should see that increasing the speed of the first movement should

improve the probability of hitting the second target. We did not

observe this effect in Figure 8B, a further indication that subjects

did not trade off time.

The Possible Benefit of Off-Center Aiming
Although our model explicitly claimed that aiming at the center

is the optimal aiming strategy, the model allows for off-center

aiming. Here we ask whether aiming slightly off center of the first

target towards the second target would be a better strategy than

aiming at the center. The reasoning is the following: by aiming off-

center for the first target toward the second, there is a slight

reduction in movement distance to the second target and hence a

possible increase in the probability of hitting the second target. We

analyzed the possible benefit of this strategy and found that under

the conditions of our experiment, the cost (reduction in probability

of hitting target A) was very large compared to the benefit gained

by reducing the length of the movement to target B. Through

simulations, we found that moving 5 mm (roughly the target

radius) away from the center of the first target towards the center

of the second target would typically result in a 25%–30% decrease

in the probability of hitting the first target but only improved the

probability of hitting the second target by 5%. Given that the

targets were very small (5.88 mm radius) compared with the

movement distances (7.5 cm and 11.2 cm), it is obvious that any

shift in aiming would have a large impact on the probability of hit

but would only reduce slightly the movement distance to the

subsequent target.

The Utility of Movements and Temporal Discounting
One possible explanation for what we have observed is that

subjects preferentially valued the targets by the order in which they

were attempted and sharply discounted the utility of the second

target relative to the first. In other words, the utility of hitting the

first target was much larger than that of hitting the second even

when hitting the second target brought much higher monetary

reward. This phenomenon is called temporal discounting in

economics [30,31] but to explain our results we need to postulate

large discounts over durations measured in milliseconds, a very

surprising outcome. Further research is needed to determine

whether the failures in time allocation we observed can be treated

as a very rapid form of temporal discounting.

There are several previous studies demonstrating that human

subjects can adjust the duration of single movements so as to nearly

maximize expected gain [3–5]. In contrast, we find that subjects

do not allocate time between two movements so as to maximize

expected gain. A parsimonious explanation is that the motor

system optimizes each component of a series of movements in

isolation but not the entire series considered as a whole. Such a

limitation on the complexity of movement planning is analogous to

limits on reasoning and judgment associated with bounded

rationality [28,29] but in the planning of sequences of movements.

Materials and Methods

Apparatus
A touch monitor (Elo IntelliTouch 17 in. LCD monitor) was

mounted on a Structural Framing System (McMaster Carr Inc.).

The monitor was tilted to be horizontal. A double-square framing

system was selected to minimize the vibration of the setup caused

by the speeded pointing movement to the monitor. The

experiment was run using the Psychophysics Toolbox [38,39] on

a Pentium 4 Dell Optiplex GX280. At the beginning of every

experimental session, subjects completed a calibration procedure

on touch location. The experimental room was dimly lit.

Stimuli
Targets. The stimulus in every trial comprised a starting

position (coded red) and two circular targets (coded blue, green)

carrying monetary reward (Figure 1). Each target was a double-

circled configuration, and we refer to the circles as the inner and

outer rings. The red and blue targets were always in the same

locations on the touch screen.

In the main part of the experiment (Session B below), the

subject could only earn money by touching within the inner ring of

a target. However, we wanted to make sure that subjects did not

simply ignore one or the other target on a trial and move to touch

only the other. We did so as follows. The outer ring of the target

had a radius (23.5 mm) four times bigger than that of the inner

ring (5.88 mm). Touches within the outer ring did not earn

monetary reward but counted as an attempt to touch the target. As

described below, we required that the subject attempt to touch both

targets in the correct order within the time limit on every trial. If

he did not do so on a trial, he would receive no reward. If he

touched within the outer rings of both targets within the time limit

and, in addition, touched within the inner ring of one or both

targets, he received rewards as described below.

Events within a trial. At the beginning of each trial, the

subject placed his or her right index finger on the starting position.

Then the stimulus array appeared. The subject could study the

stimulus array and plan his movements for as long as desired.

Timing of the trial began only when the subject’s index finger left

the start area. The subject was required to first touch or at least

attempt the blue target (referred to as target A) and then touch or

attempt the green target (target B) within a fixed time period

(400 ms in the main experiment).

There were two distance conditions, equal and unequal. We called

the distance between the starting position and target A the ‘‘first

target distance,’’ and the distance between target A and target B

the ‘‘second target distance.’’ In the equal-distance trials, the first

target distance and the second target distance were the same

(7.5 cm). In the unequal distance trials, the first target distance

remained at 7.5 cm, while the second target distance was

increased to 11.2 cm.

We also manipulated the change in movement direction between the

first and the second movement by placing target B (green) at one of
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eight different locations illustrated in Figure 1. Only one of the

eight possible green targets was present on each trial. The eight

locations were arranged such that the angle between the line

joining the first and second target h was 00, 900{900, and 1800

with respect to the line joining the start point and the first target.

The eight targets comprised four directions and two distances,

giving 8~2|4 trial conditions.

Movement coordinate system. For single movements, we

defined a coordinate system in the plane of the touch screen whose

two axes are, xE measured along the line connecting the start point

of the movement and the end point and x\ the distance

perpendicular to the direction of movement (Figure 9). To allow

for the possibility that accuracy changes at a different rate as a

function of speed between xE and x\, we separately modeled and

estimated the standard deviation of movement end points in xE,

denoted as sE and the standard deviation of end points in x\,

denoted as s\, as functions of average speed.

Procedure
Session A. We first trained subjects to perform the motor

task. During Session A (training), the targets did not carry

monetary reward. Subjects were introduced to the task in a quick

warm-up session where we gave them a lenient time limit of

800 ms to complete the two movements. Each condition was run

in separate blocks of trials with 10 trials per block. The order in

which conditions were presented to the subjects was randomized:

there were 80~2|4|10 warm-up trials.

After the warm-up trials, subjects entered the formal training

session where the time limit was 400 ms. They were informed of

the change in time limit. The structure of formal training was the

same as that for the warm-ups, except that there were 80

repetitions for each trial condition (640~2|4|80 trials). During

formal training, subjects started every trial by placing their index

finger on the starting position and were instructed to always first

touch target A followed by target B. Once the finger left the

starting position, the subject had only 400 ms to attempt to touch

the two targets. Subjects were instructed that, on each trial, they

should (1) be sure to touch within the outer ring of each target in

the specified order and (2) try to touch both targets within the

inner ring.

Feedback as to which targets were touched was provided only

after subjects completed both movements. Subjects received a

timeout message if they failed to complete the task within 400 ms.

The entire session took approximately 40 minutes to complete.

Session B. In this session, we assigned monetary rewards to

the targets. There were two reward conditions, equal-reward and

unequal-reward. In the equal-reward condition, the reward for

touching the first and the second targets within the inner ring were

the same (10 points). In the unequal-reward condition, the second

(green) target was worth 50 points while the first target remained

at 10 points. Subjects accumulated winnings over trials. The

subject could receive a reward for either or both targets touched

within the inner ring. However, we emphasize that, if subjects

failed to touch within the outer rings of the two targets in the

specified order, they received no reward for the trial. If they

exceeded the time limit on a trial, they received no reward.

Subjects knew that every 1000 points was worth $1 paid at the end

of the experiment.

The procedure for Session B was the same as the second part of

Session A (training), except that there were a total of 16 conditions

(2 reward conditions x 8 trial conditions) run in separate blocks of

trials. Each condition had 50 repetitions for a total of 800 trials.

The entire session took approximately 80 minutes to complete.

Subjects and Instructions
Five subjects, unaware of the purpose of the experiment,

participated. Among them, three were male and two were female.

All subjects were right handed and all had normal or corrected-to-

normal vision. The study was approved by the Institutional

Review Board at New York University. All subjects gave written

informed consent prior to the experiment.

A Model of Optimal Sequential Movement Planning
In this sequential task, the fixed time constraint induced a

tradeoff of time between the two movements: the more time spent

on attempting one target, the less time was available to attempt the

other. Our model considers the consequences of trading off

movement time between the targets on the accuracy profile of the

movements. We derive the optimal tradeoff that maximizes

expected gain. We emphasize that timing of each trial began only

when the subject initiated movement. The subject saw the

configuration on each task and had as much time as he wished

to plan his movements before starting to move. Hence we need not

consider a possible tradeoff between time to plan and time to move

in the model.

We start by treating movements in the sequential task as a series

of single and independent movements. In our data analysis, we

tested whether this independence assumption is sensible given subjects’

actual performance (see Results: Movement independence). For single

movements, we used a coordinate system in the plane of the touch

screen whose two axes are xE measured along the line connecting

the start point of the movement and the end point and x\ the

distance perpendicular to the direction of movement as shown in

Figure 8. We assume that movement endpoints x~ xE ,x\
� �

’are

distributed as a bivariate Gaussian random variable with mean

Figure 9. The coordinate system. We used a two-dimensional
coordinate system to represent each movement. The coordinate system
was embedded in the stimulus array. One axis xE was parallel to the line
connecting the start point and the end point of the movement, and the
other, x\ was perpendicular to the first. The origin was centered on the
end point of the distribution.
doi:10.1371/journal.pone.0008228.g009
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m~ mE ,m\

� �’
and covariance matrix

S~
s2

E rsEs\

rsEs\ s2
\

 !
ð1Þ

where sE denotes the standard deviation of errors parallel to the

movement direction and s\ denotes the standard deviation of

errors orthogonal to the movement direction. The probability

distribution of movement endpoints with mean m and covariance

matrix S is

f x; m,Sð Þ~ 1

2p Sj j{1
e{1

2
x{mð Þ0S{1 x{mð Þ : ð2Þ

For a circular target A with center at mA~ mA
E ,mA

\

h i’
and radius

r, the probability that the endpoints are within A given aim point

m~ mE,m\

h i
’

and covariance matrix S can be computed [40] as

pA~

ðð
B mA ;rð Þ

f x; m,Sð Þ dx ð3Þ

where B mA; r
� �

denotes the region of integration, a circular region

of radius r centered on mA and pA is the probability of hitting

target A. We wish to emphasize that our model is readily modified

to allow for off-center aiming. In the case of off-center aiming, pA

is computed by Eq. (3) by substituting mA with subjects’ actual

mean end points.

Let GA be the gain for touching target A and 0 otherwise. Then

the expected gain for the movement to target A is EGA~GApA.

The choice of aim point m that maximizes probability and

expected gain is mA~m, when the aim point of the movement is

the center of the circular region.

The covariance matrix S also affects pA and, due to speed-

accuracy tradeoff (SAT) of motor response [21], S varies as a

function of movement speed. We will write it and its components

as functions of tA, the planned movement time to target A:

S tA
� �

, s\ tA
� �

, sE tA
� �

, r tA
� �

. Movement time (MT) is a random

variable and here we modeled it as MT~N �tt,s2
t

� �
where �tt is the

subject’s planned movement time. The realization of a planned

movement time is what we referred to as the actual movement

time. In a previous study [5], we found that mean movement time

was a better predictor than actual movement time. In the

experiment, we estimated planned movement time, separately

for each movement, of a condition by computing the mean of

actual movement time across trials in that condition.

If dA is the distance (within the touch screen) traveled during the

movement, then the average speed of the movement is

�ssA~dA
�

tA. We developed a model of speed-accuracy tradeoff

based on previous work. There is a large literature concerning

speed-accuracy tradeoff related to Fitt’s Law [22] and the linear

version of it advanced by Schmidt and colleagues [24,25]. See

[23,25,26] for reviews. Wright and Meyer [27] investigated

conditions under which each model is appropriate. In brief, the

linear law describes performance at short time intervals, under

conditions where visual feedback is not available and conditions

when aimed movements must have precisely specified durations.

Meyer et al. [23] proposed that the linear law is fundamental and

developed a model of SAT in which Fitt’s Law arises as a

consequence of successive corrections based on visual feedback.

See Meyer et al. [23] and Plamondon and Alimi [26] for reviews.

Given the short time duration of movements in our study (see

Figure 7AB), the linear law based on Schmidt’s work reproduced

by Wright and Meyer [27] and Meyer et al. [23] is appropriate.

Accordingly, we modeled the SAT based on Schmidt et al. [24,25]

as

sA
\ dA,tA
� �

~b\�ssAzc\ ~b\
dA

tA
zc\

sA
E dA,tA
� �

~bE�ss
AzcE ~bE

dA

tA
zcE

ð4Þ

where the constants b\,c\, etc. characterized the SAT. We

allowed for the possibility that the relation between time tA and sA
E

and between tA and sA
\ are different. We estimated the SAT

separately for sA
E and sA

\ and tested them for equality. To our

knowledge, we are the first to model the relation between spatial

error and speed separately for the direction parallel to the

movements and for the direction orthogonal to the movements.

We could also allow for the possibility that r (Eq. 1, the correlation

between movement errors parallel to and perpendicular to the

direction of movement) changes with the duration of the

movement and add a third equation to Eq. (4). However, we

discovered that r was close to 0 for all durations and conditions

and can be neglected. See Results: Estimating speed-accuracy tradeoff for

details.

Combining Equations (3) and (4), we can compute pA dA,tA
� �

and pB dB,tBð Þ where pA is as above and pB is the probability of

hitting target B with the second movement. As a consequence of

the independence assumption, we assume that the first movement

and the second share the same mapping of time and distance to

probability of touching the target (the second movement is not

affected by the first other than through a tradeoff of time as

detailed next). Hence we can write the awkward expressions

pA dA,tA
� �

and pB dB,tBð Þ as p dA,tA
� �

and p dB,tBð Þ respectively.

The function p d,tð Þ is a decreasing function of its first argument

and an increasing function of its second.

In the sequential task, the fixed time limit introduced a

constraint on the total movement time T , which in turn

introduced a tradeoff of time between the movements. If the first

movement has duration tA then the second movement has

duration tB~T{tA. The subject has no control over the locations

of targets or the distances between successive targets but he could

choose the tradeoff between tA and tB. Consequently the subject’s

overall expected gain is

EGT tA
� �

~ p dA,tA
� �

GA z p dB,T{tA
� �

GB ð5Þ

The ideal mover that maximizes expected gain would choose tA

to maximize Eq. (5).

Data Analysis
Movement independence. In our model, we assumed that

the two, successive movements were statistically independent of

one another. To examine the independence assumption, we

looked at the correlation between the movement endpoints of the

first and the second movements, and also looked at the conditional

probabilities of hitting the second target when the first target was

hit and when the first target was missed.

Aim-point assumption. We initially assumed that subjects

aimed at the center of targets. To test the aim-point assumption,

we examined, for each subject, the endpoint distribution at each
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target location and tested it against the hypothesis that the mean

end points fell on the center of the target (Hotelling’s T2 test). With

sufficiently large amounts of data, it is very likely we will reject this

assumption. However, if the actual deviation of subjects aim point

from the center of targets is small in magnitude then the effect on

the predictions of the model and its fit to the data will be

correspondingly slight. Accordingly, we also compare actual

probability of hitting targets to the predictions of the model with

the aim-point assumption. We consider this point where we report

results of tests of the assumption.
Estimating speed-accuracy tradeoff (SAT). We treated

movements in our sequential pointing task as a series of

independent movements and assumed a linear relation between

the speed and the accuracy of single movements as expressed in

Eq. (4) where s denotes spatial variability and �ss as the average

speed. We assumed that the endpoint distribution is a bivariate

Gaussian with a covariance matrix S~
s2

E rsEs\

rsEs\ s2
\

� �
where, as above, E denotes ‘parallel to the movement direction’

and \ as ‘orthogonal to the movement direction’. We estimated

sE and s\ as follows. Based on the geometric relation between the

first target and the second target of each direction condition (see

Figure 1), we estimated sE and s\ based on the endpoint

variability in the parallel and perpendicular directions to the

direction of movement.

Before we estimated the SAT, we needed to examine the

covariance rsEs\ and its relation to speed. For each condition

separately, we looked at the correlation r and examined whether it

was significantly different from 0. If r was not significantly

different from 0 across different conditions, we treated the

covariance as 0.

Then, to estimate SAT, we computed sE,s\ and average

movement speed �ss for each movement in each condition. We then

regressed sE and s\ separately by �ss to obtain the estimated SAT.

We emphasize that we estimated SAT for each direction condition

separately. Hence, each direction would have its own estimated

SAT profile.

The estimated SAT allowed us to compute, for a given speed of

a movement, estimates of spatial variability (ŝsE and ŝs\)

corresponding to that speed and hence the probability of hitting

the first target p̂pA and the probability of hitting the second target

p̂pB, which were later used to compute the optimal solution for the

tradeoff of time. After testing and failing to reject movement

independence (see Results: Independence assumption below), we could

combine data for both movements in estimating p̂pA and p̂pB.

Hence, the estimated SAT reflected the relation between the speed

and accuracy of a single movement independent of which

movement it is.

Model comparison. Once we have evaluated the key

assumptions in the model and obtained the direction-sensitive

SAT functions for each subject, we were ready to compute the

optimal solution. The optimal solution is the tradeoff of time

between the two targets that maximizes Eq. (5). For each

condition, we used the mean total movement time (first

movement time+second movement time) as total time T and

computed the optimal tradeoff of time between the two targets and

compared it with actual performance. We emphasize that dwell

time was excluded when counting the first movement time and the

second movement time.

Movement times and dwell time. For each subject, we

analyzed movement times and dwell time separately for each

combination of direction, distance, and reward conditions. We

referred the time the finger stays on the first target before it starts

moving toward the second target as dwell time. We reasoned that

under such tight time limit (400 ms), dwell time would have little

impact on how subjects prepare for the second movement. If this

conjecture were true, we would expect that dwell time be constant

across all conditions.
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12. Trommershäuser J, Mattis J, Maloney LT, Landy MS (2006a) Limits to human

movement planning with delayed and unpredictable onset of needed

information. Exp Brain Res 175: 276–284.
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