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Abstract.—Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with
more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus
(HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic
approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model
closely related to the Langley–Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of
the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They
estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an
estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint).
Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-
squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence
constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former
is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of
the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the
computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large
input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to
standard methods (root-to-tip, r8s version of Langley–Fitch method, and BEAST). Using simulated data, we show that their
estimation accuracy is similar to that of the most sophisticated methods, while their computing time is much faster. We apply
these algorithms on a large data set comprising 1194 strains of Influenza virus from the pdm09 H1N1 Human pandemic.
Again the results show that these algorithms provide a very fast alternative with results similar to those of other computer
programs. These algorithms are implemented in the LSD software (least-squares dating), which can be downloaded from
http://www.atgc-montpellier.fr/LSD/, along with all our data sets and detailed results. An Online Appendix, providing
additional algorithm descriptions, tables, and figures can be found in the Supplementary Material available on Dryad at
http://dx.doi.org/10.5061/dryad.968t3. [Active-set method; algorithms; computer simulations; dating; influenza (H1N1);
least-squares; linear algebra; molecular clock; serial data; substitution rate estimation; temporal precedence constraints;
viruses.]

INTRODUCTION

The explosion of genetic data and progress in
phylogenetic reconstruction algorithms has resulted
in increasing utility and popularity of phylogenetic
analyses. Data sets with thousands of taxa are becoming
more and more common, especially amongst virus
evolution studies. Moreover, a number of studies have
used molecular-dating techniques to tackle a wide range
of biological questions, for example, in systematics for
timing the tree of life (Hedges and Kumar 2009; Jetz et al.
2014), in epidemiology to trace back the phylodynamics
and phylogeography of epidemics (Grenfell et al. 2004;
Volz et al. 2013), and in functional genomics to decipher
orthology/paralogy relationships within gene families
and improve reconciliation inferences (Akerborg et al.
2009; Doyon et al. 2011; Rasmussen and Kellis 2012).

Currently, the most popular dating approaches are
based on sophisticated probabilistic models, most often
implemented in the Bayesian framework and able to
account for complex priors (Thorne and Kishino 2002;
Rannala and Yang 2007; Drummond and Rambaut 2007;
Guindon et al. 2010). Maximum-likelihood methods
have also been designed to deal with simpler models

(Rambaut 2000). Corresponding computer programs
take a sequence alignment and a set of known dates as
input and return a time-scaled tree, with estimates of
the substitution rate(s) and of the dates of all tree nodes.
Some programs (e.g., PAML, Rannala and Yang 2007)
perform calculations on a fixed, user-supplied tree, while
others (e.g., BEAST, Drummond and Rambaut 2007;
Drummond et al. 2012) infer the tree from the sequence
alignment. These programs typically contain several
submodels, which describe the substitution process (e.g.,
GTR, � distribution of rates across sites, etc.), the tree
(e.g., coalescent, constant or varying population size,
birth–death, etc.), priors on the parameter values and,
most importantly regarding dating, the molecular clock.
We distinguish the strict molecular clock (SMC) model,
where the substitution rate is assumed to be constant
across all tree branches, and uncorrelated and correlated
relaxed-clock models. With uncorrelated models, the
rate associated with each branch is drawn independently
from a common underlying distribution; these models
are commonly used with fast-evolving species over
short time periods, typically with viruses for which
there is no strong evidence of rate correlation among
branches (Drummond et al. 2006). With correlated (also
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called autocorrelated) models, the rate distribution for
a particular branch depends on the rate value of the
neighboring branches; the use of correlated models
seems to be the preferred choice with large groups
of slowly evolving species, for example mammals,
where it has been demonstrated that some subgroups
evolve faster than others (e.g., the rodents, Douzery
et al. 2003). However, the advantages and limitations
of this large variety of models is still a question
of debate (Drummond et al. 2006; Lepage et al.
2007; Battistuzzi et al. 2010). All these models and
methods have shown to be useful in a number of
studies, but they are computationally intensive, making
it virtually impossible to deal with the larger data
sets available today, even when using sophisticated
implementations and powerful computers (Ayres et al.
2012). Typically, days of computations are required to
analyze a few hundred taxa, although faster approaches
are available, using complex algorithmic approaches
(Akerborg et al. 2008; Guindon et al. 2010) and
multinormal approximations of the likelihood function
(Thorne et al. 1998).

Here we are interested in dating very large
phylogenies, typically with a thousand tips or more,
a need that is becoming increasingly common, for
example, in molecular epidemiology. We propose
distance-based algorithms to estimate rates and dates,
a mathematical and computational framework that has
proven to produce fast and fairly accurate tools in
phylogenetics (e.g., NJ, Saitou and Nei 1987). Several
distance-based (as opposed to sequence-based, see
above) dating methods have already been proposed.
Most of these methods deal with time calibration points,
where the dates of certain ancestral nodes in the tree
are known, possibly with uncertainty (e.g., min–max
values), and all of the tree tips are contemporaneous.
These methods input a rooted tree with time calibration
points, and return a time-scaled, ultrametric tree.
PATHd8 (Britton et al. 2007) and the Tamura et al. (2012)
method use smoothing and averaging techniques to
accommodate for local rate variations. Xia and Yang’s
(2011) method assumes a SMC or two different local
clocks, and achieves least-squares estimations under
these assumptions. Sanderson’s (1997, 2002) approach
is based on a penalized-likelihood criterion to account
for the autocorrelation of rates, combined with standard
optimization techniques (see also TreePL, Smith and
O’Meara 2012). Based on computer simulations, these
fast methods were shown to be accurate by their authors,
producing time-scaled trees similar to those obtained
using sequence-based approaches.

The focus of the present study is on serial phylogenies,
where the tips of the tree have been sampled through
times. Such phylogenies are common with fast-evolving
organisms (e.g., human immunodeficiency virus (HIV)),
where a few years of evolution induce significant
changes at the sequence level (Drummond et al. 2003a).
Serial phylogenies are also used with ancient DNA
(Lambert et al. 2002). Moreover, close relationships
exist between the calibration-points and dated-tips

approaches (Ronquist et al. 2012). Several methods have
been proposed in this framework. One of the very first
is root-to-tip regression (RTT) (Shankarappa et al. 1999;
Drummond et al. 2003b): assuming a SMC, the root-to-
tip distance in the input tree should be proportional
to the corresponding elapsed time; then, a standard
regression of the root-to-tip distance for every tip as a
function of its date provides estimates of the substitution
rate (regression slope) and root date (intercept with
X-axis). This method is very fast and can be extended
to unrooted trees by searching among all tree branches
for the best root position, according to some numerical
criterion (e.g., the sum of regression residues, to be
minimized). However, this method does not provide
estimates for the dates of internal nodes, and thus
does not output time-scaled trees. The same holds for
TREBLE (Yang et al. 2007), which is a triplet-based
alternative to RTT that is also able to process unrooted
trees. To obtain date estimates of the internal nodes,
sUPGMA (Drummond and Rodrigo 2000) combines a
regression method to estimate the substitution rate in
a first step, corrects the non-contemporaneous tips into
contemporaneous tips in a second step and then uses
UPGMA (Sokal and Michener 1958) to compute the tree.
Unlike the former approaches, Langley and Fitch’s (LF;
1974) method uses an explicit model. The LF method
assumes a SMC with a constant substitution rate, and
models the number of substitutions along each branch
of the tree by a Poisson distribution. The estimates of the
global substitution rate and of the internal node dates
are then obtained by maximizing the likelihood of the
input, rooted tree. LF is implemented in r8s (Sanderson
2003).

In this article, we study a model analogous to LF’s,
but using a normal approximation that allows for a
least-squares approach, and show that this model is
robust to uncorrelated violations of the molecular clock.
Using the tree (recursive) structure of the problem
at hand, and the close relationships between least-
squares and linear algebra, we propose very fast
algorithms to estimate the substitution rate and the
dates of all internal tree nodes. With rooted trees,
the time complexity is nearly linear (i.e., proportional
to the number of taxa), while with unrooted trees,
it becomes nearly quadratic (i.e., proportional to the
square of the number of taxa). In both cases, very
large trees (>10,000 taxa) can easily be processed
and transformed into time-scaled trees. The article is
organized as follows: we first define the model and
show its ability to handle uncorrelated rate variations
among tree branches, as is commonly assumed with
virus data. We then present our two main algorithms,
distinguishing the unconstrained setting and the case
where the temporal precedence constraints (i.e., an
ancestral node must be older than its daughter nodes)
are accounted for. Last, we compare these algorithms to
standard approaches using simulated data and a large
influenza data set. Our algorithms are implemented in
the LSD program (least-squares dating), which can be
downloaded (along with all data and results reported
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here) from http://www.atgc-montpellier.fr/LSD/ (last
accessed October 2015). An Online Appendix, providing
additional algorithm descriptions, tables, and figures,
can be found in the in the Supplementary Material
available on Dryad at http://dx.doi.org/10.5061/dryad.
968t3.

MODELS AND ALGORITHMS

Preliminaries and Notation
Our algorithms take as input a binary phylogenetic

tree with branch lengths, inferred by any tree building
program, and sampling dates associated with the taxa.
As our algorithms are very fast, it is consistent to
combine them with fast tree-building methods, for
example distance-based methods (e.g., NJ, Saitou and
Nei 1987, or FastME, Desper and Gascuel 2002, Lefort
et al. 2015), but more accurate results are expected
from trees obtained using maximum-likelihood (ML)
methods (e.g., PhyML, Guindon and Gascuel 2003,
Guindon et al. 2010). However, we shall see that results
obtained with both approaches are close. The algorithms
accept a rooted or unrooted tree, and for unrooted trees
we propose a method to estimate the root position,
though simulations show that the use of an outgroup
is generally preferable. In the following, we first assume
that the tree is rooted, and then summarize the rooting
procedure, which is described in more details in the
Online Appendix (available as Supplementary Material
on Dryad at http://dx.doi.org/10.5061/dryad.968t3).

Given a set of n serially dated sequences, let R be
the input rooted binary phylogenetic tree on these
sequences with known branch lengths. Enumerate the
internal nodes of R by 1,2,...n−1 and the leaves by n,
n+1,...,2n−1. Node 1 corresponds to the root. The date
of node i is denoted by ti. So tn, tn+1,...,t2n−1 are known.
Times are measured from the origin, that is, ti � tj when
i is more recent than j.

For every node i different from the root (i=1), let a(i) be
the parent node of i. For every internal node i, let s1(i) and
s2(i) be the two direct descendants of i. Let bi be the length
of the branch (i,a(i)); bi is an estimate of the number
of substitutions per site that occurred along the branch
from time ta(i) to ti. With a SMC, the substitution rate (i.e.,
the expected number of substitutions per site per time
unit) along the tree is constant and is denoted as ω. The
goal of our algorithms is to estimate the substitution rate
and the dates of all internal nodes, that is (ω,t1,...,tn−1).

Probabilistic Model and Objective Function
We use a Gaussian model, which is closely related to

that proposed by Langley and Fitch (1974). Assuming a
SMC, the expected branch length E(bi) is equal to ω times
the time interval (ti −ta(i)). Due to sampling noise and
estimation errors, the branch length estimate bi (available

in input tree R) can be expressed as:

bi =ω
(

ti −ta
(
i
))+εi, (1)

where εi is the noise (error) term. Langley and Fitch’s
(1974) method assumes a Poisson model for εi, which is
biologically meaningful (at least with low substitution
rates and simple mutation processes). Here, we use a
normal approximation for the distribution of the noise
term εi (such an approximation is quite standard in
computational statistics to accelerate the calculations,
with a huge number of successful applications in many
domains, and sound justifications related to the Law of
Large Numbers). We thus assume:

εi =N
(

0,�2
i

)
,

where N(0,�2
i ) denotes the normal distribution with

mean 0 and variance �2
i . A limit of this model is that

short branches may be negative according to Equation
(1), but we impose positivity using temporal precedence
constraints (see below). As evolution is independent
from one branch to another, we consistently assume
that the noise terms are mutually independent. The
weighted least squares (WLS) criterion to be minimized
(proportional to the log-likelihood assuming this model)
is given by:

�
(
ω,t1,...,tn−1

)=
2n−1∑
i=2

1

�2
i

(
bi −ω(ti −ta(i))

)2
. (2)

One difficulty with such a WLS criterion lies in the
variance terms �2

i , which are unknown and depend on
the (unknown) branch lengths and possibly on some
model parameters (e.g., � distribution of site rates). Fitch
and Margoliash’s (1967) tree inference method use the
square of the pairwise evolutionary distance estimate.
We use here another standard approach (for discussion,
see Gascuel 1997) derived from the Poisson nature of the
substitution process, where

�2
i = E(bi)

s
= ω

(
ti −ta(i)

)
s

and �̂2
i = bi

s
, (3)

with s being the sequence length.
However, the limit of such variance estimates is that

overconfidence is given on very short branches, while
their short length may be due to sampling randomness
or estimation errors. For example, with a null branch
length estimate (bi =0), we have an infinite weight in
Equation (2). This makes the method inapplicable, while
the observation that bi =0 most likely is due to the limited
amount of sites available. To avoid this problem, we
use the following additive smoothing for the variance
estimates:

�̂2
i = bi +c/s

s
, (4)

where c is a constant. The higher c is, the closer we
are to equal variances, that is, ordinary least squares
(OLS). A value of c=1 corresponds to Laplace’s Rule
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of Succession, which is commonly used to estimate
probabilities with limited numbers of observations
(with short branches, bi is very close to a frequency
of observed differences, or p-distance, and E(bi) to
the corresponding probability). Simulation experiments
(not shown) indicate that c=1 is not large enough and
that c=10 provides best average results; this is the default
value in our computer program, but c can be chosen by
the user.

This model accommodates some violations of the
molecular clock. Assume a simple model (similar to
Drummond et al. 2006; see also Thorne et al. 1998) where
the rate ωi attached to the branch (i,a(i)) follows a normal
distribution N(ω,�2). Moreover, assume a simple model
for bi where εi in Equation (1) does not depend on the
branch specific rate ωi, but on its expectation ω, that is

bi =ωi

(
ti −ta

(
i
))+N

(
0,

ω(ti −ta(i))
s

)
.

Then, it is easily seen that

bi =ω
(

ti −ta
(
i
))+N

(
0,�2

(
ti −ta

(
i
))2 + ω(ti −ta(i))

s

)
.

In other words, bi follows a normal distribution having
a similar form as Equation (1), but the error term
incorporates an additional factor (i.e., �2(ti −ta(i))2), the
relevance of which may be tested against the SMC.
Moreover, the variance term is an increasing function of
bi, as in Equation (3), meaning that using our algorithms
with uncorrelated violations of the molecular clock is
still well founded.

To summarize, our model (Eq. (1)) is a normal
approximation of the LF model and it naturally
accommodates uncorrelated variation of rates across
branches. This corresponds to the default option in
several programs (e.g., BEAST), which have shown
their accuracy and usefulness with numerous data
sets (typically viruses, see section ‘Introduction’). We
certainly do not pretend that this model depicts all the
complexity of sequence evolution, but it makes possible
very efficient calculations with little loss in terms of
estimation accuracy, as described later.

Outline of the Approach
The rate ω is positive, and we can fix in LSD the

minimum value of the estimated rate to ω̂�ωmin >0.
Moreover, time is measured forward from the root to
the tips of the tree, so it must satisfy the temporal
precedence constraints ti � ta(i) for every node i that is
not the tree root (i=1). In other words, any daughter
node (i>1) is more recent than its parent node (a(i)). This
is an obvious requirement, analogous to the positivity
of branch lengths in phylogenetic trees. However, not
all dating methods comply with this requirement (e.g.,
see our example below with BEAST and the influenza
data set), just as some phylogenetic algorithms (e.g., NJ)
infer trees with negative branch lengths. The reasons

for this are mostly computational. Imposing positivity
constraints has a computational cost, as we shall see
below in our dating context.

The estimates are obtained by minimizing the
objective function � defined in Equation (2). By using
�i =ωti for every node i=1,...,n−1 (i.e. i is an internal
node) and wi =1/�2

i , the function � in Equation (2)
becomes:

	
(
ω,�1,...,�n−1

) =
n−1∑
i=2

wi
(
bi −�i +�a(i)

)2

+
2n−1∑
i=n

wi
(
bi −ωti +�a(i)

)2
. (2b)

This function is a convex quadratic form (O’Meara
2000) and has a unique minimum (see Proof in the Online
Appendix). Therefore, Equation (2) also has a unique
minimum. However, to improve numerical precision our
algorithms use Equation (2) and not Equation (2b), as in
Equation (2b) we have to divide the variables �i by ω
(another variable) to obtain the ti, which are the true
variables of interest.

We propose two different algorithms. One takes into
account the temporal precedence constraints, while the
other does not. For each algorithm implemented in
our computer program LSD, we have two versions:
weighted, where each term in Equation (2) is associated
with a weight denoted wi =1/�̂2

i (cf. Eq. (4)), and
unweighted (all wi are equal and set to 1). We present the
weighted versions in the following, as the unweighted
versions are simply obtained by fixing the wi to 1.

Linear Dating (LD) Algorithm, Without Constraints

Let B
′ = (b

′
2,...,b

′
2n−1), where:{

b
′
i =bi, for i=2,...,n−1,

b
′
i =ωti −bi, for i=n,...,2n−1.

Then, Equation (1) becomes:{
b

′
i =ω

(
ti −ta

(
i
))+εi, for i=2,...,n−1,

b
′
i =ωta(i) +εi, for i=n,...,2n−1.

These equations can be rewritten, using matrix
notation, as B

′ =ωAT+E, where T = (t1,...,tn−1), E is the
error (noise) vector, and A is a (2n−2)×(n−1) matrix,
which depends on the topology of R, such that for any
i=1,...,2n−2 and j=1,...,n−1, we have:

Aij =

⎧⎪⎨⎪⎩
1, if (i+1<n and j= i+1) or (i+1�n and

j=a(i+1)),
−1, if i+1<n and j=a(i+1),
0, otherwise.

The objective function (Eq. (2)) is then written as
�= (B

′ −ωAT)TW(B
′ −ωAT), where W = (w2,...,w2n−1)

is the diagonal matrix of inversed variances. By the
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pseudo-inverse method, the estimates of ω and T that
minimize �, satisfy ω(ATWA)T =ATWB′. The latter
equation is equivalent to the following system of
equations:

t1 = 1
ws1(1) +ws2(1)

[
ws1(1)

(
ts1(1) −

bs1(1)

ω

)
+ ws2(1)

(
ts2(1) −

bs2(1)

ω

)]
, (5.1)

ti = 1
ws1(i) +ws2(i) +wi

[
ws1(i)

(
ts1(i) −

bs1(i)

ω

)
+ ws2(i)

(
ts2(i) −

bs2(i)

ω

)
+wi

(
ta(i) + bi

ω

)]
,

for i=2,...,n−1. (5.i)

This system of Equations (5) can also be obtained by
taking the first-order derivatives of � with respect to each
variable t1,...,tn−1. Based on Equation (1), ti = ts1(i) −
bs1(i)/ω+εs1(i)/ω. Consequently, Equations (5) mean that
the estimate of ti is equal to the weighted average of
its estimates with respect to all i′s neighbors (2 for
tree root (i=1) in Eq. (5.1), and 3 for other internal
nodes (i=2,...,n−1) in Eqs. (5.i)). The resolution of
Equations (5) can be achieved in linear time (i.e., O(n),
where n is the number of tree tips), while solving such
a system with generic tools requires cubic time (i.e.,
O(n3)). The technical details of the LD algorithm are
given in the Online Appendix. The main idea is to
simplify progressively this system (Eq. (5)) by recursive
replacements using specific tree traversals. After the first,
bottom-up set of replacements, we have

ti = xita(i) +yi + zi
ω

, for i=2,...,n−1,

where xi,yi,zi are constants. (6.i)

After the second, top-down set of replacements, we
obtain

ti = ui + vi
ω

, for i=1,...,n−1,

where ui and vi are constants. (7.i)

By using Equations (7) into Equation (2), � becomes a
quadratic function of one variable ω. Then, it is easy
to compute the unique ω̂ value that minimizes this
function. If ω̂<ωmin, then we set ω̂=ωmin (optimality
is shown in the Online Appendix). Last, ω in Equations
(7) is replaced by ω̂ to obtain all date estimates t̂i.

This algorithm can be extended to non-binary trees.
However, nothing guarantees that the date estimates
satisfy the temporal precedence constraints. This is why
we designed the QPD (quadratic programming dating)
algorithm, which we describe now.

QPD Algorithm
QPD is based on an active-set method, which is

commonly used to solve optimization problems with
linear constraints (Nocedal and Wright 2006). Let
x= (ω,t1,...,tn−1); the function to minimize is �(x)
defined by Equation (2), subject to the constraints
ti −ta(i) �0, for i=2,...,2n−1. For the sake of simplicity,
we do not include the (ω�ωmin >0) constraint, as it is
already accounted for in the LD algorithm, which is part
of QPD. x is a “feasible” point if and only if it satisfies all
the constraints. A constraint i is “active” at x if and only
if ti = ta(i). The active-set method applied to our problem
can be summarized as follows (see the Online Appendix
for details): starting from a feasible point x with C being
the set of active constraints, we compute the minimal
solution of Equation (2) with respect to C, that is, the
minimal solution such that ti = ta(i), for every i∈C. We
thus have to calculate the stationary point (x∗,
∗) of the
Lagrange function:

�
(
x,


)=�(x)−
∑
i∈C


i

(
ti −ta

(
i
)). (8)

We then check if: (i) some constraints are violated
in x∗, and (ii) all constraints in C are useful. C is
updated accordingly, by relaxing the “most useless”
constraint and adding the “most violated” one. The
algorithm stops when all constraints in C are useful and
no more constraints are violated (Karush–Kuhn–Tucker
(KKT) conditions, Boyd and Vandenberghe 2004). With
strictly convex quadratic functions, this method is
ensured to converge to the unique global minimum
(Nocedal and Wright 2006). Although Equation (2) does
not comply with these requirements, a proof of QPD
convergence to the unique minimum is provided in the
Online Appendix.

The active-set method is especially efficient here,
because we can find the stationary point of the Lagrange
function (Eq. (8)) in linear time. Indeed, x∗ is computed
by a modified version of the LD algorithm, which
applies to a new tree obtained from the input tree R by
collapsing the branches corresponding to the active set
C. Then, 
∗ can also be calculated in linear time (Online
Appendix).

The time complexity of QPD is O(f ×n), where f is
the number of iterations needed to reach the optimal
solution, and n is the number of taxa. f depends on the
data and the chosen starting point. We use here the LD
algorithm, initializing C with the violated constraints
(ti < ta(i)) in the LD solution, which are combined to
obtain a feasible point. In our experiments (described
below), QPD performs 3 iterations on average with
simulated trees of 110 taxa, and 69 iterations with
an H1N1 influenza data set of 891 taxa. Although, it
is difficult to extrapolate from these experiments, it
seems that in practice f is much smaller than n, and
thus the computing time of QPD appears to be nearly
linear.
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Estimating the Root Position for Unrooted Trees
Given an unrooted tree, we estimate the root position

by searching for the point in the tree that minimizes the
objective function (Eq. (2)) when the tree is rooted at this
point. A similar approach is used in RTT-based Path-O-
Gen software (Rambaut 2007). In essence, this is the point
that makes the tree the most molecular clock-like. Let R
be an unrooted tree with the internal nodes enumerated
from 2 to n−1, and the external nodes from n to 2n−1.
Let r be a point on a branch [r1, r2] of length b. Let tr be
the date of r assuming r is the tree root, and � a variable
in [0,1] such that the length of branch (r1, r) is equal to
�b; then, the objective function (Eq. (2)) of the tree rooted
at r becomes:

ϕ
(
tr,t2 ...,tn−1,ω,�

)
=(

�b−ω(tr1 −tr)
)2 +(

(1−�)b−ω(tr2 −tr)
)2

+
∑

i �=r1,r2

(
bi −ω(ti −ta(i))

)2
. (9)

Note that we do not use weights (variances) in
the objective function, since weights depend on
their associated branch lengths, which are unknown
for the two branches containing the assumed root.
Optimizing this function without and with constraints
can be done by slightly modifying the LD and QPD
algorithms, without changing their time complexities.
The technical details are given in the Online Appendix.
For each branch, we calculate the root position (�)
which minimizes Equation (9), and then take the
minimum point among all branches. Therefore, the time
complexity is n times that of the LD and QPD algorithms.
Since LD is linear, the corresponding rooting algorithm
is quadratic. For QPD, to avoid exploring all branches,
which could be time consuming with large trees, we pre-
estimate the position of the root using LD, and then
we use QPD to perform a greedy search for the local
minimum around that position. This rooting method is
also applicable when all tips are contemporaneous, thus
representing a new alternative to the standard rooting
methods (midpoint, minimum-variance, etc.).

RESULTS WITH SIMULATED DATA

Data Simulation
We implemented a tree generator based on a

simple birth–death model with periodic sampling
times, mimicking typical intrahost studies with yearly
sampling, or (interhost) epidemic surveillance through
time. We first assumed a SMC, and then a lognormal
relaxed molecular clock (RMC). Let us start with SMC.
At time t=0, there is one single individual (n=1), which
is iteratively subdivided. At each step, one of the n
individuals is randomly selected and divided into two
individuals, resulting in n+1 individuals. The elapsed
time between the previous division event and the new
one is equal to 1/n (i.e., like the standard Yule tree,

where the expected time is equal to 1/n). This process
is continued until we have 1000 individuals. Then we
proceed with sampling and death: the evolution of
a number of individuals (e.g., 750) is stopped, most
of them (e.g., 725) are removed from the tree (or
“culled”), while the remaining ones (e.g., 25) are retained
to be the sampled individuals of the first sampling
time. The process continues with the nonculled and
nonsampled individuals (250 in our example), which
are further divided using the same Yule-type rule until
we again have 1000 individuals to be sampled, culled,
or conserved for the next step. The whole process
is continued until we attain the desired number of
sampling times. The final set of sampled individuals is
exactly the taxon set (or leaves) of the final tree. This
tree is then rescaled so that the time between the first
and the last sampling time is 20 years, with the root
date being zero. An advantage of this scheme is that
the time elapsed from one sampling time to the next
one is constant, thus emulating the sampling of DNA
sequences from an evolving population on a regular
basis, as opposed to standard birth–death tree generators
(Stadler 2010). Moreover, with birth–death trees the
divergence times vary among replicates, while here we
use fixed divergence times for easy estimation of method
accuracy and presentation of the results.

We generated two kinds of trees, intended to simulate
interhost and intrahost HIV evolution (Volz et al. 2013),
by using two death rates (ratio of individuals removed
at each sampling time): 750/1000 was used for interhost
trees, and 995/1000 for intrahost (typically ladderized)
trees. For each, we used 3 sampling times (separated
by 10 years) with 25 selected individuals at each time,
and 11 sampling times (separated by 2 years) with
10 selected individuals at each time. See Figure 1 for
examples of trees. Additionally, we added one outgroup
to simulate the search for the root position using the
standard outgroup-based approach. The length of the
branch from the ingroup root to the outgroup was three
times the length from the ingroup root to the nearest
ingroup leaf. Last, to simulate sequence evolution, we
used the substitution rate ω to obtain the length of each
branch bi =ω(ti −ta(i)), corresponding to the expected
number of substitutions per site along that branch; ω
was equal to 0.006 substitutions per site and per year,
which is similar to the substitution rate of the HIV
env gene (Bello et al. 2008). With each combination of
these parameters, 100 trees were randomly generated.
Hence, there are in total 4×100 SMC trees, denoted as
(death rate/sampling scheme): 750/3×25, 750/11×10,
995/3×25, and 995/11×10.

To simulate trees with RMC, we used the uncorrelated
lognormal model, which is one of the most widely used
in BEAST (Drummond et al. 2006). For this purpose, we
reused the previous trees, but multiplied every branch
length by a random variable following a lognormal
distribution with mean 1 and standard deviation 0.4.
This value is between the estimates we obtained for
pol and env HIV genes (unpublished results). We thus
obtained 4×100 RMC trees.
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FIGURE 1. Examples of simulated trees. Four examples of trees extracted from our simulated data sets. Trees a) and c) are intended to simulate
inter-host evolution of HIV (one tip per host; 750/1000 of the strains are removed at each sampling date). Trees b) and d) are intended to simulate
intra-host evolution of HIV, with its typical “ladder shape” (all tips from a single host; 995/1000 of the strains are removed at each sampling
date). Trees a) and b) have each 3 sampling dates with 25 sampled strains each. Trees c) and d) have each 11 sampling dates with 10 sampled
strains each. See text and Volz et al. (2013) for explanations.

DNA sequences of length 1000 were evolved along
these trees using Seq-Gen (Rambaut and Grassly 1997),
version 1.3.2x. We used the F84 model with a �
distribution with shape parameter 1.0 and 8 rate
categories, a transition/transversion rate ratio of 2.5, and
nucleotide frequencies of (A, C, G, T) = (0.35, 0.20, 0.20,
0.25). These parameter values are similar to estimates
already observed with the env region of HIV (Posada
and Crandall 2001).

To assess the accuracy of the distance-based dating
methods, we inferred trees from these alignments. First,
we used the correct tree topology but re-estimated
the branch lengths using PhyML+F84+�8; the aim
was to measure the impact of topological errors that
are unavoidable in real studies; moreover, we used
these trees to assess the performance of the various
methods to estimate all tree node dates, instead of
the root date only. Second, we used DNADIST+F84+�
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(PHYLIP, Felsenstein 1989, v3.69) to estimate pairwise
evolutionary distance matrices, and then FastME with
SPR option to estimate trees (negative branch lengths
were set to zero); the distance estimation parameters
in DNADIST were the same as those used to generate
the data with Seq-Gen; the aim was to check the
accuracy of a fast distance approach, being easily
bootstrapped or able to tackle very large data sets.
Last, we used PhyML+F84+�8 with SPR option to
infer both the tree topology and branch lengths, that
is, a standard ML method with high accuracy, but
slower than DNADIST+FastME. All these trees were
used in two ways: (i) the outgroup was used to produce
rooted trees, from which the outgroup was deleted; (ii)
we simply removed the outgroup to obtain unrooted
trees. All of our data sets (model trees, alignments,
distance matrices, inferred trees, etc.) are available at
http://www.atgc-montpellier.fr/LSD/.

Methods for Comparison
These simulated data were used to assess the

performance of our two methods (LD and QPD) and
of three other methods: RTT, Langley-Fitch (LF*), and
BEAST (BSMC with a SMC model and BRMC with a
relaxed clock):

• For LD and QPD, if the tree is rooted, the program
uses the given tree; the methods are then denoted
as LD* and QPD*, and we use the “variance” option
(WLS). Otherwise, the root position is estimated
and the methods are simply denoted as LD and
QPD.

• For RTT, we re-implemented the linear regression
method, which takes both rooted and unrooted
trees as input. Given unrooted trees, it estimates
the position of the root by minimizing the sum of
squared residues. Given rooted trees, the method
is a standard regression and is denoted as RTT*.
For dozens of data sets, we checked that our
implementation gives the same result as Path-O-
Gen v1.3 (Rambaut 2007). Unlike other methods
used here, RTT does not estimate the dates of
internal nodes but only the root date and the
substitution rate.

• For LF*, we used the program implemented
in the r8s package v1.8 (Sanderson 2003); the
likelihood function was optimized thanks to
Powel’s algorithm (TN algorithm was much faster,
but returned inconsistent results with ∼20% of our
data sets); this program has no ability to search
for the root position and takes only rooted trees as
input, hence the notation LF*.

• For BSMC and BRMC, BEAST version 1.7 was
used with HKY+�8 (closely related to F84+�8
used to simulate the data) and coalescent with
constant population size tree prior. We used a

SMC with an uninformative prior (clock rate had a
uniform distribution between 0 and 1). The length
of the MCMC chain was 5×106 generations, with
a burn-in of 10% and a sampling every 5×103

generation. For the relaxed-clock data, we also
used a lognormal relaxed-clock model (i.e., the
model used to generate the data); the prior of the
ucld.mean parameter had a uniform distribution
between 0 and 1, and the prior of ucld.stdev had
an exponential distribution with parameter 1/3
(default value). The MCMC chain length was
increased to 20×106 generations, with a burn-in
of 10% and a sampling every 20×103 generations.
These parameter values are standard and default
options were used in all of our analyses. We
increased the burn-in up to 25%, but did not
observe significant changes. Additional runs with
several alternative priors were also performed
(uniform prior in a much more narrow interval
[0, 0.05] for clock.rate and ucld.mean parameters;
uniform prior on the inverse of these parameters;
birth–death tree prior), but without improvement,
and the same held with alternative program
options (Drummond A., Yanez R., personal
communication). Moreover, other runs of BEAST
were carried out to assess the accuracy of internal
node date estimations. We then used the true
rooted tree topology (otherwise date comparisons
are meaningless), and forced it to be constant in
BEAST, so that only the branch lengths were re-
estimated, just as with PhyML (see above). The
length of the MCMC chain was set to 10×106

generations, with a burn-in of 10% and a sampling
every 10×103 generations. In all of our analyses, we
used meanRate estimator for rate estimations with
BRMC, since it was more accurate than ucld.mean,
and clock.rate with BSMC; treeModel.rootHeight
was used to estimate the root date with both
BSMC and BRMC. BEAST xml and log files
with the 800 simulated data sets are available at
http://www.atgc-montpellier.fr/LSD/.

Comparison Criteria
With simulated data, the true value of the parameters

(substitution rate, root and node dates) are known. We
used standard quadratic error measures to compare the
true and estimated values and assess the accuracy of
the methods being compared. An advantage of these
measures is that they can be decomposed into variance
and bias terms, thus indicating whether the estimation
method shows some tendency to over- or underestimate
the true parameter value, and whether the main source
of errors is, or is not, the variance of the estimates.

• For the substitution rate, let ω be the true value, ω̂i
the value estimated by a given method with the ith
data set among m (= 100 in our experiments), and

http://www.atgc-montpellier.fr/LSD/
http://www.atgc-montpellier.fr/LSD/
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ω̄ the average of the m estimates. The accuracy of
that method in estimating the substitution rate is
measured by the relative error:

1
ω

√√√√ 1
m

m∑
i=1

(
ω−ω̂i

)2
,

and the relative bias is defined by:

1
ω

(
ω̄−ω

)
.

• Similar measures are used for the root date, with
relative error defined by:

1
tc

√√√√ 1
m

m∑
i=1

t̂2
i ,

and relative bias:
t̄
tc

,

where t̂i is the estimated root date with the ith data
set, t̄ is the average root date estimate, and tc is
the contemporary time (which is the same for all
trees within each tree model); moreover, remember
that the true root date is zero. These relative
error terms can be interpreted as percentages;
for example, a bias of −0.1 means that the true
value is underestimated by 10%, in average. A
basic result in estimation theory is that the square
of the bias plus the variance of the estimates is
equal to the mean square error. It follows that
our relative bias is less than the relative error and
that their difference corresponds to the relative,
standard deviation of the estimates. We calculated
the confidence intervals of these error measures
using the bootstrap method; for each data set
of 100 trees, we re-sampled 10,000 times with
replacement the set of the 100 estimated values and
computed the corresponding error; then, the 2.5%
and 97.5% quantiles were picked up to form 95%
confidence intervals.

• For the dates of internal nodes, we used the
absolute error (measured in years and thus easily
interpreted) defined by:√√√√ 1

m(n−1)

m∑
i=1

n−1∑
k=1

(
t̂ik −tik

)2
,

where i=1,...,m represents one of the m trees,
and k =1,...,n−1 is one of the internal nodes
(including the root, where k =1), tik is the date of
the node k in the tree i and t̂ik is its estimated value.
Again we used the bootstrap to build confidence
intervals.

Results
The detailed results of all tested methods using

above criteria are available from our web site
http://www.atgc-montpellier.fr/LSD/ and in the
Online Appendix.

Distance-based dating methods have negligible
computing times with these data (∼0.1 seconds or less,
even with unrooted trees where the root position has
to be searched among all edges), except LF*, which is
still fast but requires a few seconds with rooted trees. In
contrast, BEAST requires a few hours with a SMC, and a
dozen hours with a relaxed clock. For a fair comparison,
we also have to account for tree building, as BEAST
infers both the tree and the dates. However, PhyML is
much faster, requiring 8 min for the largest 110-taxon
trees. The computing time difference between distance-
based approaches and BEAST is thus very large (see
Online Appendix Supplementary Table S1 for details),
but does not correspond to gains in estimation accuracy,
as discussed below.

With SMC data (Fig. 2a,c,e), the relative errors are low
(∼5%) and most methods have similar, high accuracy.
RTT and RTT* are a bit less accurate than the others
for both root date and rate estimations, most likely due
to their overly simple model. BEAST is also behind
the others regarding rate estimation, with a substantial
positive bias (up to ∼10% with 995/11x10 trees, Online
Appendix Supplementary Table S2), but performs well
with date estimation, both for the root (Fig. 2c) and
all internal nodes (Fig. 2e). As a general tendency
(Fig. 2a,c, e.g., LD vs. LD*, and QPD vs. QPD*),
molecular clock-based rooting produces similar results
to outgroup-based rooting for both the root date and
the rate, as expected since trees were generated with
SMC. Surprisingly, the accuracy of rate and root date
estimations are not significantly affected by topological
errors: although the FastME and PhyML trees contain a
substantial amount of erroneous branches, we see very
little difference in accuracy between the results obtained
with the true and inferred topologies. Moreover, there
is almost no difference between the results obtained
with FastME (topological error ∼15%, Online Appendix
Supplementary Table S4) and PhyML (topological error
∼10%). This suggests the use of (much faster) FastME
rather than PhyML, when the aim is not to obtain
a fully correct tree topology but to quickly estimate
rates and dates, or to perform bootstrap analyses.
The topological accuracy of BEAST and PhyML are
quite similar (Supplementary Table S4), with BEAST
providing a slight advantage, meaning that the high
error of BEAST in rate estimation is not due to topological
errors, but to the positive bias already indicated above.
BEAST results with the fixed, true topology confirm this
finding (Online Appendix Supplementary Fig. S5).

With RMC data (Fig. 2b,d,f), the relative errors of
all methods are much higher (from ∼10% to ∼20%)
than with SMC data (∼5%). Again, the topological
errors have little impact on the accuracy of rate and
date estimations, and cannot explain the differences

http://www.atgc-montpellier.fr/LSD/


2016 TO ET AL.—FAST DATING ALGORITHMS 91

FIGURE 2. Summary results with simulated data. Panels a), c) and e) contain summary results of the trees with a SMC, panels b), d)
and f) those with a lognormal, RMC. Panels a) and b) show the relative error of the substitution rate estimates, panels c) and d) show the
relative error of the root date estimates, panels e) and f) show the average error (in years) of the data estimates of all tree nodes. See text for the
definitions of these measures. From left to right (see legends) tested methods are: linear dating with tree root estimation (LD); linear dating with
outgroup-based tree rooting (LD*); quadratic programing dating with tree root estimation (QPD); quadratic programing dating with outgroup-
based tree rooting (QPD*); Langley-Fitch that uses rooted trees only (LF*); root-to-type regression with tree root estimation (RTT); root-to-type
regression with outgroup-based tree rooting (RTT*); BEAST with strict molecular clock (BSMC); BEAST with lognormal, relaxed molecular clock
(BRMC).

among the various methods, especially with BEAST the
topological accuracy of which is still slightly better than
PhyML’s (Supplementary Table S4). Again, FastME and
PhyML trees produce rate and date estimates showing
similar accuracy. As expected the main factor is root
positioning, which has a high impact on root date
estimations. If the root is misplaced, the tree cannot be
dated precisely. Among the methods directly inferring
the root position (i.e., without outgroup), LD, QPD,
and RTT show similar accuracy (poor regarding root
date), while BEAST results differ depending on the clock
model. With BSMC the rate is well estimated but the
date is not any better than with direct distance-based

approaches; with BRMC the rate is poorly estimated
due to a high positive bias (>10%), but the root date
is fairly well estimated. Results with the fixed, true
topology confirm these findings: BEAST rate estimations
are not improved (Supplementary Fig. S5), but BEAST
with the RMC model is the most accurate method to
estimate internal node dates (Fig. 2f), which is to be
expected since the data were generated using the very
same model. Moreover, the global average results (Fig. 2)
hide that BEAST does well with model trees with low
death rate (750/1000, Online Appendix Supplementary
Figs. S1–S2), but not so with high death rate (995/1000,
Online Appendix Supplementary Figs. S3–S4). Among
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the methods using outgroup-based rooted trees: LF*
is best to estimate the rate and slightly (but not
significantly) better than LD* and QPD* in estimating
root and internal node dates; RTT* is worse both to
estimate the rate and the root date.

Up until now, we mostly discussed average results
over the four types of model trees (Fig. 2). As expected,
the accuracy of the various methods differs depending
on the model tree (Online Appendix Supplementary
Figs. S1–S4). The accuracy of the estimates is better
with the larger sample of 110 dated sequences, than
with 75 sequences, and the impact is especially sensible
with date estimations since we have 11 sampling times
(every 2 years) instead of 3 (every 10 years). Moreover,
the ladder-shaped trees (995/1000 death rate) are easier
than the more star-like trees (750/1000), an outcome
already observed with real data, for example from
human seasonal influenza (ladder-shaped) versus HIV
(star-like) epidemics (Grenfell et al. 2004). However, the
global properties and the ranking of the various methods
remain similar compared to average analysis (except
with BEAST, see above).

Most results in these simulations were expected.
Among distance-based methods, LF* has the most
realistic (Poisson) model and obtains the best results; LD*
and QPD* use a simplified (normal) version of the LF*
model, and their results are not as good as those of LF*,
although the difference is not significant in most cases;
RTT* is the worst distance method, as expected since its
model is too simple and does not account for the fact that
the root-to-tip paths are highly correlated (Drummond
et al. 2003b). The main surprise comes from the results
of BEAST, expected to be the best due to its sophisticated
model, being identical or very close to the data model,
but in fact the results on the data sets used here do not
suggest this. However, results in Figure 2 have to be
interpreted with care: first, BEAST in our experiments
does not use an outgroup as the best distance approaches
do, and thus should be compared to the direct methods
(LD, QPD, and RTT); second, BEAST shows a substantial
bias with rate estimation that remains to be explained,
but performs well (Fig. 2d) to very well (Fig. 2f) with
dating.

Let us conclude these simulations with practical
guidelines. Tree rooting is a difficult task; thus, if
possible, use an outgroup and compare the results
with the direct ones, obtained by assuming some
(relaxed) clock model. When having a well-supported
and consistent root position, use LF* or QPD*, selecting
the latter with large data sets and bootstrap studies. ML
trees are preferable to minimize topological errors, but
(fast) distance-based trees provide nearly identical rate
and date estimates. LD and QPD (resp. LD* and QPD*)
have nearly identical accuracy in these simulations.
However, LD and LD* violate a substantial number of
temporal constraints (~4% by more than 1 month with
110-taxon trees and RMC), and the advantage of QPD
and QPD* will become even more apparent with real
(imperfect) influenza data.

APPLICATION TO AN INFLUENZA DATA SET

To illustrate the results of our algorithms on large data
sets, we used a set comprising 1194 strains of influenza
A virus subtype H1N1pdm09, which caused the first
human influenza pandemic of the 21st century. The
first two cases were reported in children from southern
California on 21 April 2009. Soon after, other cases were
reported, and by 11 June 2009, 27,000 cases of infection
had been observed from 74 countries, including 141
deaths. On that date, the World Health Organization
(WHO) declared a pandemic, and the end of the
pandemic was declared in August 2010 (for details, see
Christman et al. 2011).

Molecular epidemiology studies on this virus were
performed at an early stage of the epidemic, using 242
strains collected between 30 March and 12 July 2009
(Lemey et al. 2009; Rambaut and Holmes 2009). These
studies indicated that this virus has a high evolutionary
rate of 4.96×10−3 [4.10×10−3; 5.87×10−3] substitutions
per site and per year (for concatenated hemagglutinin
(HA) and neuraminidase (NA) genes), and the estimated
date for the tMRCA was 27 January 2009 [29 December
2008; 22 February 2009]. This MRCA date was confirmed
by Hedge et al. (2013) using 328 whole virus genomes
sampled in North America before April 2010. To our
knowledge, no other molecular dating study has been
published on a more comprehensive set of strains
sampled over a longer time period.

The (1194) strains used here were collected worldwide
between 13 March 2009 and 9 June 2011 (see Online
Appendix Supplementary Table S5 for further details).
The A/Swine/Hong Kong/1110/2006 (subtype H1N2)
strain was used as outgroup to root the phylogenetic tree.
The HA gene sequences were aligned by codon using
MUSCLE in MEGA 5.0 and checked manually, resulting
in an alignment of 1194 (+1 outgroup) sequences
and 1701 sites. As many sequences were identical but
collected at different time points, we retained for each
set of identical sequences only one exemplar with a
sampling date equal to the average of the dates of
the corresponding strains. We thus obtained 891 (+1
outgroup) different sequences, each with a unique
sampling date, from which a phylogenetic tree was
computed. Note that grouping identical sequences does
not impact phylogeny inference (identical sequences are
separated by branches of length zero) but accelerates the
computations and is consistent with our dating model
which has difficulty in dealing with branches of length
zero but different dates at both extremities (see Eqs.
(1)–(4), and notably the variance term). However, this
simplification was not used with BEAST, which handles
such data due to its coalescent, population genetics
model.

To run our dating algorithms, we first have to infer
a phylogenetic tree. Two methods were used, as in
our simulation study, with different speed/accuracy
tradeoff: (i) a fast distance-based method, namely
FastME with the SPR option and distances estimated
by DNADIST under F84+� (the � parameter was set
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to 1.0, as in other experiments); (ii) a more accurate but
slower ML method, namely PhyML with SPR option and
GTR+I+�4. For both methods we analyzed the ingroup
sequences only and considered both the outgroup-
based rooted tree, and the unrooted tree obtained by
root removal. To compute confidence intervals we used
the bootstrap method with 100 replicates generated
with SEQBOOT from the PHYLIP package. To improve
computational efficiency, the tree topology was kept
constant and equal to the topology inferred using the
original data set; only the branch lengths were re-
estimated from the bootstrap samples.

We compared the same methods as in the previous
sections, using the same options. LD and QPD were run
with the “variance” (WLS) option both in the rooted and
unrooted settings; they are denoted as LD* and QPD*
with rooted trees. Langley-Fitch (LF*) from r8s was run
with the rooted tree only, as it has no means to infer
the tree root. RTT (our implementation, equivalent to
Path-O-Gen v1.3, Rambaut 2007) was performed with
both the unrooted (RTT) and the rooted (RTT*) trees.
BEAST was run from the complete, ingroup alignment
using GTR+I+�4, a coalescent constant population size
tree prior and two molecular clock models: strict (SMC)
and relaxed lognormal (RMC), with normal clock priors
(mean=4×10−3 substitutions per site per year (s/s/y),
standard deviation=2×10−3 s/s/y). Two independent
MCMC chains were used per model, with a minimum
of 250 million generations each, sampling every 10,000
generations. The first 25 million generations in each run
were discarded as burn-in, and the Highest Posterior
Density statistics for each parameter were calculated
over a posterior sample of 1000 states using Tracer 1.5.
Moreover, as we observed a strong discrepancy between
BEAST and the other methods regarding substitution
rate estimations (see below), we also launched BEAST
with the cleaned data set where identical sequences
were grouped (891 taxa), and using the PhyML rooted
tree topology which was kept constant all along the
computations, solely sampling the branch lengths and
model parameters. Such use of BEAST seems to be
rather uncommon, but corresponds to the way a number
of other dating programs proceed, for example, PAML
(Rannala and Yang 2007).

All methods except BEAST were run on our server
(Intel(R) Xeon(R) X5650 @ 2.67GHz, single core, no
parallelization), while BEAST was run on a Dell
Precision T7500 workstation (Intel(R) Xeon(R) X5687
@ 3.6GHz CPUs, one core per model) using the
Beagle library with the SSE, Double Precision, and
Dynamic Rescaling options (Ayres et al. 2012). The
computing times (Table 1) to obtain point estimates for
the substitution rate and all node dates with distance-
based approaches are very fast: at most 1 second with
rooted trees for LD*, QPD*, and RTT*, and ∼1 min for
LF* which is the slowest distance-based method; with
unrooted trees, the methods inferring the tree root (LD,
QPD, and RTT) are inevitably slower as they have to
search all tree branches, but are still fast requiring less

TABLE 1. Computing time for the H1N1pdm09 Flu data set

Original 100 bootstrap
sample samples

Phylogeny inference
Distance-based 127 3434

(DNADIST+FastME)
ML (PhyML) ∼60 h ∼35 h
Dates and rate estimation
LD 31 2791
LD* <1 15
QPD 38 3329
QPD* 1 120
Root-to-tip 12 2765
Root-to-tip* <1 2
Langley–Fitch* 54 4177
BEAST (BSMC and BRMC) ∼20 d –
BEAST* (BSMC* and BRMC*) ∼5 d –

Note: Time is expressed in seconds, except otherwise specified. With
bootstrap samples, only the branch lengths were reoptimized; the tree
topology was kept constant and equal to the topology inferred using
the original alignment. BEAST was run to infer all model parameters,
including the tree topology and tree root, while with BEAST* we
used the PhyML rooted tree topology which was kept constant along
the computations. The asterrisk (*) denotes methods using out-group
based rooted trees.

than 1 min. To obtain bootstrap intervals the computing
times are multiplied by 100 as we have 100 replicates,
varying from a few seconds (RTT* and LD*) to ∼1 h
(LF*), with QPD* requiring ∼2 min. This shows the
advantage brought by our algorithms, since both LF*
and QPD* use closely related models and show similar
accuracy (Fig. 2). However, the time to build trees has to
be accounted for, especially when bootstraps are used.
DNADIST+FastME is remarkably fast, requiring ∼1 h to
infer the original and 100 bootstrap trees, while PhyML
is much slower, requiring ∼4 d for the same task. To
get a good posterior sample of time resolved Bayesian
phylogenetic trees with the 1194 sequences requires
running BEAST for a minimum of 20 d, using at least
250 million MCMC generations at approximately 2 h per
million generations. For the 891 cleaned sequence set,
using a fixed rooted, PhyML topology in BEAST, only
50 million MCMC generations are needed, taking 5 d at
approximately 2.5 h per million generations.

We see little difference (Fig. 3) between the results
obtained with FastME and PhyML trees, especially for
the tMRCA where point and interval estimates are nearly
the same for every distance-based estimation method
(except root-to-tip). This strongly suggests using FastME
when the focus is on rates and dates, at least for large
data sets, as it is several orders of magnitude faster
than PhyML. Moreover, both tree building and dating
are then consistently based on similar distance-based
approaches.

Regarding rate estimation (Fig. 3a), all distance-
based methods provide similar results, except root-
to-tip regression with faster rate estimates and much
larger confidence intervals. QPD also shows relatively
large intervals, likely due to the fact that it has
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FIGURE 3. Estimations of the substitution rate (panel (a)) and tMRCA (panel (b)) with the H1N1pdm09 Flu data set. Distance-based estimation
methods are run with both DNADIST+FastME and PhyML trees. LD, QPD, and RTT (root-to-tip) are run from unrooted trees and search for
the best tree root position. LD*, QPD*, LF*, and RTT* are run using outgroup-based rooted trees. BEAST is run from the ingroup sequence
alignment, with both a strict molecular clock (BSMC) and a lognormal relaxed clock (BRMC); BSMC and BRMC infer the tree topology and
root position, while BSMC* and BRMC* use the fixed, rooted tree topology inferred by PhyML. The box plots represent the median, maximum,
minimum, 97.5% and 2.5% quantiles of the bootstrap estimates with distance-based methods, and of the posterior distribution with BEAST. The
distance-based point estimates and BEAST posterior means are represented by a dot.

to infer the tree root and is thus subject to more
variability and possible rooting errors. However, the
main fact here is that distance-based and BEAST rate
estimates (obtained from the complete data set, while
optimizing the tree topology) widely differ (∼3.0×10−3

and ∼6.5×10−3, respectively, with non-overlapping
confidence and credibility intervals). With simulated
data we found that BEAST with the specified priors
and options may overestimate the substitution rate
(Online Appendix Supplementary Tables S2 and S3).
We also observed similar discrepancies between both
approaches on other biological data sets (results not
shown). However, the gap here was so large that
we ran BEAST with the cleaned data set and the
fixed PhyML rooted tree topology that was used with
other approaches. Then, BEAST rate estimates (BSMC*
and BRMC* in Fig. 3a) became much closer to the
others, being still somewhat faster (∼3.5×10−3 instead

of ∼3.0×10−3) but with mostly overlapping intervals.
BEAST (combined with TREEANNOTATOR) infers a
tree where ∼2% of the temporal precedence constraints
are violated with the complete data set, while with the
cleaned data set and the fixed PhyML rooted tree, all
constraints are satisfied. The reasons for these findings
are still unclear. One explanation could be that with such
a large data set (>1000 sequences) BEAST has difficulty
in converging on a reasonable rooted tree topology,
notably because it does not use any outgroup to root the
tree. Such calculations in a Bayesian setting could simply
be too heavy, thus supporting the use of simpler PAML-
like approaches for estimating dates and rates from fixed
rooted tree topologies.

Paradoxically, no such gap is observed for the date of
the MRCA (Fig. 3b): the best distance-based methods,
namely QPD* and LF*, find nearly the same point
estimates and confidence intervals as BEAST used in
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a standard free-topology way, at least with a strict
molecular clock (BSMC), that is, end of 2008. This
date is compatible with Rambaut and Holmes (2009),
Lemey et al. (2009) and Hedges et al. (2013) studies,
but slightly older, as expected due to our larger data
set incorporating more ancient strains. When using a
fixed rooted tree topology, BEAST tMRCA becomes
clearly older by 1 year or so, especially with a relaxed
clock (BRMC*). However the discrepancy with distance
methods involves only the MRCA and a few basal
nodes (2 nodes with difference >6 months between
QPD* and BSMC*, and 22 with BRMC*), while for
most of the nodes the dates are highly similar (Pearson
correlation coefficient with all node dates: QPD*/BSMC*
≈ 0.95, QPD*/BRMC* ≈ 0.91). The main difference
among distance-based methods is between those using
an outgroup to root the tree (LD*, QPD*, LF*, and
RTT*) and the others (LD, QPD, and RTT) which infer
the root position from the ingroup sequences only. The
latter show more variability, larger confidence intervals,
and tend to produce older date estimates, around the
beginning of 2008 (these intervals and dates, however,
are still statistically compatible with those of other
methods). Again this larger variability is likely explained
by the difficulty of tree rooting. Another factor for LD,
and to some extent LD*, is the absence of temporal
constraints: we see that their confidence intervals include
a few root date estimates that are more recent (mid-2009)
than our earliest strains (13 March 2009). This is clearly
impossible and shows the advantage of incorporating
temporal constraints, as in QPD and QPD*. With this
data set, the solution of LD has ∼7% of branches such
that the descendant node is older by 1 month or more
than its parent (∼1.5% when the time difference is larger
than 2 months, and ∼0.5% with 3 months).

To summarize, while the best distance-based methods
(QPD* and LF*, used with FastME) are considerably
faster than BEAST (especially QPD*, with negligible
computing times), their dating results are quite similar.
Regarding substitution rate estimation, we observe a
large discrepancy between distance-based methods and
BEAST, when used in the usual way estimating all
parameters, including the tree topology and its root.
However, with the fixed rooted tree topology, BEAST
estimates of the substitution rate become similar to those
of distance-based approaches.

DISCUSSION AND CONCLUSION

We have described very fast algorithms to estimate
rates and dates from serial data. These algorithms
are based on a Gaussian noise, least-squares model,
simplifying the Langley and Fitch’s (1974) Poisson model
implemented in the r8s package (Sanderson 2003). We
showed that this model should be robust to uncorrelated
violations of the molecular clock, and our simulation
results confirm this theoretical prediction. LD uses a
pure linear algebra approach, while QPD accounts for
temporal precedence constraints, which appears to be

important with real data. Given an input tree with dated
tips, our algorithms provide the user with estimates
of the substitution rate, the root date and the dates of
all internal tree nodes, a task that is not achieved by
RTT (also based on a simple, least-squares approach,
but not able to date internal nodes). Our algorithms
can be used to root the input tree when no outgroup
is available, a feature that is not available in the r8s
implementation of LF, and would be time consuming
in the Poisson setting. Consequently, LD and QPD are
also new fast, practical methods for tree rooting, which
represent an alternative to the standard midpoint and
minimum-variance approaches.

Computer simulations show that the accuracy of
our algorithms is better than RTT’s, and just slightly
behind LF’s with rooted trees. Compared to BEAST,
our algorithms (combined with standard tree building
methods) have a similar or better accuracy in estimating
the substitution rate, while regarding dates the results
depend very much on the presence of an outgroup
and the way BEAST is used, estimating all parameters
including the tree topology and its root, or using a
fixed rooted tree topology. Globally, we did not observe
any obvious limitation of our algorithms compared
to BEAST, with simulated as well as real data sets.
Moreover, our results clearly show the importance of
having an accurate root position, a difficult goal when
no outgroup is available and with relaxed (realistic)
molecular clock.

Our algorithms require (quasi)linear computing times
with rooted trees, as a function of n, the number of leaves.
With unrooted trees, the computing time is (nearly)
quadratic in n. This is obtained with complex algorithms,
exploiting the closeness between least-squares and linear
algebra; we also exploit the tree structure which makes it
possible to design fast recursive procedures. This speed
is important for current applications of phylogenetics.
In Mourad et al. (2015), we analyzed a tree containing
∼24,000 dated HIV strains; running QPD* required ∼30
min on a standard desktop, while LF from r8s did not
return any result after 2 weeks of computation. LSD has
also been used by the members of the PANGEA_HIV
consortium to study the phylodynamics of HIV
epidemics in Africa using very large data sets (Fraser
C., Ratmann O., personal communication; http://www.
pangea-hiv.org/Projects/#phylodynamic, last accessed
October 2015).

Our approach could be developed in several
directions. First, we currently use a bootstrap approach
to obtain confidence intervals, which is possible due to
the speed of the algorithms, but still slow. Much faster
approaches could be designed, for example, using the
second derivative of the log-likelihood (least-squares)
function. Second, we have described here the application
of these algorithms to serial phylogenies with dated
tips; easy adaptations should make it possible to use the
very same approach to deal with phylogenies with time
calibration points, attaching dated tips to ancestral nodes
and using intervals (constraints) to account for ancestral
date uncertainty. Last, an important direction is to

http://www.pangea-hiv.org/Projects/
http://www.pangea-hiv.org/Projects/
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implement fast methods that are able to cope with more
complex, correlated molecular clock models, typically
combining the least-squares framework with penalized
criteria, similar to Sanderson (2002), or using some of
our algorithmic solutions to deal with multi-normal
approximations of the likelihood function (Thorne et al.
1998).
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