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ABSTRACT

Swarm-based Metaheuristic Optimization Techniques (MOT) are the dominant among all techniques, particularly
owing to their simple nature and robust performance. The Whale Optimization Algorithm (WOA), a swarm-based
MOT inspired by the hunting strategy of the humpback whale, has thus far shown promising results. However,
like all MOT, the WOA is not without drawbacks. These demerits are a slow convergence rate and poor exploi-
tation capability. This may prove to be problematic when applied to optimization problems requiring high pre-
cision results. Over the past few years, there has been proposed modifications to the conventional algorithm.
However, experimental analysis highlights the need to further enhance the properties of the algorithm. This work
proposes an enhanced WOA for exploitation capability and stability enhancement. The proposed algorithm in-
troduces various modifications to the position update equations of the conventional algorithm, as well as a
modified algorithm structure. The proposed algorithm was compared to various state-of-the-art MOT, as well as
modified WOA proposed in recent literature. When applied to the CEC 2019 benchmark functions, the proposed
algorithm produced the best result in 7 of the 10 test and had the most superior overall placement. When applied
to practical problems, the algorithm once again demonstrated superiority. In addition, it was observed that the

proposed algorithm exhibited a superior convergence rate to the other compared techniques.

1. Introduction

Metaheuristic Optimization Techniques (MOT), as the name suggests,
are problem independent control techniques which has gained rapid
popularity in the application of complex engineering problems. This can
be attributed to their simplicity, flexibility, and capability to solve
complex problems at a high efficiency rate. Metaheuristic techniques are
based strongly on the concept of randomness, and search for optimal
solutions based on diversification and intensification. Diversification is
the scattered search of an entire search space and intensification is the
search in a particular area of a search space [1]. Diversification and
intensification are commonly referred to as exploration and exploitation
respectively. MOT is based on various aspects of everyday life, such as the
human body, the laws of physics and the behaviours of animals in their
natural habitat [2]. Critical evaluation of the working processes of these
aspects has allowed for accurate mathematical modelling of various
nature-based occurrences. This in turn has been used to solve complex
engineering problems successfully and optimally.
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While there does not exist any definitive way to categorize MOT, it
can usually be classified into four categories [2, 3]. These are
swarm-based, physics-based, evolutionary based and human-inspired.
From the four categories, swarm-based MOT is dominant among cur-
rent literature. This can be attributed to their simple structure and
effective results, even when attempting to optimize high dimensional
problems. Delving into swarm-based MOT, is it observed that Particle
Swarm Optimization (PSO) is the most established and utilized method
for optimization. PSO is known for its merit of a fast convergence rate [4,
5] but suffers the demerit of being trapped at the local optima [4, 5, 6].
For a MOT to achieve strong results, there needs to exist a balance be-
tween exploration and exploitation. Several studies have been applied to
the conventional algorithm to mitigate this demerit. One approach
developed a new formula to dynamically change the inertial weighting
factor [7]. While this did produce an improvement in results, there still
existed room for improvement. The method outlined in [8] stochastically
chooses a particle from the population, uses it to generate a new particle,
and compared this particle to the worst particle in the swarm. If the new
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particle has a better fitness, it takes the place of the worst particle within
the swarm. The approach in [9] developed a novel search equation to
enhance the exploration capabilities of PSO. When tested on various
benchmark functions, this method produced outstanding results.

Apart from PSO, another well utilized swarm-based MOT is the
Artificial Bee Colony (ABC) algorithm. The ABC optimization algorithm
is based on the foraging behaviour of a colony of bees. The ABC opti-
mization technique is simple in structure and implementation and has
thus far produced promising results. The merit of ABC is a strong
exploration capability [10]. However, it suffers the demerit of a poor
exploitation capability [11]. Due to the encouraging results presented in
current literature, ABC has come under intense investigation, and sub-
sequently various modifications have been developed. One such
improvement proposed the modification of the initialization of the bees,
which is conventionally done at random. This modification was based on
the chaotic search. Further, inspired by Differential Evolution, the search
equation of ABC was modified and written in terms of the position of the
best bee, as well as the position of various other randomly chosen bee
[11]. Two new search equations were presented in [12], which are also
based on the position of the best bee, as well as the positions of various
other bees chosen as random. The difference is that in this case, the
previous position of the current bee is considered. A selective probability
was used to choose between the two search equations, resulting in a
superior balance between exploration and exploitation. A minor modi-
fication of these two equations is presented in [13], but this small change
led to a much better result. In addition to the new equation proposed in
[13], Orthogonal Learning was utilized to further enhance the results of
the algorithm. While proving to be successful, this algorithm was highly
complex in nature.

The Whale Optimization Algorithm (WOA) is a MOT which is inspired
by the hunting tactic of the humpback whale [14]. Proposed by Mirjalili
and Lewis in 2016, this relatively new MOT has shown promise in the
optimization of complex engineering problems. This is largely due to the
algorithm displaying the merit of a strong global search ability [15].
However, like all other MOT, the WOA suffers two critical demerits.
These are a slow convergence rate and poor accuracy [16]. Since its
inception, the WOA has come under investigation, albeit not extensively.
In [17], Gaussian distribution strategies are used to simultaneously
enhance the accuracy and convergence rate of the algorithm. However,
this work only tests the proposed algorithm in 25 and 30 dimensions and
utilizes the same search range across all test functions. The paper in [18]
makes use of quadratic interpolation and a dynamic strategy to enhance
the exploitation ability of the algorithm. This was aimed at improving the
algorithm when attempting to solve large scale problems. The scholars in
[19] proposed a modified technique for COVID-19 X-Ray image seg-
mentation. The co-efficient vector A, as well as the constant value b are
dynamically changed to improve both exploration and exploitation.
When compared to various other modified versions of the conventional
WOA, the proposed technique yielded a superior performance. In [20], a
single dimensional swimming based WOA was proposed. This method
was tested on a large range of dimensions, but the minimum dimension
was 20. In [21], a Levy flight based mutation, along with a pattern search
mechanism are integrated into the conventional WOA. The mutation
enhances the exploration and exploitation capability of the algorithm,
whereas the patter search improves convergence rate and stability. The
proposed technique was utilized for parameter identification of solar
cells and photovoltaic modules.

Considering the modification proposed in [22], a change to the algo-
rithm structure is presented. This is along with a new position update
equation for the encircling prey method. The new equation utilizes the
positions of three mutually exclusive whale, which are different to the
whale being updated. The algorithm structure change is in terms of a
newly randomized number in the domain [0,1]. The positions of the
whales are then updated according to the magnitude of this new ran-
domized number. Hybridization of the WOA with other MOT have also
been proposed in existing literature. In [23], the Grey Wolf Optimization

Heliyon 8 (2022) e11027

algorithm, known to exhibit a strong local search ability, is integrated into
the WOA (which lacks this aspect). However, the algorithm was tested
using only one-dimension magnitude. The WOA was hybridized with a
well-known evolutionary MOT, known as Genetic Algorithm, in [24].

In [25], the WOA was hybridized with the sine-cosine algorithm, a
physics-inspired MOT. The proposed algorithm enhanced the exploration
position update equation of the WOA via utilization of the position up-
date equation of the sine-cosine algorithm, which makes use of four
randomly generated numbers in the domain [0,1]. There exist two
equations for the exploration search, with utilization determined by the
magnitude of one of the random numbers in relation to a critical value.
The authors in [25] applied the proposed algorithm to the IEEE 69-bus
test system and compared to the conventional WOA. While producing
an enhancement in the convergence rate and minor advancement in so-
lution accuracy, the proposed algorithm was not rigorously tested on
various functions and at various dimension magnitudes. The WOA was
combined with simulated annealing, another physics-inspired MOT, in
[26]. The proposed approach utilizes simulated annealing after the WOA
has completed running. Further, the concept of mutation and tournament
selection were added to the position update equations of the WOA. The
algorithm in [27] introduces four operators into the conventional algo-
rithms. These are differential evolution, density peak clustering strategy,
nonlinear parameter design and opposition-based learning method. The
proposed technique was tested on various benchmark functions, as well
as the seismic inversion problem and compared to various modified WOA
technique. The proposed algorithm generated superior results in terms of
average value and standard deviation. Considering convergence, the
proposed algorithm exhibits superiority after the completion of about 35
iterations. Quadratic interpolation and Levy flight is utilized in [28] to
enhance the accuracy of microarray data classification. When compared
to another modified WOA, the proposed algorithm generated a superior
accuracy. However, no information concerning convergence rate was
provided. In [29], the concept of correction factors are applied to the
various position update equations of the conventional WOA. When tested
on a range of benchmark functions and compared to other conventional
algorithms, the proposed technique produced the overall best average
result. The proposed algorithm was further applied to an adaptive fuzzy
logic PID controller for load frequency control. The result proved to be
remarkable, but was not fared against other algorithms, thereby
comprising the validity of superiority.

As evident, there has been proposed modifications to the conven-
tional WOA. However, it is observed that there still exists a lack of pre-
cision, as well as a sub-par convergence rate. Both exploitation and rate
of convergence are critical parameters in the performance of optimiza-
tion techniques. In numerous applications, even a change of a fraction of
a percentage may yield large savings in resources. While the relevant
proposed algorithm succeeded in their objectives, there still exists gaps in
application. The authors in [18, 20] and [22] do not consider small
dimension magnitudes, and only apply the proposed algorithm to clas-
sical benchmark functions (as opposed to modern functions). In [21],
there was no comparison to any other MOT, even the conventional WOA.
The article outlined in [23] improves slightly in this aspect, making
comparisons with conventional algorithm. However, no proposed tech-
niques were evaluated. Considering [19, 24] and [26], application was
made only to one real-world engineering problem. Further, no applica-
tion to CEC benchmarks functions, or any other functions, were made.

These deficiencies in current literature compromises the validation of
the proposed novel ideas for global optimization, particularly in appli-
cations requiring high-precision results. An example of such is the gain
values of PID controllers, where a low accuracy may result in sub-optimal
controller performance. In electrical engineering, such problems are load
flow analysis, economic load dispatch, and co-ordination of protection
relays [30]. This correlates to optimal weight design of gear systems and
machine scheduling in mechanical engineering [31]. In the civil and
geotechnical engineering discipline, such examples are pile and rock
design, and rock and soil mechanics [32]. There are also various
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optimization problems in other disciplines, like chemical engineering
and computer engineering, where a high solution accuracy is imperative.

In this paper, various modifications are applied to the conventional
position update equations of the WOA. Further, there is a change in the
structure of the algorithm. Firstly, the stochasticity of the exploration
search is improved. Then, via the use of parameters already contained
within the algorithm, all three position update equations are modified.
The proposed algorithm also allows the whales a chance to undergo a
dual position update, if a criterion is met. Lastly, a critical fragment of the
well-known ABC optimization algorithm is deployed in the proposed
scheme. The aim of these updates is to mitigate the drawbacks of the
conventional WOA, particularly in applications requiring high precision
results. To demonstrate extensive testing, the proposed algorithm is
applied to the CEC 2019 benchmark functions and compared to the
conventional WOA, modified versions of such, as well as a recently
proposed state-of-the-art technique. Further, to evaluate the true per-
formance of the algorithm, the algorithm is applied to the optimal design
of a pressure vessel. The rest of the paper is as follows. Section two de-
scribes the conventional WOA, including relevant equations and imple-
mentation procedure. Then, the proposed WOA is described in detail in
section three. This provides a clear background into each modification
proposed, as well as the resulting position update equations and algo-
rithm structure. Section four presents the results of the experiments un-
dertaken, as well as a critical analysis of such. Section fives concludes the
research work done in the paper.

2. The Whale Optimization Algorithm

Whale optimization algorithm (WOA) is inspired by the hunting tactic
of the humpback whale. The hunting strategy of the humpback whale is
separated into three parts: searching, encircling and bubble-net attacking
[14, 33, 34]. During searching, the humpback whales exchange infor-
mation about prey to each other. This is to ensure that all the whales stay
close to the prey. Consider the following [35, 36]:

Xi(t) = [Xi1(t), Xia(t)... Xip(t)] (€D)]

Where X;(t) is the current position of the i whale and D is the number of
search space dimensions. The position of the whales at the next sampling
instant can be updated using three methods. The first method is via a
random search. This is also known as exploration and is shown as [14, 35,
36]:

Xi(t+1) =X.(t) — AC x X (t) — X;(t)| @

Where X, (t) is the position of a whale chosen at random and A and C are
coefficients. A is based on the current and maximum iteration numbers,
as well as a random number in the range [0,1]. C is based only on a
random number in the range [0,1]. It is important to note that the
random numbers used in the evaluation of A and C are generated inde-
pendently. The second method is to encircle the prey. To encircle the
prey, each of the whales update their positions based on the best position
found thus far. This update is represented as follows [14]:

Xi(t+1) =X, (t) — A|C x X, (t) — X;(1)] 3)

Where X,,(t) is the best position found thus far (at iteration t). The third
method is via the use of bubble net attacking. Bubble net attacking is a
mathematical model used to imitate the spiral movement of the hump-
back whale [30, 31]. In bubble net attacking, the whales update their
positions as follows [14, 35, 36]:

Xi(t+1) =X,(t) — A|C x X,(t) — X;(t)| e x cos(2xl) )

Where b is a limited constant and 1 is a random number in the range
[-1,1]. The method of position updating to be used is based on a random
number P in the range [0,1], as well as the value of A. If P is less than 0.5
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Figure 1. Structure of WOA [37].

and the magnitude of A is greater than one, the whale positions are
updated using encircling of the prey. If P is greater than 0.5 and the
magnitude of A is greater than or equal to 1, the whale positions are
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Figure 2. Behaviour of coefficient A.
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Figure 3. Behaviour of coefficient C.

updated randomly. Else, the bubble net attacking method of position
updating is used [14].

Initially, the required parameters are defined. Then, each whale is
given a random position. The fitness of each whale is calculated and the
whale with the best fitness value is noted. The random numbers P and A
are then generated. If the magnitude of A is less than 1 then the position
of each whale is updated using (4). If P is less than 0.5 and the magnitude
of A is greater than one, then the position of each whale is updated using
(3). Lastly, if P is greater than or equal to 0.5, the position of each whale
is updated using (2). After the update is completed, the fitness of each
whale is calculated and replaces the current best fitness value (of that
whale) if its value is superior to that of the current best. This continues
until all iterations have been completed. Once this is so, the whale with
the best fitness is said to be at the most optimal position [14]. The steps to
execute the WOA can be seen in Figure 1 [37].

3. An enhanced Whale Optimization Algorithm

The proposed WOA introduces various modifications to the position
update equations of the WOA, as well as a change to the general structure
of the algorithm. The aim of such is the mitigate the two common de-
merits of the WOA: low accuracy and slow convergence, as well as to
prevent possible local optima entrapment at higher dimension optimi-
zation problems.

To enhance the stochasticity of the exploration search method, the
equation outlined in (2) is modified. This is via introduction of the
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Figure 4. Behaviour of the tangent of coefficient A.
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Figure 5. Behaviour of the coefficient of tangent C.

position of another randomly chosen whale. This whale may be the same
as the one already utilized in the current equation, or different. As in the
original exploration search, the position of the current whale position is
subtracted from the product of coefficient C and the second randomly
chosen whale. The product of this value, as well as coefficient A, is added
to the original equation.

The exploration search then becomes:

Xi(t+1) =X (t) — A|C x X (t) — X;(t)| + A|C x X2 (t) — Xi(t)] 5)

Where X, (t) is the position of the second randomly chosen whale.

To further improve the search diversity and hence achieve an
enhanced search accuracy, a fragment of the well-known ABC is utilized.
In the conventional WOA, upon completion of all fitness values, each
value is fared against the current best value. If a value is superior to the
current value, it replaces the previous best value, and the corresponding
whale positions now become the optimal positions. In the proposed
technique, if the fitness value of a whale is not deemed superior to the
current best, the position of that particular whale is updated as follows:

t
Xi(t+1)= (Xi(t) + <m> X (Xp(t) —X,~(t))’ 6)
Where t is the current iteration number, Maxe, is the maximum number

of iterations and X;(t) is a randomly chosen whale from the population.
The position of X;(t) must be different to X;(t).
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Figure 6. Behaviour of the product of the tangent of A and C.
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It is observed that the coefficient A utilized in the conventional WOA
is a function of a linearly decreasing number. This number is a function of
the current iteration number, as well as the maximum number of itera-
tions. However, another component of this coefficient is a stochastic
number, which lies in the domain [0,1]. An identical phenomenon is
observed with the coefficients C (utilized in the exploration and encir-
cling prey search position update equations and 1 (utilized in the spiral
search position update equation). The stochastic nature of A is shown in
Figure 2. The magnitude of A can be seen to be oscillating between -1.5
and 2. The stochastic nature of coefficient C is shown in Figure 3. The
response of C is nearly identical to A, with two differences. Firstly, the
magnitude oscillates between -0.5 and 2 and secondly, the frequency of
ripples seems to be more than that of the response of A. Considering the
trends of coefficients A and C, it is observed that the effect of a linearly
decreasing, or increasing number, on the effect of the WOA is yet to be
investigated.

When applied to PSO, a linear increasing coefficient outperformed a
linear decreasing one in terms of convergence rate and solution accuracy
[38]. Therefore, a linearly increasing coefficient, which is a function of
the current and maximum iteration numbers, is added to the second
terms in (2) and (3), and the first term in (4). In [8], the concept of
stochasticity was added to the cognitive and social constants, as well as
the dynamic inertial weighting factor which are present in PSO. The
results of this experiment produced a superior convergence rate to
various other modified PSO algorithms. Utilizing this concept, a random
number in the domain of [0,1] is added to the second terms in (2) and (3),

and the first term in (4). Note that the three random numbers generated
are unique to each other but may be equivalent in magnitude.

To further enhance the exploitation capability of the WOA, the
tangent of the two linearly decreasing coefficients A and C are utilized to
create a new term in each equation. Figure 4 shows the plot of the tangent
of coefficient A. It is observed that the value of the coefficient fluctuates
around the zero point, both in the positive and negative. A similar phe-
nomenon is seen in Figure 5, which displays the plot of the tangent of
coefficient C. The difference, however, is that in Figure 5, there exists
spikes of large magnitudes. Taking the product of both responses,
Figure 6 is derived. As evident, Figure 6 is nearly identical to Figure 5, but
displays exacerbated qualities.

Considering the exploration search position update equation, the
product of the tangent of A and tangent of C, along with a randomly
chosen whale will exacerbate the randomness of the search. Considering
the encircling prey and spiral search position update equations, the
product of the tangent of A and tangent C along with the position of the
best whale will enhance the exploitation capability of the search equa-
tion. This will be achieved via the minor spikes, as observed in Figure 6.
The larger spikes which are present will allow the algorithm to increase
its capability of jumping out of the local optima, particularly at higher
order optimization problems. Considering (2), the new term is the
product of the position of the random whale, as well as the tangent of
coefficients A and C. Considering (3) and (4), the new term is the product
of the position of the best whale, as well as the tangent of coefficients A
and C. The effect of dimension magnitude inclusion in position updating



K. Reddy, A.K. Saha

Heliyon 8 (2022) e11027

Table 1. Performance analysis of proposed EWOA against other WOA for the CEC2019 benchmark functions.

Function WOA MWOAL1 MWOA2 FFA EWOA
1 Mean 1339570,194 51755,52062 0 4331170827 67948,78882
Rank 4 2 1 5 3
Std. dev 482949,83 5093,65 0 2484219709 12521,71
2 Mean 19,70131 17,41619 11929,59 17,47991 17,36779
Rank 4 2 5 3 1
Std. dev 0,47089 0,196649 4956,477 0,361856 0,042862
B8] Mean 12.7024 12.7024 12.7065 12.7024 12.7024
Rank 2.5 2.5 5 2.5 2.5
Std. dev 0 0 0,000975 0 0
4 Mean 2767,298 1439,426 19627,67 30,98509 155,9416
Rank 4 3 5 1 2
Std. dev 1805,108 1358,2 5319,816 14,81722 64,82155
5 Mean 8.1325 8.1325 8.1518 8.1325 8.1325
Rank 2.5 2.5 5 2.5 2.5
Std. dev 0 0 0,008139 0 0
6 Mean 10,09868 10,73033 14,33454 10,25228 7,92471
Rank 2 4 5 3 1
Std. dev 1,16709 0,867645 1,079442 0,559376 1,286647
7 Mean 2097,158615 2097,15855 2199,621 2097.1585 2097.1585
Rank 4 3 5 1.5 1.5
Std. dev 0,000264127 0,000114708 67,75086 0 0
8 Mean 7,888065 7,89652 8,348015 7,8796 7,8796
Rank ) 4 5 1.5 1.5
Std. dev 0,026038 0,034719 0,261577 0 0
9 Mean 4710,1035 4710,1035 4711,26603 4710,1035 4710,1035
Rank 2.5 2.5 5 2.5 2.5
Std. dev 0 0 1,7626 0 0
10 Mean 20,90251 20,9092 21,11019 20,9001 20,90063
Rank 3 4 5 1 2
Std. dev 0,002697 0,028345 0,108713 0 0,001631
Average rank 31.5 2915} 36 23.5 19.5
Overall rank 4 3 5 2 1

equations is not well researched. In several instances, it is observed that
algorithms lose either their exploration or exploitation capability when
attempting to optimize large scale problems. To mitigate this adverse
effect, the inverse of the dimension magnitude is added to the second
terms in (2) and (3), and the first term in (4).

Considering the various modifications that have been proposed, the
new search equations are as follows:

Exploration method:

Xi(t+1) = X,(t) — (1/dim) x randl x (t/Maxyer) X A|C % X, (t) — X;(t)]

+X,(t) x tan(A) x tan(C) @

Encircling prey method:

Xi(t+1) =X,(t) — (1/dim) x rand2 x (t/MaXier) X A|C x Xp(t) — Xi(t){

+Xp(t) x tan(C) ®

Spiral method:

Xi(t+1) = (1/dim) x rand3 x (t/Maxier) x Xp(t) — |X,(t) — Xi(t)] eb!
xcos(27l) + X, (t) x tan(C) (©)]

Where randl, rand2, rand3 are random numbers in the domain [0,1], dim
is the dimension magnitude of theoptimization problem, t is the current
iteration number and Max, is the maximum number of iterations. It is
observed that there now exist two possible position search update
equations for each of the exploration search, spiral search, and encircling

prey. A random number in the domain [0,1] is defined. If this number is
less than 0.65, then Egs. (5), (3), and (4) are implemented. The choice of
equations is determined based on the values of A and P, exactly like how
is determined in the conventional WOA. Upon completion of this, (7),
(8), and (9) are implemented. The choice of equations is determined
based on the values of A and P, exactly like how is determined in the
conventional WOA. Hence, in such scenario, execution of (7) will succeed
(5), (8) will succeed (3), and (9) will succeed (4). If the randomly
generated number is greater than 0.65, then only Egs. (3), (4), and (5) are
utilized. Once again, the choice of equations is determined based on the
values of A and P exactly like how is determined in the conventional
WOA. The structure of the proposed WOA, known as Enhanced Whale

Table 2. Wilcoxon signed rank sum test.

F WOA MWOA1 MWOA2 FFA
1 0 NA NA 0

2 0 80 0 84
8 0 NA 0 NA
& 0 0 0 NA
5 NA 2 NA NA
6 0 0 2

7 0 0 0 NA
8 0 0 0 NA
9 NA NA 0 NA
10 20 10 0 NA
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Optimization algorithm (EWOA) is therefore as shown in Figure 7. In
Figure 7, R denotes a random number in the domain.

4. Experimental results and analysis

To validate the effectiveness of the proposed algorithm, the EWOA is
applied to the well-known CEC2019 benchmark functions. A description
of these ten functions can be found in Appendix A [39]. The EWOA is
compared to the conventional WOA, as well as two modified versions of
the conventional WOA. To ensure rigorous testing, the EWOA was also
fared against the farmland Fertility Algorithm, a newly proposed MOT
which has thus far delivered exceptional results.

In the first modified WOA, two new stochastic parameters are intro-
duced. The parameters are as follows:

— A
*B = (2xrand)—1

ew =0.3+ 0.3 x rand

In addition, the parameter C in the conventional algorithm is replaced
with a value that is twice that of B. If a random number generated is less
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Figure 9. Convergence curves for F2.
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Figure 10. Convergence curves for F3.

than that of B, the positions of the whales are updated by multiplying the
current position by the addition of one and a random number in the
domain [0,1]. Next, if the random number is less than or equal to 0.5, the
encircling prey method is utilized. Finally, if the random number is less
than 0.5, bubble net attacking is used. The parameter w is attached to the
leader position in each equation.

The second modified WOA also introduced various new parameters,
but these are not stochastic in nature. These are:

oW =09-(0.9-07)x ()@

MaxIt,
s = e(l_%)
ey =06x2°
®5=VX (Xbest 7Xt)

The three position update equations of the WOA then become:
o Xi(t +1) = X:(t) — wA|C x X¢(t) — Xi(t)]

o Xi(t+ 1) =Xp(t) — A|C x Xp(t) — Xi(t)|+ 6
o X;(t+1) = Xp(t) — WA|C xX,(t) —X;(1)] €™ x cos(2xl)

4
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Figure 11. Convergence curves for F4.
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Figure 12. Convergence curves for F5.

Owing to the stochastic nature of MOT, each algorithm was run 20
times. The results are given in terms of average value obtained, stan-
dard deviation, and convergence rate. The conventional WOA and
MWOA1 were subject to the parameters presented in the original work
[40]. This is also the case for MWOA2 [41] and the FFA [42]. The
number of whales utilized in the EWOA is 1000, and the algorithm was
subject to 100 iterations. Table 1 depicts the results obtained from
application to the CEC2019 benchmark functions. From Table 1, it is
observed that the EWOA produced the best average value in seven of
the 10 benchmark functions. It is also evident that from all five algo-
rithms, the proposed EWOA yielded the best overall rank. Considering
only WOA, the proposed algorithm is superior in nine of the ten func-
tions. Considering function 2, it observed that the EWOA exhibits a 0.28
% superiority over the next best algorithm (MWOA1). This corresponds
to a large superiority of 27.43 % over the next best algorithm (WOA) for
function 6. It is noted that FFA generates a fair number of good results
but is still inferior to EWOA in terms of average ranking. Another
advantage of the EWOA over the other algorithms is the concept of
worst ranking. From Table 1, is it evident that the worst ranking
attained by EWOA is third. This is superior to the FFA, WOA, and
MWOA1 where the worst ranking attained is fourth, and superior to
MWOA which attains a value of fifth. This points to an enhanced
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Figure 13. Convergence curves for F6.
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Figure 14. Convergence curves for F7.

reliability of the proposed algorithm and verifies the EWOA as an
effective algorithm for general optimization purposes.

The Wilcoxon Signed Rank Sum Test was carried out for the CEC 2019
benchmark functions. The test statistic was taken as the lower value of
the positive and negative vales. For analysis purposes, a 5 % confidence
interval was utilized. This corresponds to a critical value of 52. Table 2
shows the results of the Wilcoxon Signed Rank Sum Test for each of the
benchmark functions. It is evident from the table that apart from function
2 against MWOAL1 and FFA, the proposed algorithm displays significance
in all possible scenarios. This validates the effectiveness of the EWOA to
provide a statistically significant superiority to all of the compared
algorithms.

The convergence curve for functions 1 and 2 are displayed in Fig-
ures 8 and 9. In Figure 8, it is observed that the proposed algorithm
produced a superior result to FFA for the entire duration. In Figure 9, it is
evident that the EWOA exhibits superiority over all the algorithms for the
entire duration.

The convergence curve for functions 3 and 4 are displayed in Fig-
ures 10 and 11. From Figure 11, despite most of the algorithms producing
an identical result, the EWOA exhibited dominancy in that convergence
occurred within less than 20 iterations. In Figure 12, the proposed al-
gorithm was superior until about 60 iterations, after which the FFA
reigned supreme.
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Figure 15. Convergence curves for F8.
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Figure 16. Convergence curves for F9.

The convergence curve for functions 5 and 6 are displayed in Fig-
ures 12 and 13. In Figure 12, the EWOA is superior to FFA for about 10
iterations, and to MWOA1 until 60 iterations have complete. In
Figure 13, it is evident that the EWOA exhibits dominancy over all other
algorithms for the entire duration.

The convergence curve for functions 7 and 8 are displayed in Fig-
ures 14 and 15. Figure 14 shows us that despite most of the algorithms
producing an identical result, the EWOA converges much faster than any
other algorithm. In Figure 15, it is evident that the proposed algorithm
exhibited dominancy for the entire duration and converges after a mere
10 iterations.

The convergence curve for functions 9 and 10 are displayed in Fig-
ures 16 and 17. In Figure 16, it can be observed that the proposed al-
gorithm produced the best convergence rate. In Figure 17, despite the
EWOA faring second to FFA, the proposed algorithm exhibited superi-
ority until 100 iterations.

An important aspect of algorithm efficacy validation is application to
practical engineering optimization problems. The proposed EWOA is
applied to the design of a pressure vessel, a well-known constrained
optimization problem used to determine the efficacy of optimization
techniques. The structural makeup of a pressure vessel can be observed in
Figure 18, where T1 is the head thickness, T2 is the thickness of the shell,
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Figure 17. Convergence curves for F10.
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Figure 18. Structure of pressure vessel [44].

Table 3. Performance analysis for design of pressure vessel.

Algorithm Average Std. Dev.
FFA 37397.72 0
MWOA1 9047.74 465.14
EWOA 8810.96 17.34

L is the length of the cylindrical section of the vessel and R denotes the
inner radius [43]. The ideal optimization cost of the pressure vessel
design is zero.

The cost function of the pressure vessel is expressed as [45]:

F(x) =0.6224x1x3x4 + 1.77813,x3 + 3.1661x3x4 + 19.84x3x3

The design is subject to the following constraints [45]:

e —x;+0.0193x3 <0
o — X3+ 0.00954x3 < 0
o — mx3xs — $mx% + 1296000 < 0

o x4—240<0

Where x1, X2, x3,Xx4 denote Ts, Ty, R and L respectively. The design is
subject to the following constraints. The range of the design variables are
[45]:

o1 <x1xy <99
e 10 < x3x4 < 200

Upon application of the said problem to the conventional WOA,
MWOA and EWOA, the results obtained are as seen in Table 3.

As evident from Table 3, despite producing a standard deviation of
zero, the FFA struggles to escape from the local optima, thereby pro-
ducing a significantly poorer solution to MWOA1 and EWOA. The EWOA
produced the best average value, this being 2.62 % superior to MWOA.
This correlates to a standard deviation superiority of greater than 2500 %

5. Conclusion and future works

This research work proposed an enhanced Whale Optimization Al-
gorithm for optimization of complex engineering problems. The aim of
such enhancement was to improve the search accuracy of the algorithm,
as well as the stability of such. This is imperative for applications
whereby precision results are valued, such as optimization of PI con-
trollers, where incorrect controller tuning may result in unacceptable
suboptimal performance. The proposed algorithm introduced various
components to the position update equations of the WOA, as well as a
change to the structure of the algorithm. Further, an aspect of the Arti-
ficial Bee Colony optimization algorithm was incorporated into the WOA.
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The proposed algorithm was applied to the CEC2019 benchmark func-
tions and compared to the conventional WOA, modified versions of such,
and the new Farmland Fertility Algorithm. The results show that the
proposed algorithm produced the best result in 7 of the 10 functions.
Further, the EWOA generated the best overall ranking. In addition, the
reliability of the proposed method can be validated via observation that
the poorest ranking of the proposed algorithm was third, lower than any
other compared algorithm. When applied to the optimal design of a
pressure vessel, the proposed algorithm yielded significantly superior
results to both the MWO1 and FFA. However, investigations revealed
that the EWOA required a significant number of whales in order to prove
superior. Further, based on the structure of the algorithm outlined in
Figure 7, there could exist instances whereby the whales will undergo a
dual position changes within one iteration. This may put a strain on the
RAM of the PC being used, and as a result may not be able to successfully
be executed on PC's with poor random-access memory. Further, these two
aspects contribute the time taken to execute the algorithm, which is
higher than that of the other compared algorithms. However, this is
somewhat compensated for by the requirement and subsequent use of a
significant lower number of iterations.

Owing to the superior search accuracy of the proposed algorithm, it
can be hypothesized that the EWOA will outperform the conventional
WOA, as well as other MOT, in the tuning of PI controllers. This forms the
basis for the future scope of work. The doubly fed induction generator is
the most utilized generator in wind energy conversion systems. However,
owing to direct grid connections, this generator struggles to meet the
stringent levels of grid code requirements. Since wind energy conversion
systems are required to remain connected to the grid during the case of
voltage dips and unbalances, optimal design of PI controller for the
generator is critical. Therefore, the design of PI controller for control of
the doubly fed induction generator under the influence of voltage un-
balances will be studied in the future. Another important application to
be considered in the future is the optimal placements of overcurrent re-
lays in a distribution system. With the increase in demand for electrical
energy, and subsequent expansion of distributions systems, optimal

Appendix A. Benchmark function details

Heliyon 8 (2022) e11027

placements of such devices are crucial for safe and efficient electrical
supply.
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Function number Function name Dimension Range Optimum
F1 STORN’S CHEBYSHEV POLYNOMIAL FITTING PROBLEM 9 [-8192,8192] 1
F2 INVERSE HILBERT MATRIX PROBLEM 16 [-16384,16384] 1
F3 LENNARD-JONES MINIMUM ENERGY CLUSTER 18 [-4,4] 1
F4 RASTRIGIN’S FUNCTION 10 [-100,100] 1
F5 GRIENWANK’S FUNCTION 10 [-100,100] 1
F6 WEIERSRASS FUNCTION 10 [-100,100] 1
F7 MODIFIED SCHWEFEL'S FUNCTION 10 [-100,100] 1
F8 EXPANDED SCHAFFER’S F6 FUNCTION 10 [-100,100] 1
F9 HAPPY CAT FUNCTION 10 [-100,100] 1
F10 ACKLEY FUNCTION 10 [-100,100] 1
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