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ABSTRACT

R-Coffee is a multiple RNA alignment package,
derived from T-Coffee, designed to align RNA
sequences while exploiting secondary structure
information. R-Coffee uses an alignment-scoring
scheme that incorporates secondary structure infor-
mation within the alignment. It works particularly well
as an alignment improver and can be combined
with any existing sequence alignment method. In
this work, we used R-Coffee to compute multiple
sequence alignments combining the pairwise output
of sequence aligners and structural aligners. We
show that R-Coffee can improve the accuracy of
all the sequence aligners. We also show that the
consistency-based component of T-Coffee can
improve the accuracy of several structural aligners.
R-Coffee was tested on 388 BRAliBase reference
datasets and on 11 longer Cmfinder datasets.
Altogether our results suggest that the best protocol
for aligning short sequences (less than 200nt) is the
combination of R-Coffee with the RNA pairwise
structural aligner Consan. We also show that the
simultaneous combination of the four best sequence
alignment programs with R-Coffee produces align-
ments almost as accurate as those obtained with
R-Coffee/Consan. Finally, we show that R-Coffee can
also be used to align longer datasets beyond the
usual scope of structural aligners. R-Coffee is freely
available for download, along with documentation,
from the T-Coffee web site (www.tcoffee.org).

INTRODUCTION

A number of recent discoveries have cast new light on the
importance of RNA, revealing a functional scope much
broader than realized only a few years ago. Small non-
coding RNAs (ncRNAs) are actively involved in a wide
range of cell processes, including gene regulation, cell
differentiation, genome maintenance, RNA maturation

and protein synthesis (1,2). The ncRNA big picture could
change even further in the coming years, as suggested by a
recent report of the ENCODE consortium (3) showing an
unexpected level of ncRNA transcription across the entire
human genome.

While the problem of aligning sequences has been
regularly addressed over the last 40 years (4), delivering
accurate alignments for ncRNAs remains a challenging
task for at least two main reasons. First of all, RNA
molecules have a low chemical complexity compared to
proteins with just a four-letter alphabet. This limited
information content makes it hard to use sequence
similarity as an estimator of the biological relevance of
RNA alignments. The most notable consequence is the
limited sensitivity of RNA alignments, and it is generally
accepted that the RNA twilight zone (i.e. the level of
identity below which pairwise alignments become unin-
formative) is close to 70%, as opposed to 25% for proteins
(5-7). The second reason for the difficulty in aligning
ncRNA comes from their rate and pattern of evolution.
In general, functional ncRNAs have a well-defined
structure and their evolution seems to be mainly
constrained to retain a specific folding, mostly based on
Watson and Crick base pairs. Maintaining such a
structure can be achieved through compensatory muta-
tions, a phenomenon that explains why sequences can
diverge a lot while still coding for the same structure (8).
Therefore, sequence identity alone is a very crude measure
of biological similarity, as it does not reflect very well the
level of structural conservation.

Because of these problems, it is highly desirable to take
RNA secondary structure into account while aligning
ncRNA sequences, in order to assure optimal usage of the
positional interdependence. Sankoff’s algorithm, pub-
lished 20 years ago (9), does exactly this, but suffers
from enormous runtime and memory requirements. Given
two sequences of length L, the pairwise alignment requires
O(L® in time and O(L*) in computer space, while its
extension to N sequences is exponential: O(L*Y) in time
and O(L®Y) in space. Only a few simplified implementa-
tions exist, usually constrained to pairwise alignment
(10-13). Recently a number of multiple alignment versions
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have been published (11,14-18), which employ various
techniques to reduce run-time and memory consumption,
for example by limiting the length or types of structure
motifs or by using banding techniques during the dynamic
programming stage [for review, see (19)]. The most
accurate of theses heuristics are restricted to sequences
shorter than approximately 200 residues, a limitation that
explains why it is often more practical to use regular
sequence aligners when dealing with larger sequences such
as ribosomal RNA, or RNA motifs embedded in long
genomic sequences. Most of these aligners treat RNA
sequences like regular DNA and rely on an identity-based
scoring scheme only suitable for closely related sequences.
For instance, ClustalW has long been used for establishing
reference collections of ribosomal RNA alignments (20).
Following manual curation and visual inspection of the
conserved secondary structures, these alignments have
been widely used to infer phylogenetic relationships
between most living organisms. Taking secondary struc-
tures into account may not, however, improve alignment
accuracy across the entire spectrum of known ncRNA.
For instance, secondary structure-based alignments will
not improve the comparison of mature miRNAs or
mRNAs that are not structurally conserved.

In this work, we address the problem of RNA multiple
sequence alignments by taking advantage of the T-Coffee
framework (21). T-Coffee is a multiple sequence alignment
method able to combine the output of different sequence
alignment packages. It takes as input, a collection of
alignments (pairwise or multiple) and outputs a multiple
sequence alignment containing all the sequences. The
input, which is referred to as a ‘library’, can consist of
alternative and possibly inconsistent alignments of the
same sequences. The purpose of the algorithm is to
generate a final alignment that is as consistent as possible
with the original input alignments. The main advantage of
this procedure is its flexibility. For instance, in the original
T-Coffee, the library was compiled from pairwise local
and global alignments of the sequences. In M-Coffee (22)
the compilation was made using alternative multiple
sequence alignments while in 3D-Coffee (23) or Expresso
(24), the library is derived from structure-based pairwise
alignments. This simple protocol can easily be built on top
of any existing method, as illustrated by two RNA
alignment packages: Marna (25) and T-Lara (19). Both
packages focused on the development of a novel pairwise
RNA alignment algorithm, which was then used to
generate an alignment library fed to T-Coffee in order to
produce a multiple alignment. In the present work we
decided to go further and modify the library processing/
extension algorithm so that it could take advantage of
known and predicted secondary structures. This is done
when compiling the library and while evaluating the
matching score of two residues. This novel strategy forms
the core of R-Coffee. Our primary goal was not to
produce a stand-alone method, but rather a novel
component that can seamlessly be added on top of any
existing alignment method. We demonstrate here that it is
possible to improve the alignment quality of most existing
methods by means of R-Coffee, with only minor
computational over-head.
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SYSTEMS AND METHODS
Reference alignments and evaluation

We used two different benchmark sets: BRAliBase 2.0 (5),
the standard RNA reference alignment dataset and
Cmfinder (26), a smaller dataset specifically designed for
testing local analysis of long sequences. BRAIliBase is
collection of RNA reference alignments especially
designed for the benchmark of RNA alignment methods.
We only used its multiple alignment component made of
388 multiple sequence alignments. These datasets are
evenly distributed between 35% and 95% average
sequence identity. Each of these datasets was originally
produced by extracting sub-alignments from larger seed
alignments coming from four RNA families (tRNA,
group II intron, 5S rRNA and U5 RNA). Two of these
were seed alignments obtained from the Rfam database
(27). This procedure may appear slightly circular as it
involves comparing sequence-based reference alignments
with other sequence-based alignments. In order to address
this issue, BRAliScore, the benchmarking scoring scheme,
was designed in such a way that it not only depends on the
similarity between the reference and the evaluated align-
ment but also on the intrinsic structural conservation of
the target alignment [see also (6)]. This tradeofT illustrates
the difficulties in establishing a gold standard for RNA
analysis. The main problem comes from the lack of
sufficient experimentally validated RNA structures, in
contrast to protein sequence analysis where literally
hundreds of accurate 3D structures exist.

The BRAIliScore combines two measures: the Sum of
Pairs Score (SPS) and the Structural Conservation Index
(SCI) (28). The SPS is the ratio between the number of
residue pairs identically aligned in the target and the
reference, divided by the number of pairs in the reference.
It was measured using a variant of compalignp [based on
Sean Eddy’s compalign; see also (6)] adapted to restrict
the evaluation to a pre-defined core region. The SCI is a
reference-independent measure. It is defined as the ratio
between the average free energies of all single sequences of
the MSA [as calculated by RNAfold; (29)] and the free
energy of the MSA consensus structure [as calculated by
RNAalifold; (30)]. A value of 0 indicates a lack of a
conserved structure, 1 corresponds to a perfect agreement
between the energies of the single sequences and the
consensus energy, while values higher than 1 indicate a
very good agreement supported by additional co-varia-
tion. The BRAIliScore is the product of the SCI and the
SPS score. This combination can lead to problems when
either the SPS or the SCI are close to 0. In practice
however, this situation rarely arises, and the combination
of these two scores provides a very robust measure, less
sensitive than the SPS, to the effective accuracy of the
reference alignment. To test for statistical differences
between pairs of methods, we applied the Wilcoxon signed
rank test as in (6). All analyses were carried out using tools
provided from http://www.biophys.uni-duesseldorf.de/
bralibase/.

Our second dataset is named after the RNA motif finder
program Cmfinder (26). It contains Rfam sequences
embedded in 200nt of their original flanking genomic
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Table 1. Programs used for benchmarking and as input for T/R-Coffee
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Program Reference Version Structure Sankoff Alignment mode Command line

ClustalW (33) 1.83 N N Multiple -type = dna

Consan (10) 1.2 Y Y Pairwise -m mixed80.mod

Dynalign (12) Dec-06 Y Y Pairwise Len2-lenl + 504520210
Foldalign (13) 2.0.3 Y Y Pairwise -global -score_matrix global.fmat
FoldalignM (15) 1.0.1 Y Y Multiple

Mafft (35 5.861 Y N Multiple ginsi/fftns

Marna (25) Jan-07 Y N Multiple (T-Coffee)

M-Locarna 17) 0.99 Y Y Multiple mlocarna-p

Murlet (14) Mar-06 Y Y Multiple

Muscle (32) 3.6 N N Multiple -seqtype rna

Pcma (45) 2 N N Multiple

Pmcomp (11) Jun-04 Y Y Pairwise

Pmmulti (1 Jun-04 Y Y Multiple

Poa (46) 2 N N Multiple blosum80.mat

Proalign 47 0.5.a3 N N Multiple

Probcons (34) 1.1 N N Multiple

Prrn (48) SCC 3.0.a N N Multiple

Rnasampler (44) 1.3 Y Y Multiple

Stemloc (16) Dart 0.19b Y Y Multiple -multiple —slow -global

Stral (49) 0.5.4 Y N Multiple

T-Lara (19) 1.31 Y N Multiple (T-Coffee) -0 lara.params

T-Coffee 21 5.19 N N Multiple -dp_mode myers_miller_pair_wise

This table lists all the packages evaluated along with their version numbers (or download date). The Structure column indicates whether the consider
packages use predicted secondary structures (Y for Yes, N for No). The Sankoff column indicates whether the package is a heuristic implementation
of the Sankoff original algorithm. The Alignment Mode column indicates whether the package performs pairwise or multiple alignment or if it’s
based on the T-Coffee package. The last column gives used command line parameters; most programs were used as in the BRAliBase alignment

benchmark publications (5) and (6).

regions, randomly distributed between the 5" and the 3’ of
the ncRNA sequence (i.e. x nucleotides on the 5-, y
nucleotides on the 3’-end with x and y randomly chosen so
that x + y =200). The unaligned datasets were kindly
provided by the Cmfinder authors. We limited our choice
to datasets having less than 40 sequences thus generating
11 reference alignments (9 to 35 sequences, length between
167 and 368 nt). The average level of identity within the
core regions of these alignments ranges from 31% to 73%.
These characteristics make the Cmfinder dataset a difficult
target, especially because of the sequence length and the
inclusion of flanking regions. These datasets are also
closer to ‘real life’ situations that often involve discovering
an RNA motif within poorly characterized sequences.
The presence of flanking genomic regions potentially
embedded in the Cmfinder datasets made it impossible to
systematically use the SCI component of the BRAliscore.
Instead we used the Sum of Pairs score (SPS) and
restricted the scoring to the Rfam core region of the
alignment.

Note that most available RNA alignment benchmark
sets are based on Rfam alignments. These alignments are
by no means a gold standard (especially not the ‘full’
Rfam alignments) and are not based on 3D superposition
as most protein alignment benchmarks. For example, the
BRAIiBase benchmark set was created from four RNA
families, two of which were full Rfam alignments (US5,
g2intron) and two were Rfam seed alignments (tRNA, 5S)
i.e. hand-curated and thus more likely of high quality. The
Cmfinder data sets are exclusively based on Rfam seed
alignments. The low number of quality alignments suited
especially for benchmarking (i.e. equally distributed over

a wide sequence identity range etc.) of multiple RNA
alignment programs is a notorious problem. New RNA
alignment benchmarks with a high number of RNAs using
expert, hand-curated alignments, which are based on
structural superposition [e.g. from the Comparative
RNA web site (31)] would constitute a useful advance in
this area.

Alignment programs

To test and benchmark R-Coffee, we compared a variety
of programs with different features (Table 1). These
programs can be roughly divided in three categories:
pairwise structural aligners, multiple structural aligners
and regular multiple sequence aligners. The pairwise
structural aligners like Consan (10) are heuristic approx-
imations to the original Sankoff algorithm. Their heavy
computational requirements limit them to short
sequences. The second category includes structural
aligners extended to deal with multiple sequences like
FoldalignM (15) or Stemloc (16). Like their pairwise
counterparts, they use structure and sequence information
during the alignment and are therefore restricted to short
datasets. The third category is made of regular multiple
sequence alignment programs like Muscle (32) or
ClustalW (33). These programs do not rely on any kind
of structural modeling, although some of them [like
Probcons (34) and Malfft (35)] have optimized parameters
for BRAIliBase i.e. program parameters were trained on
BRAIliBase alignments by the respective program’s
authors. These two last categories of packages can either
be used to align multiple sequence datasets or pairs of
sequences.
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Most programs were used as described in (5) and (6).
Marna (25), Pmmulti (11) and Stemloc (16) were not able
to align all test sets of BRAIliBase. In particular, Marna
cannot align sequences that contain IUPAC characters
and the ability of Stemloc to align sequences seems to
depend on the size of the main memory. We therefore had
to exclude these packages from the comparison, although
it should be noted that they produced accurate alignments
on the datasets they could align (data not shown). In case
of T-Lara we did not use the pairwise alignments as
T-Lara already uses T-Coffee. Instead we used R-Coffee
as a drop-in-replacement for T-Coffee. We used the stand-
alone versions of all packages to compute multiple
alignments for all the reference datasets. We also used
them in combination with either T-Coffee or R-Coffee. All
programs were run on a Quad-Xeon-3 GHz machine with
6 GB RAM running Red Hat Enterprise Linux.

Original T-Coffee strategy

T-Coffee is a versatile MSA package that allows the
combination of many pairwise (or multiple) sequence
alignments into one unique final model. The principle is
fairly straightforward. Given a set of sequences, a
collection of pairwise alignment is computed. This
collection can be redundant (several alternative align-
ments for each pair of sequences) or not, and is compiled
into a data structure called the primary library. The
primary library contains the list of all the pairs of aligned
residues observed in the alignment collection. Each of
these pairs receives a weight equal to the score of the
alignment it came from (in practice the percent identity is
used). These weights are then re-estimated in a process
named library extension. The purpose of the new weights
(extended weights) is to reflect the level of consistency
between each pair of aligned residues and the rest of the
library. High-scoring pairs are those in very good
agreement with the rest of the pairs and their high score
insures that they should easily find their way into the final
alignment. R-Coffee uses the Myers and Miller algorithm
(command line option: -dp_mode = myers_miller_pair_
wise) to align pairs of sequences or profiles rather than the
current T-Coffee default (-dp_mode = cfasta_pair_wise)
that uses a banded dynamic programming implementation
extensively tuned for proteins. The Myers and Miller
setting corresponds to the T-Coffee algorithm as described
in the original publication (21).

Adaptation of T-Coffee to use RNA structural information

The novel RNA-specific mode of T-Coffee described here
has been designed to be able to use secondary structure
predictions. The current design supports an arbitrary
amount of structural prediction, and each sequence can be
associated with one or more secondary structure predic-
tions that do not need to be in agreement. It is also
possible not to associate any structural information with
some sequences. In practice, however, we expect the best
results to be obtained when using at least one secondary
structure prediction for each sequence in the dataset.
These structural predictions are passed to R-Coffee, using
a data structure similar to the T-Coffee primary library
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and named a structural library. In this structural library,
each line indicates a pair of nucleotides predicted to be
base-paired. Like its primary sequence counterpart, this
structural library can be redundant, contain conflicting
pairs or lack data for some pairs.

RNA structures were computed using either a global or
a local prediction method. Global structure predictions
were obtained with RNAfold (29) which finds a structure
with Minimal Folding Energy (MFE). When using a MFE
structure as input, each predicted base pair was directly
added to the structural library without any further
filtering. This global MFE-based prediction has two
major limitations: the algorithm is computationally
demanding when being applied to very long sequences
and its prediction accuracy decreases with sequence length
(36,37). When dealing with long sequences, a sensible
alternative is to use local RNA structure prediction
methods such as RNAplfold (38). RNAplfold predicts
local pair probabilities for base pairs within a certain span
(default is set to 100nt). The program outputs base pair
probabilities rather than one precise structure and in order
to reduce noise, we excluded pairs exhibiting a low
thermodynamic probability. We determined a suitable
probability threshold by varying the filtering threshold
between 0.0 and 0.8 (in steps of 0.1) and estimating the
accuracy of the resulting R-Coffee alignments (Figure 2).
We found 0.3 to be the optimal threshold, although our
results indicate a relative stability of the system around
this value (flat peak). The structural pairs thus gathered
are then fed to R-Coffee, the version of T-Coffee using the
R-Score (see later). The structural libraries used here
contain un-weighted structure pairs, although it is, in
principle, possible to apply a weighting scheme onto these
pairs, possibly reflecting the thermodynamic stability or
the likelihood of each considered pair.

For testing purposes we also used random structures as
input. These structures were computed by shuffling the
input sequences before predicting the structures using
RNAfold/RNAplfold as described earlier. For shuffling
we used the program shuffle from Sean Eddy’s squid
package.

The R-score: a novel T-Coffee scoring scheme

The original T-Coffee algorithm was modified in order to
incorporate structural information within the library
compilation process. This novel evaluation procedure is
named the R-score and gives its name to R-Coffee, with
the letter R standing for RNA. The R-score requires the
secondary structures of the considered sequences to be
pre-computed and it also involves two modifications of
the original T-Coffee algorithm: one when compiling the
pairwise alignment library and the other when evaluating
the score for aligning two residues.

The new library compilation procedure involves extend-
ing the original T-Coffee library with any residue pair not
observed within the pairwise alignments but whose
relevance is suggested by the secondary structure predic-
tions (Figure 1). For instance, let A~ X be two nucleo-
tides predicted to form a secondary structure in sequence 1
and B~Y two other paired nucleotides in sequence 2.
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Figure 1. R-Coffee’s RNA-extension. The two Gs correspond to a pair
of matched residues observed in the input pairwise alignment. This gets
incorporated in the library as a constraint. Both of these nucleotides
are predicted to be base paired (Bp) with two Cs that have not been
found aligned. The RNA extension involves incorporating the
associated constraint (C matched to C), based on the information
contained in the provided structures. This structure-based extension is
one of the two main ingredients of the R-Coffee scoring scheme.

In the standard T-Coffee procedure, if the primary
alignment of sequences 1 and 2 contains the aligned pair
A-B, this pair will be added as an entry to the library and
associated with a weight equal the average identity of the
alignment of sequences | and 2 (the weights will be added
if several alternative alignments contribute the same pair).
The R-Coffee library procedure goes further and involves
incorporating the pair X-Y into the library (with the
weight of A—B) even it was not aligned in any of the input
library alignments. The rationale is that if the alignment of
A-B is correct and if the predicted structures are correct as
well, then the pair X-Y should be aligned and it therefore
makes sense to add it to the library (if X-Y is already part
of the primary library, its weight is increased by the A—B
weight). Whenever more than one structure has been
provided for each sequence, the secondary structure
library may be ambiguous and provides several alternative
base pairings for one or both residues (e.g. A~X, A~W
in one sequence and B~Y, B~Z in the other). In this
case, the update will consider a combination of all the
potential structure-induced aligned pairs (i.e. X-Y, X-Z,
W-Y, W-7) and increase their primary weight with that
of A-B.

The R-score also uses a new evaluation procedure. The
regular T-Coffee scoring scheme computes the matching
score of a given residue pair A—B by summing up over the
score of all the residue triplets including A, B and a third
residue x from a third sequence. This can be formalized as
follows:

Tscore(A.B) = » ~ MIN(Weight(A x). Weight(B.x)) 1

where Weight(A,x) is a primary weight and X is any
residue reported aligned both to A and B within the
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primary library. The R-score of that same pair is then
defined as:

Rscore(A,BJ[A~X,B ~Y)
= MAX (Tscore(A,B),Tscore(X,Y))

where X pairs with A and Y with B as indicated by the
structural library (A ~ X, B~Y). Whenever the structural
library is ambiguous (i.e. A~X, A~W, B~Y, B~W),
the final score is estimated by considering all the resulting
combinations:

Rscore(A.BJA~X,A~ZB~Y.B~W)
= MAX(Tscore(A,B),Tscore(X,Y), 3
Tscore(X,W),Tscore(Z,Y),Tscore(Z,W))

The R-score, like the regular T-Coffee scoring scheme is
then used as a position-specific substitution matrix while
computing an alignment. R-Coffee uses the progressive
alignment strategy described in the original T-Coffee
algorithm and inspired from the ClustalW implementa-
tion. Sequences are all aligned two by two, using a
standard identity based matrix and the Myers and Miller
implementation of dynamic programming. These align-
ments are then used to derive a distance matrix that is
turned into a Neighbor-Joining tree (39). This tree is used
as a guide tree to define the order in which the sequences
are aligned to create the multiple alignment. These
alignments are made using the R-score as a position-
specific scoring scheme and the Myers and Miller pairwise
algorithm. Apart from the use of the Myers and Miller
pairwise alignment option, all the other T-Coffee para-
meters have been left to their original default values.

Availability

R-Coffee is part of the T-Coffee package, an open source
freeware distributed under the GPL license and available
at no cost along with documentation from www.tcof
fee.org. R-Coffee can be compiled on most platforms
(UNIX, Mac OS X and Windows).

RESULTS AND DISCUSSION

R-Coffee is an RNA multiple sequence alignment method
able to use RNA secondary structure information while
computing a multiple sequence alignment. One of the key
properties of R-Coffee is its low computational complex-
ity. Given predicted structures, R-Coffee can compute
structure-based sequence alignments in a time and space
complexity similar to that reported for T-Coffee or
Probcons [in the order of O(N°L?) for N sequences of
length L]. Nonetheless, the computation of the predicted
structures can be a limiting factor. For example, for global
Minimal Folding Energy methods like RNAfold (29), can
be quite demanding with growing sequence length and
prediction quality depends on sequence length (36,37).
Our first concern was therefore to check whether the
replacement of RNAfold with the less-demanding
RNAplfold (38) could prove useful. RNAplfold is able
to predict the fold of long sequences thanks to its local
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Figure 2. R-Coffee/RNAplfold base pair probability threshold optimi-
zation. Base pairs predicted by RNAplfold above a certain probability
threshold were used as input for R-Coffee. Then all BRAliBase sets
were aligned and the average alignment accuracy (BRAliscore)
calculated. The optimal threshold was determined to be 0.3.

structure prediction algorithm. In practice, this result is
achieved by restricting the computation to the local
neighborhood of each nucleotide (default is a span
of 100 nt).

RNAplfold outputs base-pairing probabilities rather
than a single secondary structure. We therefore deter-
mined an optimal threshold for filtering out unreliable
base pairs. We did so by extensive testing on the
BRAIliBase dataset (see ‘Material and methods’ section
and Figure 2). The cutoff value thus determined (0.3) was
used throughout the remaining experiments. Given this
cutoff value, we systematically compared the BRAliscore
obtained by R-Coffee when using RNAfold and
RNAplfold structural libraries. Both structural libraries
(RNAfold and RNAplfold) give similar results.
Interestingly, this correlation is high regardless of whether
the considered sequences are closely or distantly related
(Figure 3). The mean BRAliscore for the two methods is
the same (0.64) with 53% of the 388 BRAliBase datasets
having their BRAliscore within 5% of each other when
using the RNAfold or the RNAplfold structural library.
We therefore decided to use RNAplfold as the default
provider of secondary structure predictions for the rest
of the analysis. This allows R-Coffee to deal with
sequences of arbitrary size. In order to check the effect
of the accuracy of the predicted structures, we also tested
R-Coffee using random structure predictions, as input.
The performance then returns to the default T-Coffee
accuracy (Figure 3), i.e. alignment quality does not get
worse as compared to default T-Coffee, but clearly
decreases when compared with genuine structure predic-
tions. Altogether these results suggest that it makes
little difference in accuracy whether we use RNAfold or
RNAplfold for secondary structure prediction in
R-Coffee. They also confirm the effectiveness of the
incorporation of structural information within the align-
ment procedure. We wish to note here, that although
we limited our analysis to these two approaches, the
flexibility of R-Coffee’s RNA extension allows
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Figure 3. Effect of the RNA-extension on T-Coffee’s performance on
BRAliBase 2.0. The plot shows the alignment accuracy as function of
the sequence identity. Scores are averaged over 5% sequence identity
bins. Standard T-Coffee is compared to R-Coffee using structure input
from RNAfold and RNAplfold as well as random structures.

incorporating and combining any kind of structure
prediction. Alternatives include using RNAfold’s partition
function and an applied threshold (as done with
RNAplfold here) or using methods with a higher
selectivity like Contrafold (40). But one could also include,
for example sub-optimal structure or pseudoknot predic-
tions (41).

Next, we examined the merits of R-Coffee in compar-
ison with other methods. It should be stressed here that
our primary goal was not to produce a stand-alone
method, but rather to use R-Coffee as a novel component
that can seamlessly be combined with any existing RNA
alignment method. We therefore focused our efforts on the
evaluation of the combination between R-Coffee and
other established methods. In order to determine the
baseline of our analysis we ran common sequence
alignment methods on the 388 BRAIliBase datasets
(top part of Table 2). Our results are relatively consistent
with previous reports (42,43) of accuracy on protein
sequence alignments: Mafft (35), Probcons (34) and
Muscle (32) deliver the best alignments. The default
T-Coffee is notably inaccurate with RNA (5), most likely
because it uses, by default, a banded dynamic program-
ming heavily tuned on protein sequences. The second part
of Table 2 (structural aligners) is also consistent with
previous reports and confirms that RNA alignment
methods making use of structural information have a
higher accuracy than sequence aligners. Our results show
that FoldalignM (15), Rnasampler (44), T-Lara (19) and
Murlet (14) clearly outperform all the regular sequence
alignment methods, with more than five points difference
between the best structure-based alignment methods
(FoldalignM/Rnasampler) and their best non-structure-
based counterpart (Mafft ginsi).

The most straightforward way to embed these methods
within R/T-Coffee is to use each individual method to
generate libraries of pairwise alignments. This protocol
merely requires a pairwise alignment for each pair of
sequences within a dataset and using the resulting
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Table 2. BRAIliBase evaluations

Method BRAliscore Net improvement
Default +T-Coffee + R-Coffee +T-Coffee + R-Coffee
T-Coffee 0.59 / 0.63 / 125
Poa 0.62 0.65 0.70 48 154
Pcma 0.62 0.64 0.67 34 120
Prrn 0.64 0.61 0.66 —63 45
ClustalW 0.65 0.65 0.69 =7 83
Proalign 0.66 0.68 0.71 30 128
Mafft fftns 0.68 0.68 0.72 17 63
Probcons 0.69 0.67 0.71 —74 51
Muscle 0.69 0.69 0.73 —17 42
Mafft ginsi  0.70 0.68 0.72 —49 39
M-Coffeed4 0.71 / 0.74 / 84
M-Locarna 0.66 0.69 0.71 101 133
Stral 0.71 0.70 0.72 —4 19
Murlet 0.73 0.70 0.72 —132 —73
Rnasampler 0.75 0.70 0.71 —101 -95
FoldalignM 0.75 0.76 0.76 72 76
Dynalign / 0.62 0.62 / /
Foldalign / 0.62 0.77 / /
T-Lara / 0.74 0.73 / /
Consan / 0.79 0.79 / /

Each line in the table corresponds to the evaluation of the package
listed in the Method column. The BRAliscore section indicates the
average BRAliscore performance of the package. The default column
indicates the score obtained by the considered package. The + T-Coffee
indicates the average BRAliscore using the corresponding package
combined with T-Coffee. The + R-Coffee column indicates the average
BRAliscore of the same package combined with R-Coffee. The slash /
indicates values that could not be computed, either because the method
only produces pairwise alignments (Dynalign, Foldalign and Consan),
or because the method is a derivative of or uses T-Coffee (e.g. T-Lara).
The Net Improvement section indicates the net improvement over the
stand-alone methods.

alignments as a primary library for either T-Coffee or
R-Coffee. The structural libraries were computed once on
the entire dataset and then re-used. This protocol was used
on all the aligners with the exception of T-Lara for which
we followed the combination protocol described by
T-Lara’s authors. It involves compiling partial T-Coffee
libraries with Lara (i.e. libraries restricted to aligned stems)
and combining them with the default T-Coffee libraries
made of global and local pairwise alignments, that same
protocol was used when combining Lara with R-Coffee.

We first evaluated the effect of using the regular
T-Coffee to compute an MSA with pairwise libraries
generated either with regular sequence or structural
aligners. The results are displayed in the +T-Coffee
column of Table 2. For each T-Coffee/method
X combination (X being any of the tested methods), we
calculated the average BRAIliScore and the Net
Improvement (NI), which is the absolute improvement
induced by combining that method with T-Coffee. It is
defined as the number of test cases where a method
X outperforms that method combined with T-Coffee
(T-Coffee/X) minus the number of times the T-Coffee/X
combination outperforms method X:

_ T-Coffee XoutperformsT-Coffee
| XoutperformsX X
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The NI provides a guide as to whether one of the methods
outperforms another. Results in Table 2 are easier to
interpret when the regular sequence aligners and the
structural aligners are separately considered. The regular
aligners show little benefit from the T-Coffee combination
of their pairwise output (Column + T-Coffee), probably
because these methods already make an efficient use of
their sequence information, or at least because they use it
as efficiently as T-Coffee could. It is not a surprising result
since most of these methods either use a T-Coffee inspired
consistency-based  scoring scheme (Mafft g/linsi,
Probcons) or a sophisticated iterative method (Muscle,
Prrn) to improve the original progressive MSA. R-Coffee,
on the other hand, provides a clear improvement to all the
regular sequence alignment methods tested here (Table 2,
+ R-Coffee column). This improvement remains regard-
less of the metrics used (BRAliscore or Net Improvement).

The results obtained when combining R/T-Coffee with
structural aligners follow a similar albeit less marked
pattern. When added on the top of structural aligners,
T-Coffee improves two methods out of five and R-Coffee
improves three out of five. These observations are fairly
consistent with the underlying principles of the alignment
programs (sequence and structural aligners). They suggest
that the potential benefits of using R-Coffee come as much
from the T-Coffee consistency-based scoring scheme as
they do from the R-extension. The relatively small benefit
coming from the R-extension in this case also makes sense
if one considers that the structural aligners already use
structural information and are therefore less likely to
benefit from the incorporation of RNAplfold predictions
than their sequence-based counterparts. This is especially
true when combining T-Coffee with Consan. It is
worth mentioning, however, that the wuse of the
R-scoring scheme outperforms similar T-Coffee combina-
tions in most cases with five methods out of nine being
improved when switching from the T-Coffee to the
R-Coffee combination and four methods remaining
unchanged.

Altogether, the data collected in Table 2 strongly
suggest that consistency-based scoring schemes provide
an efficient framework for making the best out of pairwise
alignment methods. T/R-Coffee/Foldalign and T/R-
Coffee/Consan provide the best illustration of this concept
(bottom of Table 2). Consan is computationally too
expensive to be easily extended to MSAs, yet, a
straightforward combination with R-Coffee results in a
method that outperforms all the other methods analyzed
in this work (Tables 2 and 3). Figure 4 shows a detailed
performance plot on BRAliBase and compares R-Coffee/
Consan with the best sequence alignment method (Malfft
ginsi) and FoldalignM. This plot shows, that R-Coffee/
Consan performs better than FoldalignM across the full
range of sequence identities, even if the difference is not
statistically significant (Table 3). It is important to point
out that the shape of this curve is a side effect of the two
components that comprise BRAIliScore (SCI, the struc-
tural component and SPS the sequence one). High levels
of sequence identity naturally result in high-scoring
alignments. At the other side of the spectrum at low
identity levels, numerous compensating base pair



e52  Nucleic Acids Research, 2008, Vol. 36, No. 9

Table 3. Net Improvement of R-Coffee/Consan and RM-Coffee4 over
programs on BRAIliBase

Method versus R-Coffee-Consan versus RM-Coffee4
Poa 24 1%+ 217F**
T-Coffee 24 1%** 199***
Prrn 232%%* 198***
Pcma 218*** 151%**
Proalign 216%** 150**
Mafft fftns 206*** 148*
ClustalW 203*** 136***
Probcons 192%** 128*
Malfft ginsi 170%** 115
Muscle 169*** 111
M-Locarna 234%** 183**
Stral 169*** 62
FoldalignM 146 61
Murlet 130* —12
Rnasampler 129* =27
T-Lara 125* -30

This table indicates the relative performance of the methods listed in
the Method column in comparison with the R-Coffee/Consan and RM-
Coffee4 combinations, as net improvement. Asterisks indicate statisti-
cally significant differences according to Wilcoxon tests (*P< = 0.05;
**P<=0.01; **P<=0.001). The upper part of the table contains
sequence aligners only, the lower part structural alignment programs.
Within these sections, programs are sorted by net improvement.

BRALISCORE

=== R-Coffee/Consan === RM-Coffeed

1 s Foldalignh — Mafft (ginsi)

0.2

04 05 06 0.7 0.8
Sequence ldentity of Ref Aln,

Figure 4. Comparison of R-Coffee/Consan and RM-Coffee with other
programs. The plot shows the alignment accuracy on BRAliBase 2.0 as
function of the sequence identity. Scores are averaged over 5%
sequence identity bins. We included the best stand-alone sequence
aligner (MAFFT ginsi), one of the two best structural aligners
(FoldalignM), the best R-Coffee combination (R-Coffee/Consan) and
RM-Coffee4 that combines the pairwise alignments of Probcons,
MAFFT ginsi/fftns and Muscle by means of R-Coffee.

mutations can result in high scores, because they are taken
into account by the SCI (see also Reference alignments
and Evaluation). Nonetheless, and across the whole
identity spectrum, our data supports well the idea that
R-Coffee/Consan is probably the most accurate RNA
MSA alignment method currently available for the kind of
datasets found in BRAliBase (i.e. less than 150 nt).

We next assessed whether R-Coffee is also useful for
aligning long sequences. We analyzed the Cmfinder
dataset made of Rfam alignments embedded within
surrounding genomic sequences of varying lengths. None
of the structural aligners except M-Locarna (17), was able
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Table 4. Cmfinder data set comparison

Method SPS Net improvement

Default +T-Coffee + R-Coffee + T-Coffee + R-Coffee

ClustalW 0.54 0.57 0.58 5 5
Mafft ginsi 0.64 0.64 0.64 -1 2
Mafft fftns 0.60 0.64 0.64 6 6
Muscle 0.32 0.40 0.42 4 8
Pcma 0.49 0.55 0.58 8 8
Poa 0.31 0.38 0.42 4 8
Proalign 0.40 0.39 0.41 —4 -2
Probcons 0.50 0.45 0.51 =3 2
Prrn 0.43 0.54 0.56 3 4
M-Locarnap  0.53 0.63 0.63 6 5
T-Coffee 0.54 / 0.53 / 2
R/M-Coffee4 / 0.63 0.65 / 0

Each line in the table corresponds to the evaluation of the package
listed in the Method column. The SPS section indicates the averaged
sum-of-pairs scores (applied to the Rfam core alignment) measured on
the considered package; +T-Coffee is the same score measured on the
package combined with T-Coffee (+ T-Coffee); the + R-Coffee column
corresponds to that same package combined with R-Coffee. The slash /
indicates values that could not be computed because the method is a
derivative of T-Coffee (T-Coffee and M-Coffee). The Net Improvement
section indicates the net improvement for similar combinations.

to run on all the 11 datasets and the analysis was restricted
to regular sequence aligners (Table 4). With the notable
exception of Muscle (32), the ranking in this table is not
dramatically different from that in Table 2. The behavior
of these methods when combined with T- or R-Coffee is
also similar. When considering the 10 sequence aligners
with T-Coffee, we observed an improvement on 7 methods
out of 10. This figure rises to 9 out of 10 when making the
combination with R-Coffee. Although these results are
based on too small a dataset (11 alignments) to be
considered statically significant, they are in very good
agreement with those reported on BRAliBase in Table 2
and confirm R-Coffee’s ability to improve over most
sequence alignment methods.

The main practical problem with using R-Coffee is that
to reach its highest level of accuracy, it requires the
installation of RNA alignment packages, which may be
extremely greedy with memory and CPU usage. We
therefore checked whether a simpler alternative could be
better suited for more modest computational configura-
tions, or for high throughput applications. In a previous
paper, Wallace et al. reported and characterized a novel
mode of T-Coffee named M-Coffee (22). M-Coffee is a
meta-aligner that combines alternative multiple sequence
alignment methods into one consensus alignment. This
combination usually results in an improvement over the
constituting methods. We used the M-Coffee approach
to combine the four best regular alignment methods
(i.e. non-structure based), and tested them on BRAIliBase.
Following the strategy outlined in the original M-Coffee
paper, we incorporated the sequence aligners in order of
decreasing performances and kept the combination with
the highest average. This protocol resulted in RM-
Coffee4, a combination of Muscle, Probcons, Mafft ginsi
and Mafft fftns fed to T-Coffee (M-Coffeed4) or R-Coffee
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(RM-Coffeed). The results (Table 2 and Table 3, Figure 4)
are unambiguous and indicate that RM-Coffeed4 clearly
outperforms all the sequence alignment methods while
delivering the best BRAliBase alignments one may obtain
without using a structural aligner. These results were not
confirmed on the 11 Cmfinder datasets (Table 4), either
because this dataset is too small to reveal the trend or
because of the negative effect of Muscle on RM-Coffeed
on this specific dataset.

CONCLUSION

We have presented a modified version of the T-Coffee (21)
multiple sequence alignment method, named R-Coffee,
designed for delivering highly accurate multiple ncRNA
alignments. R-Coffee is a heuristic, able to take advantage
of secondary structure predictions carried out beforehand.
It is best described as an alignment improver and we show
in this work that it can effectively improve all sequence
alignment packages, taken off the shelf and without
tuning. Among all the combinations tested here, one
clearly outperformed the alternatives: the combination of
R-Coffee and Consan (10). Most of these tests were
carried out on the BRAIliBase reference datasets (5). We
also checked whether R-Coffee was able to deal with
datasets of longer sequences, combining a mixture of
related and unrelated segments. For that purpose, we used
a dataset designed for the Cmfinder algorithm (26). We
found that the R-Coffee combination improved, to a
greater or lesser extent, all the tested alignment methods.
The combined observations made on the BRAIliBase
and Cmfinder datasets suggest that the R-Coffee
scoring scheme is able to make effective use of RNA
predicted secondary structures in order to improve
accuracy over most regular sequence aligners.

This strategy also works when applied to structural
aligners, although less dramatically than when considering
regular sequence aligners. These results confirm the
strength of consistency-based scoring schemes over reg-
ular alignment methods. They suggest that most pairwise
alignment methods can usefully be incorporated in a
consistency-based framework such as T-Coffee. Our
results also indicate that the meta-method approach
originally described for M-Coffee (22) can be applied to
R-Coffee, and that whenever the computation of highly
accurate structure-based RNA pairwise alignments is not
feasible, one may obtain alignments of reasonable quality
by combining purely sequence-based alignments via
R-Coffee. Further progress will also require the assembly
of more demanding reference datasets, especially for long
sequences. Such datasets are hard to assemble because
RNA structural information is scarce (compared to
protein structure information).

RNA alignment remains a rapidly developing field.
With an increasing number of novel biological functions
associated with yet poorly characterized RNA genes, there
is an ever growing need for methods allowing accurate
comparison of RNNA sequences and the identification of
distant homologues. Any improvement in alignment
accuracy is likely to have a big impact. In this context,
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R-Coffee can casily be further improved. The flexible way
in which secondary structures are fed to the program
allows a seamless combination of data from heteroge-
neous sources. It is important to point out that all the
possibilities supported by the current software implemen-
tation have not yet been explored. Most notably, we have
not yet fully exploited the possibility to associate more
than one predicted structure to each sequence. These
alternative structures could either be suboptimal struc-
tures, or the output of alternative structure prediction
programs, such as ContraFold or Rfold. One could also
combine structure predictions of any kind, including local,
global or even tertiary interactions like pseudoknots, with
experimentally verified structures. The possibility of
combining data from various sources is, perhaps, the
major strength of R-Coffee.
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