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Abstract: Encapsulation of antigens within protein microcrystals (polyhedra) is a promising approach
for the stable delivery of vaccines. In this study, a vaccine was encapsulated into polyhedra against
cyprinid herpesvirus II (CyHV-2). CyHV-2 typically infects gibel carp, Carassius auratus gibelio, caus-
ing gill hemorrhagic disease. The vaccine was constructed using a codon-optimized sequence, D4ORF,
comprising the ORF72 (region 1–186 nt), ORF66 (region 993–1197 nt), ORF81 (region 603–783 nt), and
ORF82 (region 85–186 nt) genes of CyHV-2. The H1-D4ORF and D4ORF-VP3 sequences were, respec-
tively, obtained by fusing the H1-helix sequence (region 1–90 nt) ofBombyx mori cypovirus(BmCPV)
polyhedrin to the 5′ terminal end of D4ORF and by fusing a partial sequence (1–279 nt) of the
BmCPV VP3 gene to the 3′ terminal end of D4ORF. Furthermore, BmNPV-H1-D4ORF-polh and
BmNPV-D4ORF-VP3-polh recombinant B. mori nucleopolyhedroviruses (BmNPVs), belonging to
the family Baculoviridae, and co-expressing BmCPV polyhedrin and H1-D4ORF or D4ORF-VP3,
were constructed. H1-D4ORF and D4ORF-VP3 fusion proteins were confirmed to be encapsulated
into recombinant cytoplasmic polyhedra by Western blotting. Degradation of vaccine proteins was
assessed by SDS-PAGE, and the results showed that the encapsulated vaccine proteins in polyhe-
dra could be protected from degradation. Furthermore, when gibel carp were vaccinated with the
purified polyhedra from BmNPV-H1-D4ORF-polh and BmNPV-D4ORF-VP3-polh via injection, the
antibody titers in the serum of the vaccinated fish reached 1:6400–1:12,800 at 3 weeks post-vaccination.
Therelative percentage of survival of immunized gibel carp reached 64.71% and 58.82%, respectively,
following challenge with CyHV-2. These results suggest that incorporating vaccine protein into
BmCPV polyhedra may be a novel approach for developing aquaculture microencapsulated vaccines.

Keywords: CyHV-2; vaccine; polyhedral microcrystals; cypoviruspolyhedra

1. Introduction

Aquaculture vaccines include live, inactivated, and genetically engineered vaccines.
Of the three, genetically engineered vaccines can be further classified into recombinant
subunit vaccines, DNA vaccines, gene deletion/mutant vaccines, and living vector vaccines
according to the preparation method [1]. These vaccines have played an important role
in reducing the incidence of aquatic diseases. However, the safety and the vaccination
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route and delivery methods of vaccines in aquaculture need further improvement. Oc-
casionally, under natural and aquaculture conditions, reversion to virulence of the live
attenuated vaccines leads to reduced safety [2]. Inactivated vaccines usually do not provide
immune protection that is as effective as live vaccines; therefore, appropriate adjuvant
and repeated vaccinations are often required [1,3]. Subunit vaccines are considered to
be degraded rapidly in vivo, thus booster shots are required to get ongoing protection
against diseases [3,4]. DNA vaccines are poorly transported into cells, therefore, physical
methods (electroporation, needle-mediated injections, intranasal administration, and gene
gun) and nonviral methods (lipid- and polymer-based methods) are used to deliver DNA
vaccines into target cells. In addition, due to exposure to various enzymes (i.e., nucleases)
and to reactive oxygen species, DNA vaccines are easily degraded in vivo, which may
decrease their bioavailability [5]. Moreover, vaccines based on DNA plasmids often contain
antibiotic resistance genes, and the potential integration of such a sequence into the host
genome may represent a risk [6].

In recent years, novel vaccine formulations have been developed by using controlled
release technology to improve the safety and effectiveness of vaccine delivery systems
(VDSs). Toward that end, biodegradable sustained-release microcapsules are being given
much attention internationally in VDS research. Nanoparticles such as nanospheres,
nanocapsules, and nanomicelles, as modes of VDSs, have been generated through the
combination of nanotechnology with polymer materials and polymer chemistry technology.
Nanoparticle VDSs have previously been used in aquaculture [7–11]. Among various
nanodelivery systems, chitosan, polylactic-co-glycolic acid (PLGA), and sodium alginate
(S-Alg), as synthetic and natural polymers, are the most widely used carriers for controlled
release due to their biocompatibility and biodegradable properties. These products have
also shown low toxicity and are available at a relatively low cost [11–13].

Polyhedrons produced by Bombyx mori cytoplasmic polyhedrosis virus (BmCPV)
are protein microcrystals, which may serve as a candidate VDS. The BmCPV genome
consists of ten discrete double-stranded RNA segments (S1–S10) [14]. S1, S2, S3, S4, S6,
and S7 segments of BmCPV encode viral structural proteins. S5, S8, S9, and S10 segments
encode non-structural proteins p101 (NSP5), p44 (NSP8), NS5 (NSP9), and polyhedrin,
respectively [14]. Protein microcrystals (occlusion bodies), termed polyhedra (about 2–
5 µm in diameter), containing several thousand virus particles, can be produced in the
cytoplasm of infected cells. The polyhedra have a protective effect on the embedded virus
particles, providing resistance to harsh environmental conditions [15]. Previous studies
have shown that the addition of a tag of 75 amino acid residues (VP3 tag), derived from
the BmCPV turret protein (TP) coded by the S4 segment, to the N-terminus of foreign
proteins allowed for their incorporation into polyhedra. Likewise, a smaller 52 amino
acid segment spanning residues 42–93 of the TP has been reported to be the minimum
tag required for immobilization of recombinant proteins into polyhedra [16]. The atomic
structure of BmCPVpolyhedra showed that the polyhedrin H1-helix (the H1 tag, with
30 amino acid residues at the N-terminus) of the molecule is a useful tag for incorporating
recombinant proteins into polyhedra such as the VP3 immobilization signal [17]. Thus far,
the major capsid protein VP1 of norovirus-like particles [18], vascular endothelial growth
factor [19], endostatin [19], protein kinase C [20], fibroblast growth factors [21,22], leukemia
inhibitory factor [23], and bone morphogenetic protein-2 [24] have beenincorporated into
polyhedra by co-expression of BmCPVpolyhedrin and the target gene fused with the H1
tag or the VP3 tag. However, until now, there have been no reports on the incorporation of
recombinant vaccines into BmCPVpolyhedra or an evaluation of the immune-protective
effects of apolyhedron-incorporating vaccine.

The gibel carp, C. auratus gibelio, is one of the most important freshwater fish species
in China. An outbreak of C. auratus gibelio gill hemorrhagic disease caused by cyprinid
herpesvirus 2 (CyHV-2) infection first occurred in Yancheng City of Jiangsu Province,
China, in 2012 [25,26]. At present, this hemorrhagic disease is spreading to other provinces
of China because an effective prevention and control system has not yet been established.
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In the aquaculture industry, immunization is widely considered to be the most effective
approach for preventing viral infection in fish. Several vaccines have been reported to
protect fish from CyHV-2 infection, including an inactivated vaccine [27,28], recombinant
subunit vaccine expressed in Pichia pastoris [29], genetic engineering subunit vaccine
based on the baculovirus surface display system [30], and recombinant baculovirus vector
vaccine [31].

In this study, an anti-CyHV-2 multi-subunit vaccine protein was incorporated into
polyhedra by co-expressing BmCPV polyhedrinand the target gene fused with the H1
tag or the VP3 tag. It was found that the vaccine protein encapsulated in polyhedra can
be protected from degradation. In addition, the relative percent survival (RPS) of gibel
carp immunized with the polyhedra via an injection route reached 64.71% and 58.82%,
respectively, following challenge with CyHV-2. These results suggest that incorporating
vaccine protein into BmCPVpolyhedra may be a novel approach for developing aquaculture
microencapsulated vaccines.

2. Materials and Methods
2.1. Preparation of CyHV-2

Kidney and spleen tissues (5 g) dissected from five diseased fish infected with CyHV-2
were homogenized and diluted at a ratio of 1:10 (w/v) in 1× phosphate-buffered saline
(PBS, pH = 7.4). After centrifugation at 8000× g for 15min, the supernatant was filtrated
through a filter with a pore size of 0.45 µm (Sangon, Shanghai, China). Viral genomic copies
of the obtained filtrate were determined by absolute quantitative PCR using the reference
plasmid, pMD-hel, containing the partial sequence of the CyHV-2 helicase gene [32]. The
viral genome copies of the filtrate were then adjusted to 105 copies/µL to be used as
virus stock.

2.2. Synthesis of H1-D4ORF and D4ORF-VP3 Fused DNA Sequences

In our previous study, a codon-optimized open reading frame (ORF) sequence, D4ORF,
comprising the ORF72 (region 1–186 nucleotides (nt)), ORF66 (region 993–1197 nt), ORF81
(region 603–783 nt), and ORF82 (region 85–186 nt) genes of CyHV-2 was synthesized [31].
In this study, H1-D4ORF and D4ORF-VP3 fused sequences (Figure S1) were obtained by
fusing the H1-helix sequence (H1-tag) (region 1–90 nt) [17] of BmCPV polyhedrin (polh) to
the 5′ terminal end of D4ORF and by fusing a partial sequence (1–279 nt, VP3tag) [16] of
the BmCPV VP3 gene to the 3′ terminal end of D4ORF.

2.3. Construction of the Baculovirus Transfer Vector and Recombinant Baculovirus

The ORF of the BmCPVpolh gene was excised from pIZT-V5/His-polh [33] with
EcoRI/XbaIandcloned into pFastBacTM Dual (Invitrogen, Frederick, MD, USA) to generate
pFastBacTMDual-polh. The H1-D4ORF and D4ORF-VP3 sequences were cloned into the
XhoI/KpnI sites of pFastBacTMDual-polh to generate pFast-H1-D4ORF-polh and pFast-
D4ORF-VP3-polh baculovirus transfer vectors, respectively.

pFast-H1-D4ORF-polh and pFast-D4ORF-VP3-polh were transformed into Escherichia
coli DH10Bac/BmNPV [34] to generate Bacmid-H1-D4ORF-polh and Bacmid-D4ORF-VP3-
polh recombinant bacmids, respectively, using the Bac-To-Bac baculovirus expression
system (Invitrogen, Frederick, MD, USA) following the manufacturer’s instructions. pFast-
BacTMDual was used to generate a control bacmid.

Two micrograms of Bacmid-H1-D4ORF-polh or Bacmid-D4ORF-VP3-polh DNA
weremixed with 10 µL of FuGENE HD Transfection Reagent (Roche Diagnostics, Indi-
anapolis, IN, USA), and then transfected into a cultured silkworm ovary-derived BmN cell
line (105 cells in 200 µL TC-100 medium (Sangon, Shanghai, China) without fetal bovine
serum). The transfected cells were cultured with TC-100 medium containing 10% fetal
bovine serum at 27 ◦C after removing the old medium 4 h post-transfection. After 3 days,
the supernatant of the cultured cells was collected to obtain recombinant baculoviruses
BmNPV-H1-D4ORF-polh or BmNPV-D4ORF-VP3-polh. To further verify the expressed
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protein by recombinant viruses, 50 µg of total proteins extracted from infected cells were
subjected to SDS-PAGE. Proteins were transferred onto polyvinylidene difluoride (PVDF)
membranes (Millipore, Burlington, MA, USA), and Western blotting was conducted with
a mouse anti-ORF72 (1:500) [31] and an HRP-conjugated goat anti-mouse IgG (1:20,000)
(Sino Biological Inc., Beijing, China). Untreated cells were used as a negative control.

2.4. Expression of H1-D4ORF and D4ORF-VP3 in the Silkworm

The newly molted larvae of the fifth instar silkworm were inoculated with BmNPV-H1-
D4ORF-polh and BmNPV-D4ORF-VP3-polh by subcutaneous injection, followed by feeding
with fresh mulberry leaves at 25 ◦C. The hemolymph was collected at 1, 2, 4, and 6 days
post-injection. Ten microliters of hemolymph were subjected to SDS-PAGE and Western
blotting. The hemolymph of healthy silkworm larvae was used as a negative control.

2.5. Purification of Polyhedra (Polyhedral Microcrystals)

Forty milliliters of hemolymph collected from 100 infected silkworms at 6 days post-
inoculation were used for purification of polyhedra according to our previous report [35].
Briefly, after the hemolymph was centrifuged for 10 min at 6000× g, the obtained pellet
was washed 3–5 times with 0.1% sodium dodecyl sulfate (SDS) (Sangon, Shanghai, China)
until the pellet turned white. The pellet was washed with 1× PBS twice to obtain the
purified polyhedra.

2.6. Detection of H1-D4ORF and D4ORF-VP3 Recombinant Proteins in Polyhedra
and Hemolymph

The hemolymph of the silkworm larvae wascollected 6 days post-infection with re-
combinant viruses, the supernatant and pellet (polyhedra) were obtained by centrifugation
at 6000× g for 5 min. The obtained pellet was washed 3–5 times with 0.1% SDS and
2 times with 1× PBS to obtain the purified polyhedra. To dissolve polyhedra, the purified
polyhedra were incubated with a lysis buffer (0.2 mol/L Na2CO3-NaHCO3) for 30 min at
30 ◦C until the suspension became clear and this was followed by adjusting the pH value
to 8.0–9.0 with 1 mol/L HCl. Protein (50 µg) from the hemolymph, supernatant, and poly-
hedrawassubjected to SDS-PAGE [35]. Proteins were transferred onto PVDF membranes
and Western blotting was carried out with mouse anti-ORF72 (1:500) and HRP-conjugated
goat anti-mouse IgG (1:20,000) (Sino Biological Inc., Peking, China).

2.7. Storage Stability of the Recombinant Protein Incorporated into the Polyhedral Microcrystals

The purified polyhedra were divided into four groups and lysed according to our
previous paper [35]. In group LPS-20, the lysed polyhedra were stored at −20 ◦C; in group
LPS-RT, the lysed polyhedra were stored at room temperature (about 22 ◦C); in group PS-20,
polyhedra without lysis were stored at −20 ◦C; and in group PS-RT, polyhedra without
lysis were stored at room temperature. After two weeks, 15 µg of the treated samples were
subjected to SDS-PAGE. Protein degradation was estimated by electropherogram after the
PAGE gel was stained with Coomassie brilliant blue R250 (Sangon, Shanghai, China).

2.8. Vaccination

Gibel carp (mean body weight: 22 ± 2 g) were purchased from Aquatic Breeding
Field of Kunshan City, in Jiangsu Province, China. The fish were acclimatized at 25 ◦C
in the laboratory for two weeks in a recirculating freshwater system. Fish were fed with
commercial dry pellets (Tongwei Group, Chengdu, China) three times a day.

Sixty fish were randomly divided into three groups (definedas group H1-D4ORF,
group D4ORF-VP3, and group CK), with 20 fish in each group. The fish were immunized
by injection. In group H1-D4ORF, the fish were vaccinated by intraperitoneal injection
with 200 µL of BmNPV-H1-D4ORF-polh polyhedra (7.0 × 106 polyhedra determined by
a hemacytometer mixed with complete Freund’s adjuvant at a ratio of 1:1) per fish; in
group D4ORF-VP3, the fish were vaccinated by intraperitoneal injection with 200 µL of
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BmNPV-D4ORF-VP3-polh polyhedra (4.4 × 106 polyhedra mixed with complete Freund’s
adjuvant at a ratio of 1:1) per fish; in group CK, the fish were injected with 200 µL of PBS
mixed with complete Freund’s adjuvant at a ratio of 1:1 per fish. This final group served as
an untreated control.

2.9. Enzyme-Linked Immunosorbent Assay (ELISA)

To determine the antibody titers in the immunized fish, blood (n = 3) harvested
from the caudal vein of fish 3 weeks post-vaccination wasstored overnight at 4 ◦C. After
centrifugation for 10 min at 2000× g, the sera were collected and antibody titers were
determined according to our previous report [31]. Briefly, ELISA plates were coated with
different concentrations of recombinant ORF72, followed by blocking with 5% bovine
serum albumin overnight at 4 ◦C. Plates were incubated with different dilutions of sera
from vaccinated or unvaccinated fish for 2 h. After washing five times with Tris-buffered
saline containing Tween-20 (Sangon, Shanghai, China), the ORF72 antibody (1:500) was
added and incubated for 2 h. After further washing with TBST, HRP-conjugated goat
anti-mouse IgG (Sino Biological Inc., Peking, China) was added and incubated. Finally, the
absorbance at 492 nm was measured after coloration.

2.10. Challenge Trials

Fish 31 days post-vaccination were challenged by injection at the base of the pectoral
fin with CyHV-2 stock (107 copies of virus per fish). The challenged fish were raised at
23–25 ◦C. Five days later, the diseased fish were detected by reverse transcriptionPCR,
with the designed primer pairs CyHV-2-hel-1(5′-GGGTGAGGACTTGCGAAGAG-3′) and
CyHV-2-hel-2 (5′-CGCTCGTCCGGGTTCTGCACG-3′) based on the helicase gene sequence
of CyHV-2 (GenBank accession No. KT387800) to confirm CyHV-2 infection.

The protection effect was evaluated using RPS, calculated by the following formula:

RPS (%) = (X − Y)/X × 100 (1)

in which X isthe infection rate in group CK, and Y isthe infection rate in the vaccination
group. The percentage of infected fish in the test fish group was defined as the infection
rate in this study.

2.11. Detection of the Incorporated Baculovirus BmNPV into BmCPV Polyhedra

The isolated recombinant polyhedra from silkworm larvae infected with BmNPV-
H1-D4ORF-polh or BmNPV-D4ORF-VP3-polh were washed 5 times with 0.1% SDS. The
purified polyhedra (108 in 0.5 mL) were lysed with 0.2 mol/L Na2CO3-NaHCO3 buffer
(0.5 mL) at 30 ◦C for 30 min, and mixed with 0.1% SDS (1 mL) or PBS (1 mL), followed
by incubation for 30 min at 26 ◦C. After filtering with a pore size of 0.22 µm, 20 µL of
the filtrate were used to infect silkworm BmN cells (2 × 105). After 4 days, incorpora-
tion of the recombinant baculoviruses into BmCPV polyhedra was assessed according to
morphological changes of the cells by microscopy (Nikon, Tokyo, Japan).

3. Results
3.1. Generation of Recombinant Baculovirus and Expression of Recombinant Proteins

In order to incorporate recombinant antigen proteins into BmCPVpolyhedra, the
baculovirus transfer vectors pFast-H1-D4ORF-polh and pFast-D4ORF-VP3-polh were
constructed. In pFast-H1-D4ORF-polh, the H1-D4ORF fused sequence was controlled by
the baculovirus P10 promoter, and the BmCPV polh gene was driven by the baculovirus
polh promoter. pFast-D4ORF-VP3-polh was generated by replacing the H1-D4ORF fused
sequence of pFast-H1-D4ORF-polh with the D4ORF-VP3 fused sequence. Therefore, when
the D4ORF with either the H1 tag or VP3 tag is co-expressed with the BmCPV polh gene, the
recombinant D4ORF with either the H1 tag or VP3 tag can be encapsulated into polyhedral
microcrystals (Figure 1).
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Figure 1. Strategies for constructing polyhedral microcrystals encapsulating antigen protein of
CyHV-2. A codon-optimized sequence, D4ORF, comprising the ORF72 (region 1–186 nt), ORF66
(region 993–1197 nt), ORF81 (region 603–783 nt), and ORF82 (region 85–186 nt) genes of CyHV-2
was synthesized. The H1-D4ORF and D4ORF-VP3 sequences were, respectively, obtained by fusing
the H1-helix sequence (region 1–90 nt) of the BmCPVpolh to the 5′ terminal end of D4ORF and
by fusing a partial sequence (1–279 nt) of the BmCPV VP3 gene to the 3′ terminal end of D4ORF,
respectively. The H1-D4ORF or D4ORF-VP3 sequences were driven by the baculovirus p10 promoter
(Pp10). The BmCPV polh was controlled by the baculoviruspolh promoter (PPH). When either the
H1-D4ORF or D4ORF-VP3 wasco-expressed with BmCPVpolh in the cell, the respective H1-D4ORF
and D4ORF-VP3 proteins were incorporated into polyhedral microcrystals.

To generate a recombinant bacmid, the pFast-H1-D4ORF-polh and pFast-D4ORF-
VP3-polh were, respectively, transformed into E. coli DH10Bac/BmNPV. The generated
recombinant bacmids were termed Bacmid-H1-D4ORF-polh and Bacmid-D4ORF-VP3-polh,
respectively. Further, the recombinant baculovirus BmNPV-H1-D4ORF-polh and BmNPV-
D4ORF-VP3-polh were generated by transfecting the recombinant bacmid DNAs into
cultured BmN cells. The transfected cells ceased growing, but their diameter and nucleus
size typically increased and exhibited detachment and lysis 3 days post-transfection. More-
over, the polyhedra could be observed in transfected cells with Bacmid-H1-D4ORF-polh or
Bacmid-D4ORF-VP3-polh DNAs (Figure 2A–C). These results indicated that the BmCPV
polh gene was expressed and cytoplasmic polyhedra were formed in the transfected cells.

The cultured BmN cells were infected with either BmNPV-H1-D4ORF-polh or BmNPV-
D4ORF-VP3-polh, and the collected cell-cultured supernatants were used to inoculate
silkworm larvae. The blood color of the silkworm larvae 5 days post-infection became
milky white, and polyhedra could be found in their hemolymph (Figure 2D–F). The
collected hemolymph 1, 2, 4, and 6 days post-infection was subjected to SDS-PAGE and
Western blotting analysis was conducted using mouse anti-ORF72 antibodies. The specific
signal bands representing H1-D4ORF (27.94 kDa) and D4ORF-VP3 (34.87 kDa) recombinant
proteins could be detected in the hemolymph of BmNPV-H1-D4ORF-polh- and BmNPV-
D4ORF-VP3-polh-infected silkworms, respectively (Figure 2G,H).

3.2. H1-D4ORF and D4ORF-VP3 Recombinant Proteins Can Be Incorporated into
Polyhedral Microcrystals

The results showed that 500 mg of purified polyhedra (wet weight) were obtained
from 40 mL of hemolymph collected from 100 silkworms infected with recombinant Bm-
NPV. In order to verify whether H1-D4ORF and D4ORF-VP3 recombinant proteins co-
expressed with BmCPV polh were incorporated into polyhedral microcrystals, the collected
hemolymph from the silkworm larvae 6 days post-infection were centrifuged and the re-
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sultant purified polyhedra (Figure 3A,B), supernatant, and the collected hemolymph were
subjected to SDS-PAGE (Figure 3C) and subsequent Western blotting analysis. Specific
bands representing target proteins could be observed in the polyhedra samples, indicating
that the expressed H1-D4ORF and D4ORF-VP3 recombinant proteins in the hemolymph
were incorporated into polyhedra (Figures S3 and S4). However, some of the recombinant
proteins were free, and located outside the polyhedra, because specific bands representing
target proteins could be found in the resultant supernatant (Figure 3D).
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Figure 2. H1-D4ORF, D4ORF-VP3, and BmCPVpolh expressed in the BmN cells and silkworm
larvae. (A) The uninfected BmN cells; (B) BmCPV polyhedra were observed in cells transfected with
Bacmid-H1-D4ORF-polh; (C) BmCPV polyhedra were observed in cells transfected with Bacmid-
D4ORF-VP3-polh; (D) BmCPV polyhedra were not found in the hemolymph of uninfected silkworm
larvae; (E) BmCPV polyhedra generated in the hemolymph of infected silkworm larvae with BmNPV-
H1-D4ORF-polh; (F) BmCPV polyhedra generated in the hemolymph of infected silkworm larvae
with BmNPV-D4ORF-VP3-polh; (G) SDS-PAGE of the hemolymph from silkworm larvae infected
with BmNPV-H1-D4ORF-polh/BmNPV-D4ORF-VP3-polh. Lane M, protein marker; lane CK, the
hemolymph of uninfected silkworm larvae; lane 1, 2, 4, and 6, the hemolymph of silkworm larvae
infected with BmNPV-H1-D4ORF-polh/BmNPV-D4ORF-VP3-polh 1, 2, 4, and 6 days post-infection.
The recombinant proteins areindicated by an arrowhead; (H) Western blot analysis depicting the
hemolymph of silkworm larvae infected with BmNPV-H1-D4ORF-polh/BmNPV-D4ORF-VP3-polh.
Mouse anti-ORF72 (1:500) was used as the primary antibody and an HRP-conjugated goat anti mouse
IgG (1:20,000) was used as the second antibody. The signal bands representing recombinant proteins
are indicated by an arrowhead.

3.3. Polyhedra Protects the Incorporated Proteins from Degradation

In order to assess the storage stability of the recombinant protein incorporated into
the polyhedral microcrystals, the treated polyhedra were subjected to SDS-PAGE. Regard-
less of whether the polyhedra were lysed or not, there was no significant change in the
electrophoretic pattern between the samples (group LPS-20 and group LPS-RT) stored for
2 weeks at−20 ◦C. However, when the samples (group PS-20 and group PS-RT) were stored
at room temperature for 2 weeks, the protein in the lysed polyhedra samples was signifi-
cantly degraded. There was no significant difference in the electrophoretic patterns of the
polyhedra stored at −20 ◦C (group LPS-20) and the polyhedra stored at room temperature
(group PS-RT) (Figure 4). These results suggest that polyhedra protect the incorporated
proteins from degradation.
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Figure 3. H1-D4ORF and D4ORF-VP3 recombinant proteins can be incorporated into BmCPV
polyhedra. (A,B) are the purified recombinant cytoplasmic polyhedra generated in BmNPV-H1-
D4ORF-polh- and BmNPV-D4ORF-VP3-polh-infected silkworm larvae, respectively; (C) SDS-PAGE
of hemolymph, supernatant of hemolymph, and purified recombinant cytoplasmic polyhedra. The
samples were from silkworm larvae 6 days post-infection with BmNPV-H1-D4ORF-polh/BmNPV-
D4ORF-VP3-polh. Lane M, protein marker; lane H, hemolymph; S, supernatant of hemolymph;
P, purified recombinant cytoplasmic polyhedra; (D) Western blot analysis of the hemolymph, su-
pernatant of the hemolymph, and purified recombinant cytoplasmic polyhedra. The samples were
the same as those of SDS-PAGE. Mouse anti-ORF72 (1:500) was used as primary antibody and an
HRP-conjugated goat anti mouse IgG (1:20,000) was used as the secondary antibody.
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Figure 4. SDS-PAGE for the preserved recombinant polyhedra and their lysis under different
conditions. Lane M, protein marker; +, lysed polyhedra; −, polyhedra without lysis; H1, BmNPV-H1-
D4ORF-polh polyhedra, VP3, BmNPV-D4ORF-VP3-polh polyhedra. The polyhedra and their lysates
were stored at −20 ◦C or room temperature (about 22 ◦C) for 2 weeks.

3.4. Injection Immunization with Polyhedron-Encapsulated H1-D4ORF/D4ORF-VP3 Fused
Proteins Confers Protection against CyHV-2

To explore whether specific antibody (IgM) could be generated in the vaccinated fish by
injection of polyhedron-encapsulated H1-D4ORF/D4ORF-VP3 fused protein, the antibody
titer of the serum sampled from the fish 3 weeks post-immunization were analyzed by
ELISA. The results showed that the antibody titers for both the H1-D4ORF group and the
D4ORF-VP3 group reached 1:6400–1:12,800 (Figure S2), but no specific antibody could be
detected in the unvaccinated fish.
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Moreover, fish 31 days post-initial vaccination were challenged by injection with
CyHV-2. Five days later, PCR was used to assess whether the diseased fish were infected
with CyHV-2. The infection rate was 85% in the control group injected with complete
Freund’s adjuvant, and was 30% and 35% in the immunized groups vaccinated with H1-
D4ORF and D4ORF-VP3, respectively. The RPS for immunized groups was 64.71% and
58.82% for H1-D4ORF and D4ORF-VP3, respectively (Table 1).

3.5. Baculovirus BmNPV Can Be Incorporated into BmCPV Polyhedra

As mentioned above, the polyhedra incorporating either H1-D4ORF or D4ORF-VP3
recombinant proteins can be used as a potential vaccine. Therefore, considering the
safety of the vaccine, it was further determined whether recombinant baculovirus BmNPV
can be embedded into BmCPV polyhedra when the BmCPV polh gene is co-expressed
with H1-D4ORF or D4ORF-VP3 fused genes by the recombinant baculovirus BmNPV.
The purified polyhedra from silkworm larvae infected with BmNPV-H1-D4ORF-polh or
BmNPV-D4ORF-VP3-polh were lysed with 0.2 mol/L Na2CO3-NaHCO3 buffer (0.5 mL) to
obtain a lysate of the polyhedra. The BmN cells were challenged by the lysate treated with
1× PBS. At 4 days post-challenge, the cells showed cellular pathological changes, with cells
becoming round and the polyhedra could be observed in challenged cells (Figure 5A,C).
This morphological change might be due to the recombinant BmNPV infection. In contrast,
the cells did not show any cytopathological effects when challenged with the lysate treated
with 0.1% SDS (Figure 5B,D). Thus, the BmNPV envelope can be destroyed by treatment
with 0.1% SDS (anionic detergents).
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Figure 5. Detection of baculovirus incorporated into BmCPV polyhedra. (A) The inoculated BmN
cells with BmNPV-H1-D4ORF-polh polyhedra lysis without 0.1% SDS treatment; (B) the inoculated
BmN cells with BmNPV-H1-D4ORF-polh polyhedra lysis with 0.1% SDS treatment; (C) the inoculated
BmN cells with BmNPV-D4ORF-VP3-polh polyhedra lysis without 0.1% SDS treatment; (D) the
inoculated BmN cells with BmNPV-D4ORF-VP3-polh polyhedralysis with 0.1% SDS treatment. H1,
BmNPV-H1-D4ORF-polh polyhedra; VP3, BmNPV-D4ORF-VP3-polh polyhedra. The cytoplasmic
polyhedra are indicated by an arrowhead.



Vaccines 2021, 9, 397 10 of 13

Table 1. Immunoprotection of CyHV-2 infection by immunological injection of recombinant polyhedra.

Group Control H1-D4ORF D4ORF-VP3

Injection Dose PBS 7 × 106 per fish 4.4 × 106 per fish
Infection Rate (%) 17/20 6/20 7/20
Relative Percent

Survival (%) / 64.7 58.82

4. Discussion

Currently, PLGA, S-Alg, and chitosan are widely used as carriers for preparations of
microencapsulated drugs and proteins [11]. Recently, cell protein crystallization has been
used for structural biology and nanotechnology research [29]. In this study, BmCPVpoly-
hedra were used to encapsulate the recombinant vaccine against CyHV-2. The results
presented here showed that the recombinant vaccine protein with either the H1 or VP3tag,
co-expressed with BmCPVpolh in both the cultured BmN cells and silkworm larvae, could
be incorporated into BmCPVpolyhedra. This result indicated that the microencapsulated
vaccine can be generated by incorporating the target antigen into polyhedra.

C. auratus gibelio gill hemorrhagic disease, caused by CyHV-2 infection, has spread
widely in gibel carp aquaculture areas, with a 90–100% mortality rate [25,26,31]. Vaccine
administration is believed to be the most effective approach to prevent and control C.
auratus gibelio gill hemorrhagic disease. The RPS of gibel carp immunized with bac-
uloviruses displaying and expressing ORF25, ORF25C, and ORF146 by the immersion
route reached 83.3%, 87.5%, and 70.8%, respectively [30]. Recently, Huo et al. constructed
recombinant plasmid pcORF25 with the ORF25 expression cassette and pcCCL35.2 contain-
ing a Ctenopharyngodonidella chemokine (C-C motif) ligand 35.2 (CCL35.2) expression
cassette as a DNA vaccine and molecular adjuvant against CyHV-2. This study reports that
the combination of CCL35.2 and pcORF25 significantly enhances the immune protection of
gibel carp against CyHV-2 infection, with the highest survival rate being 70% [36]. In our
previous studies, we constructed a recombinant baculovirus vector vaccine, BacCarassius-
D4ORF, containing a fused codon-optimized sequence of D4ORF controlled by a β-actin
promoter. The RPS of gibel carp immunized with BacCarassius-D4ORF via the oral or
injection route reached 59.3% and 80.0%, respectively, following challenge [31]. In this
study, it was found that specific antibodies against CyHV-2 could be detected 3 weeks
post-immunization. The RPS of gibel carp immunized with the multi-subunit vaccine
encapsulated by polyhedra via a single injection immunization reached 58.8–64.7% fol-
lowing challenge with CyHV-2. These results suggest that H1-D4ORF and D4ORF-VP3
recombinant proteins incorporated into polyhedra can be released in the fish, and thus
C. auratus gibelio gill hemorrhagic disease can be prevented by vaccination with polyhe-
dra incorporating antigen protein. However, the RPS of immunized fish with polyhedra
incorporating H1-D4ORF and D4ORF-VP3 proteins was lower compared with previous
reports. The different efficacy of these vaccines may be related to the slow release of anti-
gens em-bedded in the polyhedra under physiological conditions [20,22], different types of
vac-cines, different routes of administration and different detection time.

In this study, the BmCPVpolh gene was co-expressed with H1-D4ORF or D4ORF-VP3
fused genes by recombinant baculovirus BmNPV. In this case, there was a high level of
cytoplasmic polyhedra in the blood of infected silkworms with the recombinant BmNPV.
The yield in this study was 500 mg of polyhedra (wet weight) obtained from 40 mL of
hemolymph from 100 infected silkworms. Purified polyhedra can be easily prepared by
differential centrifugation from the hemolymph of infected silkworms.

Polyhedra are resistant to degradation in the stomach because BmCPV polyhedra are
resistant to enzyme action and can tolerate acidic treatment [15]. Therefore, polyhedra have
the potential to be used as an oral vaccine carrier. Other studies showed that baculovirus
vector vaccines against grass carp reovirus (GCRV) and CyHV-2 orally administered to
grass carp, as well as gibel carp, induced good immunoprotection [31,34]. In a similar
study, an oral Bacillus carrier vaccine against GCRV protected 50–60% of grass carp from
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infection with GCRV [37]. Moreover, orally immunized carp and koi with a genetically
engineered Lactobacillus plantarum surface displaying G protein of the spring viremia
of carp virus (SVCV) combined with the ORF81 protein of koi herpesvirus showed ef-
fective protection rates of 71% and 53%, respectively [38]. However, when carp received
paraformaldehyde-fixed whole insect Sf9 cells expressing SVCV-G protein by oral vaccina-
tion with alginate-encapsulated cells, no protection against SVCV was detected [39]. These
results indicated that vaccine carriers and the effective release of vaccine proteins from their
carriers are crucial for oral vaccines. Although polyhedra are very stable, encapsulated
protein kinase C [20], fibroblast growth factor (FGF)-2 [17,21,22], FGF-7 [17,22], epidermal
growth factor [17,22], leukemia inhibitory factor [23], bone morphogenetic protein-2 [24],
vascular endothelial growth factor [19], endostatin [19], and the major capsid protein VP1
of norovirus [18] were reported to be released from polyhedra both in vitro and in vivo.

BmCPV polyhedra can serve as the basis for the development of robust and versatile
nanoparticles for biotechnological applications [40]. In this study, the results indicated that
the H1-D4ORF and D4ORF-VP3 recombinant vaccine proteins encapsulated into the poly-
hedra were resistant to degradation at room temperature, suggesting that the H1-D4ORF
and D4ORF-VP3 microencapsulated by polyhedra can be stored at room temperature.

Both the H1tag and the VP3tag allowed the fused protein to be incorporated into
polyhedra [18,19,22,24]. In the present study, both H1-D4ORF and D4ORF-VP3 were de-
tected in the supernatant of hemolymph from infected silkworm larvae with BmNPV-
H1-D4ORF-polh and BmNPV-D4ORF-VP3-polh, respectively. This result indicated that
some recombinant proteins were free, and located outside of the polyhedra. Some of the
expressed Polh in the infected cells was crystallized to form polyhedra, while another
portion was soluble, recombinant protein with the H1 tag or the VP3 tag that could be
incorporated into polyhedra by the interaction of Polh with the H1 tag or the VP3 tag.
Polyhedra are susceptive to alkali, and dissolve readily when exposed to pH values higher
than 10.5 [15]. The recombinant protein with the H1tag or VP3tag could be specifically
incorporated into cytoplasmic polyhedra. Therefore, when polyhedra are exposed to pH
values higher than 10.5, the incorporated recombinant protein can be released. In this way,
the recombinant protein with higher purity is relatively easy to obtain by adjusting the pH
value to the isoelectric point (7.12) of the Polh in order to remove the Polh.

It was considered that the BmCPV virion can be specifically embedded intopolyhedra.
However, it was found here that recombinant baculovirusBmNPV can be embedded into
BmCPVpolyhedra. This result was similar to previous studies showing that the generated
BmCPVpolyhedra in transformed cells can embed baculovirus BmPAK6 [33]. It is suggested
that the polyhedra incorporating antigens are safe as a vaccine, because baculovirus with
replication defect properties [41,42], as well as baculovirus, can be eliminated from the
vaccinated fish [31].

5. Conclusions

The CyHV-2 subunit vaccine encapsulated by polyhedrin microcrystalline was suc-
cessfully developed. And BmCPVpolyhedra can serve as the basis for the development of
robust and versa-tile nanoparticles for biotechnological applications. The H1-D4ORF and
D4ORF-VP3 microencapsulated by polyhedra can be stored at room temperature.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/vaccines9040397/s1, Figure S1: Synthetic D4ORF fusion sequence; Figure S2: Valence of
Antibody; Figure S3: Western blot analysis depicting the hemolymph of silkworm larvae infected
with BmNPV-H1-D4ORF-polh/BmNPV-D4ORF-VP3-polh.; Figure S4: Western blot analysis of the
hemolymph, supernatant of the hemolymph, and purified recombinant cytoplasmic polyhedra.
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