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Because immune checkpoint inhibitors (ICIs) are effective for a subset of melanoma patients, identifica-
tion of melanoma subtypes responsive to ICIs is crucial. We performed clustering analyses to identify
immune subtypes of melanoma based on the enrichment levels of 28 immune cells using transcriptome
datasets for six melanoma cohorts, including four cohorts not treated with ICIs and two cohorts treated
with ICIs. We identified three immune subtypes (Im-H, Im-M, and Im-L), reproducible in these cohorts.
Im-H displayed strong immune signatures, low stemness and proliferation potential, genomic stability,
high immunotherapy response rate, and favorable prognosis. Im-L showed weak immune signatures,
high stemness and proliferation potential, genomic instability, low immunotherapy response rate, and
unfavorable prognosis. The pathways highly enriched in Im-H included immune, MAPK, apoptosis, cal-
cium, VEGF, cell adhesion molecules, focal adhesion, gap junction, and PPAR. The pathways highly
enriched in Im-L included Hippo, cell cycle, and ErbB. Copy number alterations correlated inversely with
immune signatures in melanoma, while tumor mutation burden showed no significant correlation. The
molecular features correlated with favorable immunotherapy response included immune-promoting sig-
natures and pathways of PPAR, MAPK, VEGF, calcium, and glycolysis/gluconeogenesis. Our data recapture
the immunological heterogeneity in melanoma and provide clinical implications for the immunotherapy
of melanoma.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Background

Recently, immune checkpoint inhibitors (ICIs) have achieved
success in treating various malignancies [1]. In particular,
melanoma is the cancer type inwhich ICIs have achieved the earliest
and greatest success for its high tumormutationburden (TMB) [2,3].
Nevertheless, only a subset of melanoma patients displayed an
active response to ICIs [4]. To improve the efficacy of ICIs, certain
biomarkers associated with the response to ICIs have been identi-
fied, including PD-L1 expression [5], DNA mismatch repair defi-
ciency [6], and TMB [7]. In general, the T cell-inflamed tumor
microenvironment (TME) may facilitate a response to ICIs [8]. Thus,
differentiating high-immune-response tumors from low-immune-
response tumorsmay aid the selection of cancer patients responsive
to ICIs. To this end, we have developed an immunogenomic
profiling-based unsupervised machine learning method for the
identification of high- and low-immune-response tumor subtypes
[9]. Several studies have proved that this method is effective in the
identification of immune subtypes of cancers [10].

In this study, we identified immune subtypes of cutaneous
melanoma based on the enrichment levels of 28 immune cells by
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performing clustering analyses. In six different datasets, we consis-
tently identified three immune subtypes of melanoma with high,
medium, and low immunity, respectively. We comprehensively
characterized the molecular and clinical landscapes of these mela-
noma subtypes. Moreover, we associated the immune subtypes
with the response to ICIs. Our identification of the immune sub-
types of melanoma may provide new insights into the biology of
this cancer type and potential clinical application for
cancer immunotherapy.
2. Methods

2.1. Datasets

We obtained four gene expression profiling datasets for cuta-
neous melanoma, including TCGA-melanoma [11] from the geno-
mic data commons data portal (https://portal.gdc.cancer.gov/),
and GSE65904 [12,13], GSE98394 [14], and GSE53118 [15,16] from
the NCBI gene expression omnibus (https://www.ncbi.nlm.nih.-
gov/geo/). For TCGA-melanoma, we also downloaded its somatic
mutation and copy number alteration profiling data from the geno-
mic data commons data portal (https://portal.gdc.cancer.gov/).
Moreover, we generated two gene expression profiling datasets
for cutaneous melanoma in which the clinical data for ICI treat-
ment are available. One dataset (termed ICI-R-melanoma) was
generated by combining five different RNA-Seq datasets (RSEM
normalized), including the Allen cohort [17], Hugo cohort [18],
Nathanson cohort [19], Riaz cohort [20], and Snyder cohort [21].
Another (termed ICI-M-melanoma) was a microarray dataset from
a previous publication [22]. In addition, we downloaded a single-
cell RNA sequencing (scRNA-seq) dataset (GSE72056 [23]) for cuta-
neous melanoma from the GEO. The scRNA-seq (SMART-seq2 [24])
dataset was gene expression profiles in 4485 single cells from 18
human cutaneous melanomas, which contained 1235 tumor cells,
2643 immune cells, 64 endothelial cells, 60 cancer-associated
fibroblasts (CAFs), and 483 unclassified cells. A description of these
datasets is shown in Supplementary Table S1.
2.2. Single-sample gene-set enrichment analysis

We scored the enrichment level of an immune signature, path-
way, or phenotypic feature in a tumor sample by using the single-
sample gene-set enrichment analysis (ssGSEA) of its gene set [25].
The ssGSEA outputs the enrichment score of a gene set in a sample
based on gene expression profiles. The gene sets representing
immune signatures, pathways, or phenotypic features are shown
in Supplementary Table S2.
2.3. Identification of immune subtypes of melanoma

We used hierarchical clustering to identify immune subtypes of
melanoma based on the ssGSEA scores of 28 immune cell types,
including CD56-bright natural killer (NK) cells, effector memory
CD4 T cells, eosinophil, CD56-dim NK cells, type 17T helper cells,
activated B cells, monocytes, memory B cells, activated CD4 T cells,
type 2T helper cells, plasmacytoid dendritic cells, neutrophils,
macrophages, effector memory CD8 T cells, myeloid-derived sup-
pressor cell (MDSC), immature B cells, T follicular helper cells,
NK cells, immature dendritic cells, mast cells, type 1T helper cells,
activated dendritic cells, central memory CD4 T cells, gamma delta
T cells, central memory CD8 T cells, regulatory T cells, activated
CD8 T cells, and NK T cells [26].
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2.4. Evaluation of tumor immune score and purity

We utilized ESTIMATE [27] to evaluate tumor immune score
based on immune gene expression signatures. The immune score,
which represents the tumor immune infiltration level, is the frac-
tion of immune cells in bulk tumor. We also evaluated tumor pur-
ity by ESTIMATE, which is the proportion of tumor cells in bulk
tumor. ESTIMATE defines tumor purity as a cosine function of the
sum of immune and stromal scores. Thus, tumor purity is likely
to be inversely proportional to immune scores.

2.5. Survival analysis

We used Kaplan–Meier curves to compare the survival time
(ten years except five years in ICI-R-melanoma) and the log-rank
test to assess the significance of survival time differences.

2.6. Pathway analysis

We used GSEA [28] to identify the KEGG [29] pathways signifi-
cantly upregulated in one class versus another class based on the
differentially expressed genes between both classes with a thresh-
old of adjusted P-value < 0.05. The differentially expressed genes
were identified using a threshold of adjusted P-value (false discov-
ery rate (FDR)) < 0.05 and fold change (FC) of mean expression
levels > 1.5. In addition, we used WGCNA [30] to identify the gene
modules highly enriched in the immune subtypes and
immunotherapy responsive and non-responsive groups of mela-
noma and displayed the representative gene ontology (GO) for
each gene module.

2.7. Logistic regression model

We used the logistic regression model to compare the contribu-
tion of TMB and SCNAs in predicting high-immune-score (upper
third) versus low-immune-score (bottom third) melanomas. In
the logistic regression analysis, the R function ‘‘glm” was used to
fit the binary model, and the R function ‘‘lm.beta” in the R package
‘‘QuantPsyc” was utilized to calculate the standardized regression
coefficients (b values).

2.8. Evaluation of TMB and somatic copy number alterations

We defined a tumor sample’s TMB as the total number of its
somatic mutations. We used GISTIC2 [31] to calculate arm- and
focal-level somatic copy number alterations (SCNAs) in the tumor
with the input of ‘‘SNP6” files, which were downloaded from the
genomic data commons data portal (https://portal.gdc.can-
cer.gov/). From the publication by Knijnenburg et al [32], we
obtained HRD scores (aneuploidy levels) of TCGA cancers.

2.9. Combination of different gene expression profiling datasets

We merged the six gene expression profiling datasets for mela-
noma using the ‘‘merge” function in the R package ‘‘base”. We
adjusted fored batch effects and normalized combined data using
the ‘‘normalizeBetweenArrays” function in the R package ‘‘limma.”

2.10. Statistical analysis

When comparing two classes of data, we used Mann–Whitney
U test for non-normally distributed data and Student’s t test for
normally distributed data. When evaluating the correlation
between two groups of data, we used Spearman’s correlation for
non-normally distributed data and Pearson’s correlation for
normally-distributed data. We used Fisher’s exact test to assess
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the association between two categorical variables. The Benjamini-
Hochberg method [33] was used for adjusting for multiple tests.
We performed all statistical analyses in the R programming envi-
ronment (version 4.0.2).
3. Results

3.1. Identification of immune subtypes of melanoma

Based on the ssGSEA scores of 28 immune cell types, we hierar-
chically clustered melanomas in six datasets (TCGA-melanoma,
GSE65904, GSE98394, GSE53118, ICI-R-melanoma, and ICI-M-
melanoma). Consistently, we obtained three clear clusters in these
datasets, which had high, medium, and low levels of immunity,
respectively (Fig. 1). We termed the three immune subtypes Im-
H, Im-M, and Im-L, which represent the high, medium, and low-
immunity subtypes, respectively. We further demonstrated that
there were significantly different levels of immune signatures
among Im-H, Im-M, and Im-L based on additional analyses. The
immune scores followed the pattern: Im-H > Im-M > Im-L, in all
six datasets (one-tailed Mann–Whitney U test, P < 0.001)
(Fig. 2A). By contrast, tumor purity had an opposite trend: Im-H <
Im-M < Im-L (P < 0.001) (Supplementary Fig. S1). HLA genes, which
encode MHC proteins, play important roles in the regulation of the
immune system. We observed a number of HLA genes differen-
tially expressed among the immune subtypes and following the
expression pattern: Im-H > Im-M > Im-L (one-way ANOVA test,
P < 0.001) (Fig. 2B and Supplementary Fig. S2). The interferon (type
I and II) response scores also followed the pattern: Im-H > Im-M
> Im-L (P < 0.01) (Fig. 2C). The pathological slides data for TCGA-
melanoma showed that Im-H and Im-L had the highest and lowest
percentages of lymphocyte infiltration, respectively (P = 0.014)
(Fig. 2D). Collectively, these results confirmed the markedly dis-
tinct tumor immune microenvironment (TIME) among the three
subtypes of melanoma.

The 28 immune cell types are involved in both immunostimula-
tory and immunosuppressive function, which were likely consis-
tently upregulated in Im-H while downregulated in Im-L
respectively (Fig. 1). Nevertheless, we observed that the ratios of
immunostimulatory to immunosuppressive signatures (CD8+/C
D4 + regulatory T cells, pro-/anti-inflammatory cytokines, and
M1/M2 macrophages) still followed the pattern: Im-H > Im-M > I
m-L (two-tailed Student’s t test, P < 0.05) (Fig. 2E). Interestingly,
PD-L1 had significantly different expression levels among the three
subtypes: Im-H > Im-M > Im-L (one-way ANOVA test, P < 0.05)
(Fig. 2F). Also, the ratios of CD8 + T cell/PD-L1 followed the same
pattern: Im-H > Im-M > Im-L (P < 0.05) (Fig. 2F). Overall, these
results suggest that Im-H and Im-L had the highest and lowest
anti-tumor immune response among the three subtypes,
respectively.
3.2. Clinical and phenotypic characteristics of the immune subtypes

In TCGA-melanoma, Im-H displayed a better overall survival
(OS) prognosis than Im-M and Im-L (log-rank test, P < 0.05), and
Im-M had better OS than Im-L (P = 0.003) (Fig. 3A). In GSE65904,
Im-H showed better disease-specific survival (DSS) and distant
metastasis-free survival (DMFS) than Im-M and Im-L (P < 0.02),
while there was no significant difference in DSS or DMFS between
Im-M and Im-L (P > 0.5) (Fig. 3A). In GSE98394, Im-L displayed
worse OS and DMFS than Im-H and Im-M (P < 0.001), while there
was no significant difference in OS or DMFS between Im-H and Im-
M (P > 0.5) (Fig. 3A). In GSE53118, Im-M had better OS than Im-L
(P < 0.01), while Im-H showed no significant OS difference with
Im-M (P = 0.9) and Im-L (P = 0.283) (Fig. 3A). In ICI-R-melanoma,
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Im-L showed worse OS than Im-H and Im-M (P < 0.01), while there
was no significant difference in OS between Im-H and Im-M
(P = 0.7) (Fig. 3A). Collectively, these results indicated that Im-H
and Im-L were likely to have the best and worst survival prognosis
among the three immune subtypes of melanoma, respectively. This
indication suggests a positive association between immune signa-
tures and survival prognosis in melanoma, consistent with
previous findings in many other cancer types, including gastric
cancer [34], head and neck squamous cell cancer [35], and triple-
negative breast cancer [36]. To check whether the survival
difference among these immune subtypes is associated with their
distinct TIME, we compared the survival prognosis between high-
immune-score (upper third) and low-immune-score (bottom
third) melanomas. We observed that high-immune-score
melanomas had a significantly better survival prognosis than
low-immune-score melanomas (Fig. 3B), confirming that the TIME
significantly impacts survival prognosis in melanoma.

We compared several phenotypic features between Im-H and
Im-L melanomas. These phenotypic features included tumor stem-
ness, proliferation potential, and epithelial-mesenchymal transi-
tion (EMT). Notably, Im-H had significantly lower stemness
scores than Im-L in five of the six datasets, except that in
GSE98394 where Im-H had significantly higher stemness scores
than Im-L; Im-H had significantly lower proliferation potential
scores than Im-L in four datasets (Fig. 3C). Overall, these results
suggest that the elevated anti-tumor immunity is likely to inhibit
tumor progression in melanoma. Nevertheless, Im-H tended to
have significantly higher EMT signature scores than Im-L
(Fig. 3C), suggesting a more enriched stromal microenvironment
in Im-H than in Im-L melanomas.

3.3. Molecular characteristics of the immune subtypes

3.3.1. Pathways
GSEA [28] identified numerous KEGG [29] pathways highly

enriched in Im-H and Im-L (Fig. 4A) based on the significantly
upregulated genes in Im-H versus Im-L (Student’s t test,
FDR < 0.05, FC > 1.5) (Supplementary Table S3). As expected, many
of the pathways highly enriched in Im-H were immune relevant,
including cytokine-cytokine receptor interactions, chemokine sig-
naling, NK cell-mediated cytotoxicity, intestinal immune network
for IgA production, graft-versus-host disease, allograft rejection,
antigen processing and presentation, primary immunodeficiency,
T and B cell receptor signaling, Jak-STAT signaling, Toll-like recep-
tor signaling, NOD-like receptor signaling, complement and coagu-
lation cascades, cytosolic DNA-sensing, Fc gamma R-mediated
phagocytosis, Fc epsilon RI signaling, and RIG-I-like receptor sig-
naling (Fig. 4A). Besides, many cancer-associated pathways were
highly enriched in Im-H, including MAPK signaling, apoptosis, cal-
cium signaling, VEGF signaling, cell adhesion molecules, focal
adhesion, and gap junction (Fig. 4A). Indeed, the positive associa-
tion between some of these pathways and immune activities has
been revealed in previous studies, including apoptosis [34], cal-
cium signaling [34], focal adhesion [34], MAPK [37], and VEGF
[34]. The pathways highly enriched in Im-L included adherens
junction, insulin signaling, arginine and proline metabolism, pur-
ine metabolism, and ErbB signaling. The negative association
between ErbB signaling and tumor immunity has been indicated
in a previous study [35].

3.3.2. Genomic features
In TCGA-melanoma, TMB was significantly higher in Im-M than

in Im-H and Im-L (one-tailed Mann–Whitney U test, P < 0.001),
while it showed no significant difference between Im-H and Im-L
(two-sided Mann–Whitney U test, P = 0.80) (Fig. 4B). It suggests
that TMB has no significant impact on the TIME in TCGA-



Fig. 1. Identification of immune subtypes of melanoma based on the enrichment scores of 28 immune cell types by hierarchical clustering. In six datasets, three clusters were
clearly identified: Im-H, Im-M, and Im-L, representing the high, medium, and low-immunity subtypes, respectively.
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Fig. 2. Comparisons of immune signatures among the three immune subtypes of melanoma. Immune scores evaluated by ESTIMATE [36] (A), expression levels of HLA genes
(B), interferon (type I and II) response scores (C), percentages of lymphocyte infiltration (D), ratios of immunostimulatory/immunosuppressive signatures (E), and PD-L1
expression levels and the ratios of CD8 + T cell/PD-L1 were compared among the three immune subtypes of melanoma. * P < 0.1, ** P < 0.01, *** P < 0.001, ns P � 0.1. It also
applies to the following figures.
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melanoma. This finding is in line with a recent study showing that
high TMB may inhibit immune infiltration in melanoma [38]. It is
also in agreement with our recent study demonstrating that TMB
and anti-tumor immune response is cancer type-dependent [3].
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However, we found that SCNAs, known as large-scale genomic
instability, displayed a significant association with the TIME in
melanoma. For instance, the scores of homologous recombination
deficiency (HRD), which contributes to large-scale genomic insta-



Fig. 3. Comparisons of clinical and phenotypic features among the three immune subtypes of melanoma. Comparisons of survival prognosis among the three immune
subtypes (A) and between high-immune-score (upper third) and low-immune-score (bottom third) melanomas (B). The log-rank test P-values are shown. C. Comparisons of
the scores of tumor stemness, proliferation potential, and epithelial-mesenchymal transition (EMT) among the three immune subtypes. The one-tailed Mann–Whitney U test
P-values are indicated. OS: overall survival; DSS: disease-specific survival; DMFS: distant-metastasis free survival.
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bility [36], followed the pattern: Im-H < Im-M < Im-L (one-tailed
Mann–Whitney U test, P < 0.05) (Fig. 4B). Im-L had significant
higher arm-level amplification and deletion frequencies and
focal-level amplification and deletion levels than Im-H
(P < 0.001) (Fig. 4B). These results indicated that SCNAs reduced
anti-tumor immune response in melanoma, consistent with previ-
ous findings [39]. To further compare the impact of TMB and
SCNAs on the TIME, we built a logistic regression model with
two predictors (TMB and SCNA score [36]) to predict high-
immune-score (upper third) versus low-immune-score (bottom
third) melanomas. As expected, the SCNA score was a significant
negative predictor (P < 0.001, b = -1.86), while TMB had no signif-
icant contribution in the prediction (P = 0.438, b = -0.29) (Fig. 4B).
In addition, a recent study showed that the reduced DNA methyla-
tion facilitated tumor immune evasion [40]. Consistent with that
finding, the global methylation levels in TCGA-melanoma [40] fol-
lowed the pattern: Im-H > Im-M > Im-L (P < 0.001) (Fig. 4B).

3.3.3. Mutation profiles
We found 380 genes whose mutation frequencies were signifi-

cantly different between Im-H and Im-L in TCGA-melanoma (Fish-
er’s exact test, P < 0.05) (Supplementary Table S4). Among them,
BRAF had the highest mutation rate (68.2%) in Im-H versus 47.4%
in Im-L (P = 0.014, odds ratio (OR) = 2.37). EP400 was another gene
displaying a significantly higher mutation rate in Im-H than in Im-
L (31.8% versus 14.6%; P = 0.008, OR = 2.72). B2M also showed a sig-
nificantly higher mutation rate in Im-H than in Im-L (9.1% versus
1.5%; P = 0.015, OR = 6.68). Among the 380 genes differentially
mutated between Im-H and Im-L, 21 had significant correlations
of their mutations with better responses to ICIs in at least a mela-
noma cohort. The 21 genes included CFB, CRYBG3, CTPS2, KIF23,
MAU2, NCF2, SAMD4A, SETX, CCDC13, CDKL5, and MKLN1 in the
Allen cohort [17], PLEKHA7 and PCDHGB3 in the Hugo cohort
[18], MAGEA4, NBEAL1, PCDHGA8, and SLC27A2 in the Riaz cohort
[20], and ANK1, DNAH6, KCNJ4, and ZNF366 in the Roh cohort
(Fig. 4C). Notably, 20 of the 21 genes had significantly higher muta-
tion rates in Im-H than in Im-L, and their mutations correlated
with higher immune scores (Fig. 4D).

3.3.4. Protein expression profiles
We analyzed protein expression profiles in the subtypes in

TCGA-melanoma, whereas protein expression profiles were not
available for the other datasets. In spite of this limitation in data
availability, we reported related findings from TCGA-melanoma
due to their relevance. We found 38 proteins whose expression
levels were significantly different between Im-H and Im-L in
TCGA-melanoma (two-tailed Student’s t test, P < 0.05) (Fig. 4E).
Among them, 23 were more highly expressed in Im-H than in
Im-L, including Axl, Caspase-7_cleavedD198, Syk, Lck, PREX1,
STAT5-a, Bim, NF-kB-p65_pS536, Src_pY416, PKC-pan_bII_pS660,
PRDX1, p90RSK, p27, PKC-d_pS664, G6PD, PI3K-p85, ER-a, Transg-
lutaminase, CD31, p27_pT198, ACVRL1, Annexin_VII, and C-Raf.
Notably, most of these proteins had significant positive expression
correlations with immune scores (Spearman’s correlation, P < 0.05)
(Supplementary Fig. S3). Among these proteins upregulated in
Im-H, Caspase-7 is a major promoter of apoptosis [41], which cor-
relates positively with anti-tumor immune response [37]. In con-
trast, 15 proteins had higher expression levels in Im-L than in
Fig. 4. Molecular features of the immune subtypes of melanoma. A. KEGG [29] pathways
mutation burden (TMB), homologous recombination deficiency (HRD) scores, and glo
prediction of high-immune-score (upper third) versus low-immune-score (bottom third
logistic regression model; comparisons of arm-level amplification and deletion frequ
melanomas. C. 21 genes showing significant correlations of their mutations with better re
genes which have significantly higher mutation rates in Im-H than in Im-L and whose
proteins differentially expressed between Im-H and Im-L in TCGA-melanoma (two-taile

3
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Im-H, including c-Kit, 4E-BP1_pT37_T46, YAP_pS127, eEF2, Smac,
ACC1, 4E-BP1, YAP, XRCC1, YB-1, PCNA, GSK3-a-b, Snail, SCD, and
cIAP. Most of them showed significant negative expression correla-
tions with immune scores (Supplementary Fig. S3). Notably,
YAP_pS127 and YAP are involved in the Hippo signaling pathway,
which is a negative regulator of anti-tumor immune response
[9,42]. Thus, their upregulation should inhibit anti-tumor immune
response, consistent with our results. Snail, another protein upreg-
ulated in Im-L, has been shown to play a role in tumor immuno-
suppression [43]. XRCC1 and PCNA, which function in DNA
damage repair [44], were upregulated in Im-L probably because
the high genomic instability stimulated their expression in this
subtype.

3.4. Associations of immune subtypes and immune signatures with
immunotherapy response in melanoma

In ICI-R-melanoma, the rate of response to ICIs followed the
pattern: Im-H (44.4%) > Im-M (31.3%) > Im-L (18.6%) (Fig. 5A). In
ICI-M-melanoma, the rate followed the pattern: Im-M
(57.9%) > Im-H (42.9%) > Im-L (8.0%). These results indicated that
Im-L had the lowest reponse rate to ICIs in melanoma. To further
explore the association between the TIME and immunotherapy
response in melanoma, we compared immune signature scores
between the responsive (complete or partial response) group and
the non-responsive group in ICI-R-melanoma and ICI-M-
melanoma. We found that immune scores were higher in the
responsive group in both ICI-R-melanoma (P = 0.082) and ICI-M-
melanoma (P = 0.003) (Fig. 5B). Most of the 28 immune cell types
for clustering analyses displayed significantly higher enrichment
levels in the responsive group (P < 0.1) (Fig. 5C). Numerous HLA
genes showed significantly higher expression levels in the respon-
sive group than in the non-responsive group (P < 0.1) (Supplemen-
tary Fig. S4). PD-L1 was more highly expressed in the responsive
group in both ICI-R-melanoma (P = 0.038) and ICI-M-melanoma
(P = 0.017) (Fig. 5D). The ratios of immunostimulatory/immunosup
pressive signatures (CD8+/CD4 + regulatory T cells, CD8+/PD-L1,
and M1/M2 macrophages) were significantly higher in the respon-
sive group (P < 0.1) (Fig. 5E). Overall, these results indicate a signif-
icant association between the TIME and immunotherapy response
in melanoma. In contrast, the stemness scores were significantly
higher in the non-responsive group (P < 0.05) (Fig. 5F). It indicates
that tumor stemness may promote immunotherapy resistance.

3.5. Identification of pathways associated with immunotherapy
response in melanoma

GSEA [29] identified numerous pathways associated with the
upregulated genes in the responsive group versus the non-
responsive group (FDR < 0.25, FC > 1.5) in ICI-R-melanoma with
a threshold of adjusted P-value < 0.25 (Fig. 6A). As expected, many
immune-related pathways were in the list, including T and B cell
receptor signaling, cytokine-cytokine receptor interaction, NK cell
mediated cytotoxicity, antigen processing and presentation, che-
mokine signaling, NOD-like receptor signaling, and Jak-STAT sig-
naling. Again, these results indicate a significant positive
association between the strength of immune signatures and the
response to immunotherapy in melanoma. In addition, several
highly enriched in Im-H and Im-L identified by GSEA [20]. B. Comparisons of tumor
bal methylation levels among the three immune subtypes in TCGA-melanoma;
) melanomas using TMB and somatic copy number alteration (SCNA) score by the
encies and focal-level amplification and deletion levels between Im-H and Im-L
sponses to immune checkpoint inhibitors (ICIs) in at least a melanoma cohort. D. 20
mutations correlate with better responses to ICIs and higher immune scores. E. 38
d Student’s t test, P < 0.05).



Fig. 5. Associations of immune subtypes and immune signatures with immunotherapy response in melanoma cohorts treated with immune checkpoint inhibitors. A.
Comparisons of the rate of response to ICIs among the three immune subtypes. Comparisons of immune scores (B), enrichment levels of 28 immune signatures (C), PD-L1
expression levels (D), ratios of immunostimulatory/immunosuppressive signatures (E), and stemness scores (F) between the responsive and non-responsive melanomas.
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Fig. 6. Pathways and gene ontology associated with immunotherapy response in melanoma. A. Pathways upregulated in the responsive versus non-responsive melanomas. B.
12 gene modules (indicated in different colors) that significantly differentiated melanomas by immune subtype, immunotherapy response, or overall survival (OS) prognosis
identified by WGCNA [30]. The representative gene ontology for gene modules, correlation coefficients, and P-values (in parenthesis) are shown.

Q. Liu, R. Nie, M. Li et al. Computational and Structural Biotechnology Journal 19 (2021) 4472–4485

4481



Q. Liu, R. Nie, M. Li et al. Computational and Structural Biotechnology Journal 19 (2021) 4472–4485
cancer-associated pathways were in the list, including PPAR signal-
ing, glycolysis/gluconeogenesis, MAPK signaling, VEGF signaling,
and calcium signaling (Fig. 6A). Among them, the glycolysis/gluco-
neogenesis pathway has been shown to have a positive correlation
with immunotherapy response in melanoma [41].

In ICI-R-melanoma, WGCNA [30] identified 12 gene modules
that significantly differentiated melanomas by immune subtype,
immunotherapy response, or OS prognosis (Fig. 6B). The represen-
tative GO terms for the gene modules (indicated in turquoise, yel-
low, and blue color) upregulated in Im-H while downregulated in
Im-L included immune response, B cell receptor signaling pathway,
and extracellular matrix. The representative GO terms for the gene
modules (indicated in brown, magenta, green, and green yellow
color) enriched in Im-M included acute inflammatory response,
digestion, epithelial cell differentiation, and regulation of signaling
receptor activity. The representative GO terms for the gene mod-
ules (indicated in black, purple, and red color) upregulated in Im-
L while downregulated in Im-H included cell cycle, protein trans-
port, and cellular pigmentation. These results indicate that the
immune and stromal signatures are enriched in Im-H and that
the cell cycle pathway is enriched Im-L. The significant association
between cell cycle and anti-tumor immunosuppression has been
demonstrated in a previous study [45].

Three gene modules (indicated in turquoise, yellow, and brown
color) were upregulated in the responsive group versus non-
responsive group, whose representative GO terms were immune
response, B cell receptor signaling pathway, and acute inflamma-
tory response, respectively (Fig. 6B). Again, these results suggest
that the active TIME promotes immunotherapy response in mela-
noma. As expected, the three gene modules were associated with
better OS prognosis in melanoma, consistent with their high
enrichment in the responsive group. In contrast, the pink gene
Fig. 7. Comparisons of molecular and phenotypic features between the melanomas trea
signatures (B), tumor purity (C), and stemness, proliferation potential, and ITH scores
Whitney U test or two-tailed Student’s t test P-values are indicated. ITH: intratumor he
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module was upregulated in the non-responsive group versus
responsive group, which was associated with worse OS prognosis.
Its representative GO term was gene silencing. In addition, the
black gene module, which was upregulated in Im-L and downreg-
ulated in Im-H but not differentially enriched between the respon-
sive and non-responsive groups, was associated with worse OS
prognosis. Its representative GO term was cell cycle. It indicates
that in the setting of insignificant difference in immunotherapy
response, the elevated cell cycle activity may lead to worse out-
comes in melanoma by inhibiting anti-tumor immune response.

3.6. Comparisons of molecular and phenotypic features between the
melanomas treated and those untreated with ICIs

To explore how ICIs have altered the molecular and phenotypic
features of melanoma, we compared immune signatures, stromal
signatures, tumor purity, stemness, proliferation potential, and
intratumor heterogeneity (ITH) between the melanomas treated
with ICIs and those untreated with ICIs. We found that immune
signature (CD8 + T cells and immune cytolytic activity) scores were
significantly higher in ICIs-treated melanomas (P < 0.05) (Fig. 7A).
Meanwhile, PD-L1 expression levels were also upregulated in this
cohort (P < 0.001). However, the ratios of immunostimulatory to
immunosuppressive signatures (CD8 + T cells/PD-L1 and M1/M2
macrophages) were significantly higher in ICIs-treated melanomas
(Fig. 7A). These results suggest that the use of ICIs promotes the
formation of immunostimulatory TME in melanoma.

Stromal scores were also significantly higher in ICIs-treated
melanomas (P < 0.001) (Fig. 7B). In contrast, tumor purity was sig-
nificantly lower in ICIs-treated melanomas (P < 0.001) (Fig. 7C).
Notably, the stemness scores and proliferation potential scores
were higher in ICIs-treated melanomas (P < 0.001), while the ITH
ted and those untreated with ICIs. Comparisons of immune signatures (A), stromal
(D) between ICIs-treated and non-ICIs-treated melanomas. The one-tailed Mann–
terogeneity.



Fig. 8. Estimate of the response rate to ICIs in melanoma based on the immune subtyping in the six cohorts.
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scores evaluated by the DEPTH algorithm [46] were lower in this
cohort (P = 0.007) (Fig. 7D).

Taken together, these data implicate that the use of ICIs may
change the characteristics of tumor cells and the TME in mela-
noma. These alterations in turn may influence the response to ICIs.

3.7. Evaluation of the response rate to ICIs in melanoma

In ICI-R-melanoma, the response rate to ICIs was 44.4%, 31.3%,
and 18.6% in Im-H, Im-M, and Im-L, respectively, and the overall
response rate was 30.7%. In ICI-M-, the response rate was 42.9%,
57.9%, and 8.0% in the three subtypes, respectively, and the overall
response rate was 39.3%. By averaging the response rates in iden-
tical subtypes of both datasets, we estimated the response rate in
Im-H, Im-M, and Im-L melanomas to be 45.8%, 45.3%, and 15.0%,
respectively. Applying the averaged response rates in the subtypes
to TCGA-melanoma, GSE65904, GSE98394, and GSE53118 in which
patients were not treated by ICIs, we estimated their overall
response rate was 27.3%, 34.1%, 34.9%, and 28.2%, respectively,
based on the numbers of Im-H, Im-M, and Im-L melanomas in
these datasets (Fig. 8). Both the mean and median overall response
rates in the six groups of melanomas were equal to 32.40%. The
estimated response rate to ICIs in melanoma (around 30%) based
on the subtyping in the six cohorts conforms to that reported by
clinical data [47].

4. Discussion

Based on the enrichment scores of 28 immune cells in the TIME,
we identified three immune subtypes (Im-H, Im-M, and Im-L) of
melanoma. We demonstrated the stability and producibility of this
classification method in six different datasets, including four
cohorts not treated with ICIs and two cohorts treated with ICIs.
Im-H was characterized by strong immune signatures, low stem-
ness and proliferation potential, genomic stability, high
immunotherapy response rate, and favorable prognosis. In con-
trast, Im-L was characterized by weak immune signatures, high
stemness and proliferation potential, genomic instability, low
immunotherapy response rate, and unfavorable prognosis. The sig-
nificantly different survival prognosis among these immune sub-
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types is attributed to significantly different anti-tumor immune
response and immunotherapy response among them. Our data
confirmed that the inflamed TIME can promote anti-tumor immu-
nity and immunotherapy response in melanoma. Interestingly, as
an immunosuppressive signature, PD-L1 had the highest expres-
sion levels in Im-H, which showed the strongest anti-tumor
immune response among the three subtypes. One potential expla-
nation for this observation could be that PD-L1 is also expressed on
immune cells, which are the most abundant in Im-H. We provided
evidence for this inference by analyzing a scRNA-seq dataset for
melanoma. We found that PD-L1 had significantly higher expres-
sion levels in immune cells than in tumor cells (P < 0.001)
(Fig. 9). Because Im-H has the highest levels of immune cell infil-
tration, it is justified that PD-L1 expression is upregulated in this
subtype.

It has been shown that TMB and SCNAs have a positive and neg-
ative association with anti-tumor immune response, respectively
[39]. Our analysis revealed that SCNAs had a significant impact
on the TIME in melanoma and that TMB showed no significant
impact (Fig. 4B). It suggests that the high level of SCNAs instead
of low TMB is a major factor responsible for the low immunity in
Im-L. In addition, the elevated activities of the Hippo signaling,
ErbB signaling, and cell cycle pathways could also contribute to
the reduced anti-tumor immunity in Im-L. In contrast, the elevated
activities of the MAPK signaling, apoptosis, calcium signaling, VEGF
signaling, cell adhesion molecules, focal adhesion, gap junction,
and PPAR signaling pathways have potential contributions to the
increased anti-tumor immunity in Im-H. In TCGA-melanoma, we
identified numerous pathways highly enriched in Im-H, many of
which were also upregulated in responsive versus non-
responsive melanomas, such as calcium signaling, Jak-STAT signal-
ing, MAPK signaling, VEGF signaling, and many immune-related
pathways. It supports the positive association between anti-
tumor immune signatures’ enrichment levels and immunotherapy
response. It should be noted that the calcium signaling is an impor-
tant messenger in diverse cell types, including lymphocytes [48].
However, the scRNA-seq data showed that the enrichment scores
of calcium signaling was significantly higher in tumor cells than
in immune cells (P < 0.001) (Fig. 9). In addition, we identified five
pathways highly enriched in Im-L, including adherens junction,



Fig. 9. Comparisons of PD-L1 expression levels and calcium signaling enrichment scores between tumor cells and immune cells in the scRNA-seq dataset (GSE72056) for
cutaneous melanoma.
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insulin signaling, arginine and proline metabolism, purine metabo-
lism, and ErbB signaling. However, the activities (enrichment
scores) of these pathways showed no significant difference
between responsive and non-responsive melanomas. It could indi-
cate that there is no defined association between downregulation
of anti-tumor immune signatures and low immunotherapy
response rate in melanoma.

We identified certain pathways showing significant positive
associations with the response to ICIs in melanoma. Many of these
pathways are involved in immunostimulatory signatures, such as T
and B cell receptor signaling, cytokine-cytokine receptor interac-
tion, NK cell mediated cytotoxicity, antigen processing and presen-
tation, and chemokine signaling. It suggests that the strong
immunostimulatory signature in the TIME may increase
immunotherapy response in melanoma. Besides, some cancer-
associated pathways, including PPAR signaling, glycolysis/gluco-
neogenesis, MAPK signaling, VEGF signaling, and calcium signaling,
are associated with increased immunotherapy response in mela-
noma. The positive association between these pathways and
immunotherapy response could be attributed to their promotion
of the inflamed TIME in melanoma.

We found that stemness scores were significantly higher in
non-responsive than in responsive melanomas, indicating that
tumor stemness may promote immunotherapy resistance. The rea-
son why tumor stemness leads to immunotherapy resistance could
be attributed to that tumor stemness promotes the formation of
immune-deprived TME in which ITH increases [49]. Interestingly,
we found that stemness scores were significantly higher in the
melanomas treated with ICIs than those untreated with ICIs. It
indicates that the use of ICIs could enhance tumor stemness, and
the increased tumor stemness in turn contributes to immunother-
apy resistance. This hypothesis warrants further exploration.

5. Conclusions

Melanoma can be classified into three immune subtypes based
on the TIME. These subtypes have significantly different prognosis
and immunotherapy response. Our unsupervised machine learning
method recaptures the immunological heterogeneity in melanoma
and provides potential clinical implications for the immunother-
apy of melanoma.

6. Availability of data and material

The TCGA-melanoma dataset was downloaded from the geno-
mic data commons data portal (https://portal.gdc.cancer.gov/).
The GSE65904, GSE98394, and GSE53118 datasets were down-
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loaded from the NCBI gene expression omnibus (https://www.
ncbi.nlm.nih.gov/geo/). The single-cell RNA sequencing (scRNA-
seq) dataset (GSE72056) was downloaded from the NCBI gene
expression omnibus (https://www.ncbi.nlm.nih.gov/geo/). A sum-
mary of these datasets is presented in Supplementary Table S1.
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