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Abstract: In addition to the α, β, and γ subunits of ENaC, human salt-sensing taste receptor cells
(TRCs) also express the δ-subunit. At present, it is not clear if the expression and function of the
ENaC δ-subunit in human salt-sensing TRCs is also modulated by the ENaC regulatory hormones
and intracellular signaling effectors known to modulate salt responses in rodent TRCs. Here, we
used molecular techniques to demonstrate that the G-protein-coupled estrogen receptor (GPER1),
the transient receptor potential cation channel subfamily V member 1 (TRPV1), and components of
the renin-angiotensin-aldosterone system (RAAS) are expressed in δ-ENaC-positive cultured adult
human fungiform (HBO) taste cells. Our results suggest that RAAS components function in a complex
with ENaC and TRPV1 to modulate salt sensing and thus salt intake in humans. Early, but often
prolonged, symptoms of COVID-19 infection are the loss of taste, smell, and chemesthesis. The
SARS-CoV-2 spike protein contains two subunits, S1 and S2. S1 contains a receptor-binding domain,
which is responsible for recognizing and binding to the ACE2 receptor, a component of RAAS. Our
results show that the binding of a mutated S1 protein to ACE2 decreases ACE2 expression in HBO
cells. We hypothesize that changes in ACE2 receptor expression can alter the balance between the
two major RAAS pathways, ACE1/Ang II/AT1R and ACE2/Ang-(1–7)/MASR1, leading to changes
in ENaC expression and responses to NaCl in salt-sensing human fungiform taste cells.

Keywords: GPER1; RAAS; ACE2; TRPV1; ang II; AT1R; MASR1

1. Introduction

There is considerable evidence that epithelial Na+ channels (ENaCs) play a role in
human salt taste sensing [1]. In rodents, functional ENaC is composed of α, β, and
γ subunits, but some ambiguity remains regarding the exact subunit composition and
localization of functional ENaCs in taste receptor cells (TRCs) within the taste buds [2,3].
Unlike rats and mice, humans express an additional ENaC subunit, the δ-subunit. It is likely
that in human TRCs, functional ENaC is composed of either αβγ and/or δβγ subunits.
ENaC composed of αβγ subunits is more than an order of magnitude less sensitive to
amiloride than is ENaC composed of δβγ subunits [4]. Human salt taste is largely but
not entirely amiloride-insensitive [1]. Similar to the case in rodents, aldosterone regulates
ENaC expression and intracellular trafficking of both α- and δ-ENaC subunits in cultured
adult human fungiform (HBO) taste cells [5].

While in rodent models, significant advances have been made in identifying the
specific subset of TRCs within the taste buds involved in amiloride-sensitive and amiloride-
insensitive salt taste responses, the underlying salt taste transduction mechanisms, and their
regulation by hormones, associated receptors, and intracellular signaling intermediates
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such detailed studies are lacking in human taste cells. Recent studies have identified a novel
subset of type II TRCs in mouse fungiform papillae that mediate the amiloride-sensitive salt
taste [6,7]. In this study, we first investigated the expression profile of the ENaC δ-subunit
in HBO cells. At present, it is not known if δ-ENaC is also expressed in human taste cells
that co-express one or more signaling components shown to be co-expressed in the novel
subset of salt-sensing type II TRCs in mouse fungiform papillae [6,7].

Our second objective was to investigate if HBO cells expressing the ENaC δ-subunit
also co-express receptors of some of the hormones that have been shown to regulate salt
responses in rodents. In this regard, preference for salty taste is dependent on reproductive
hormones [8]. The G-protein-coupled estrogen receptor (GPER1) is expressed in a subset
of mouse type II TRCs that also co-express phospholipase C β2 (PLCβ2) [9]. However, at
present, it is not known if GPER1 is expressed in human salt-sensing taste cells that also
co-express the ENaC δ-subunit.

Although rodent TRCs do not express transient receptor potential cation channel
subfamily V member 1 (TRPV1) [10], TRPV1 mRNA was detected in cultured human taste
cell lysates [11]. Accordingly, our third objective was to investigate the presence of func-
tional TRPV1 channels in HBO cells that also co-express δ-ENaC. We further investigated if
modulating TRPV1 activity can regulate δ-ENaC expression and function in HBO cells [12].

Renin-angiotensin-aldosterone system (RAAS) components are expressed in salt-
sensing mouse TRCs and regulate ENaC expression and behavioral and neural responses
to NaCl [13–15]. Therefore, our fourth objective was to investigate if one or more RAAS
components are also co-expressed in δ-ENaC-positive HBO cells. We hypothesize that if
RAAS components are present in HBO cells, δ-ENaC exists in a multi-protein complex with
RAAS components TRPV1 and GPER1, and they can modulate one another’s expression
and function [16,17]. Accordingly, we investigated the localization of δ-ENaC, GPER1, and
TRPV1, along with the angiotensin (Ang) II type 1 receptor (AT1R), angiotensin-converting
enzyme 2 (ACE2), and G-protein couple MAS1 oncogene receptor (MASR1) and their
interactions with δ-ENaC in HBO cells.

It has been shown that the SARS-CoV-2 virus utilizes a RAAS component, the ACE2
receptor, and the cellular transmembrane serine protease 2 (TMPRSS2) receptor to enter
target cells [18]. The SARS-CoV-2 spike protein S1 subunit is responsible for recognizing
and binding to the ACE2 receptor [19]. Accordingly, our fifth objective was to investigate if
binding of a mutated S1 protein to ACE2 will induce a decrease in ACE2 expression in HBO
cells. We hypothesize that changes in ACE2 expression can alter the balance between the
two major RAAS pathways (ACE1/Ang II/AT1R and ACE2/Ang-(1–7)/MASR1) leading
to changes in ENaC expression and responses to NaCl in salt-sensing human fungiform
taste cells [20].

2. Material and Methods
2.1. Antibodies

The following antibodies were used in these studies: δ-ENaC (Lifespan Biosciences,
LS-C119717) or Santa Cruz Biotechnology, goat polyclonal, sc-22246), gustducin (Santa
Cruz Biotechnology, sc-395), PLCβ2 (Santa Cruz Biotechnology, sc-515912), ACE2 (Abcam
ab108252), Taste receptor type 1 member 3 (T1R3; Santa Cruz Biotechnology sc-398996),
TRPV1 (Santa Cruz Biotechnology, sc 12,498 or Lifespan Biosciences, LSC172124), GPER1
(Abcam 39742), and AT1R (Millipore: AB15552). The δ-ENaC peptide was obtained from
Santa Cruz Biotechnology (sc-22246P).

2.2. Chemicals

Fura-2-acetoxymethyl (AM) ester, capsaicin (CAP), iodo-resiniferatoxin (I-RTX, a spe-
cific TRPV1 blocker), AVE0991 (a non-peptide MASR1 agonist), Ang II, losartan (an AT1R
blocker), dimethyl sulfoxide (DMSO), and amiloride were obtained from Sigma Aldrich. In
addition, we used CALHM1 and CALHM3 Taqman primer assay mix (HS0736332_m1 and
HS07290139_m1). SARS-CoV-2 (2019-nCoV) spike S1 (D614G)-His recombinant protein
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was obtained from Sino Biological. TRPV1 and ACE2 small interfering RNA (siRNA) (Qia-
gen FlexiTube Premix siRNA) were used to downregulate TRPV1 and ACE2, respectively.
Scrambled siRNA (Qiagen) was used as a negative control. Pluronic F127 was obtained
from Life Technologies.

2.3. HBO Cell Culture

HBO cells were derived from two male and two female volunteers and were developed
in Dr. Ozdener’s lab at Monell Chemical Senses Center, as a model of human TRCs in vivo.
HBO cells stably display all molecular and physiological features characteristic of mature
taste cells and exhibit an increase in intracellular calcium ([Ca2+]i) in response to taste
stimuli representing all five taste qualities, indicating the presence of all known signaling
pathways [5,21–25]. HBO cells were cultured as described earlier [5,21,22] and were used
between passages 4 and 8. HBO cells express all four ENaC subunits [5,23]. Arginine
vasopressin, cAMP, and aldosterone regulate ENaC expression and intracellular trafficking
of both α- and δ-ENaC in rodent and human TRCs [5]. Arginyl dipeptides, increased NaCl
responses in amiloride-sensitive HBO cells [23] and have been shown to enhance salt taste
intensity in human subjects [26]. In spite of some ambiguity regarding the role of ENaC in
human salt taste perception [1], these studies demonstrate that enhancing ENaC activity in
human salt-sensing TRCs correlates with enhanced salt taste intensity in human subjects.

2.4. Enrichment of HBO Cells

Cell culture plates (Corning USA) or glass coverslips were coated with δ-ENaC anti-
body (1–2 mg) or TRPV1 antibody in 100 mL coating buffer solution (0.8 g NaCl, 0.02 g KCl,
0.144 g Na2HPO4, 0.024 g KH2PO4 in water to 100 mL, pH 7.4) using a conical cell culture
cylinder. Plates were incubated at 36 ◦C for 2 h. Cells were collected using a cell scraper
into the culture medium and centrifuged for 5 min at 2500 rpm/min at room temperature.
Cells (~500) were resuspended in fresh medium and plated on the antibody coated surface.
After 1–2 h at 36 ◦C, the medium and unattached cells were gently removed, and fresh
medium was added. After enrichment, approximately 70–98% of enriched cells were found
immunoreactive to the targeted protein.

2.5. siRNA Transfection

Two methods were used for siRNA transfection. In the first method, the RNA inter-
ference analysis was performed by transfecting HBO cells with siRNA. Three days before
transfection, 2000 cells per well were seeded in 12-well plates. HBO cells were transfected
with 25 nmol/L human TRPV1 gene-specific siRNA (SI00058849) or scrambled siRNA. At
3–5 days post-transfection, single cell calcium imaging was performed of siRNA-treated
and scrambled siRNA-treated cells, along with un-transfected control cells. The results
presented are representative of at least three independent experiments.

In the second method, HBO cells were seeded onto 60 mm dishes. After reaching
70–80% confluence, cells were co-transfected with 1 µg pSIREN DNR DS-RED plasmid and
30 nM scrambled, ACE2 or TRPV1 siRNA using Lipofectamine 2000 reagent. Transfection
efficiency was determined using immunofluorescence and was between 75 and 80% (data
not shown). Cells were then cultured in media containing high salt (HS; additional 20 mM
NaCl) and capsaicin (CAP; 2.5 µM) for 3 or 6 days, and changes in expression of ACE2,
TRPV1 and δ-ENaC mRNA were monitored.

2.6. Measurement of [Ca2+]i in HBO Cells Using a Multimode Microplate Reader

Changes in [Ca2+]i in response to stimuli were measured using FlexStation 3. HBO
cells (~90,000 cells/plate) were cultured for 24 h in a 96-well plate in media containing HS
(20 mM NaCl), CAP (2.5 µM), and Ang II (1 µM) or AVE0991 (0.1 and 1 µM). Following this,
cells were washed with normal Ringer’s solution (150 mM NaCl, 5 mM KCl, 1 mM CaCl2,
1 mM MgCl2, 10 mM glucose and 10 mM HEPES, pH 7.4) and loaded with Fura-2-AM
for 1 h at 36 ◦C in a 5% CO2 incubator. The cells were alternately excited at 340 nm and
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380 nm, and the emitted light intensity was measured at 530 nm. Temporal changes in
fluorescence intensity ratio (FIR; F340/F380) reflects time-dependent changes in [Ca2+]i.
Cells were washed with zero-Na+ Ringer’s solution (150 mM n-methyl-D-glucamine Cl,
5 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 10 mM glucose and 10 mM HEPES, pH 7.4) and
a baseline FIR level was measured for 60 s. Changes in FIR were measured every 4 s at
36 ◦C. Na+ influx was initiated by increasing bath NaCl from 0 to 140 mM. The data were
transferred from the SoftMax Pro software to Excel for further analysis.

2.7. Single-Cell Ca2+ Imaging

Single cell Ca2+ imaging was performed as described earlier [23]. Briefly, cultured
HBO cells were seeded onto coverslips, grown for 3–5 days, and then loaded with 5 µM
fura-2 AM and 10% Pluronic F127 dissolved in DMSO in zero-Na+ Ringer’s solution
for 1 h at 36 ◦C. The images were visualized with an inverted fluorescence microscope
(Olympus) and a CCD camera (Photometrics). The stimulus delivery and removal were
controlled by a two-channel peristaltic pump (Spetec). Cells were exposed to the stimulus
for 1 min and provided at least 5 min of recovery time between stimuli. Images were
captured every 2 s during stimulus applications, with excitation wavelengths of 340 nm
and 380 nm and an emission wavelength centered at 510 nm. Cell focusing, defining
regions, and image acquisition were controlled by Metafluor software (Molecular Devices).
Both 50 and 150 mM NaCl were examined in the absence and presence of 50 µM amiloride.

The change in FIR (F340/F380) was recorded for regions of interest (ROIs) selected
for each cell. Increases in [Ca2+]i evoked by stimulus application are expressed as
∆F = FPeak − FBaseline, where F = absorbance at 340/380 nm. The criterion for a re-
sponding cell was ∆F ≥ 0.03. Cells that failed to return to baseline were not counted, nor
were apparent responses that occurred within 30 s or more than 120 s after stimulation. The
percentage of responding cells was calculated by dividing the number of cells with a de-
tectable Ca2+ increase by the total number of cells in the given experimental condition. The
baseline fluorescence (∆F/F) of a cell was measured before taste stimuli were given, and
the peak value of Ca2+ was measured after taste stimuli given. Statistical analysis of Ca2+

changes was conducted by counting the Ca2+ peaks during the first 2 min of stimulation.
Data are presented as a percent of the total number of HBO cells examined in a separate set
of experiments that show amiloride-sensitive (AS) NaCl response or amiloride-insensitive
(AI) NaCl response or capsaicin (CAP)-induced increase in [Ca2+]i. Data were processed
and plotted using Origin 8 (OriginLab) and Excel (Microsoft). Statistical comparisons be-
tween AS, AI, and CAP-sensitive cells were performed using student’s t test; p values < 0.05
were considered significant [23].

2.8. Animals

Since TRPV1 is not expressed in rodent TRCs [10], we used mouse gastric smooth
muscle (MGSM) strips from male, female, and ovariectomized (OVX) female mice as
controls to test if GPER1 is co-expressed with TRPV1. Approximately 6 weeks-old age-
matched male, female, and OVX C57BL/6J mice were purchased from Jackson Laboratories
(Bar Harbor, ME). Mice were housed 3–4 per cage in an animal facility directed by the
Division of Animal Resources at Virginia Commonwealth University (VCU) with ad libitum
access to food and water and subjected to a 12/12 h light/dark cycles. All studies were
approved by the Institutional Animal Care and Use Committee (IACUC) at VCU prior to
the start of any experiments.

2.9. Preparation of Gastric and Colonic Smooth Muscle Strips

Mice were anesthetized by CO2 inhalation/asphyxiation followed by cervical dislo-
cation. The stomach was removed, and the gastric muscle layer was separated from the
mucosa by scraping. Smooth muscle strips from gastric muscle layer were used for Western
blot, and co-immunoprecipitation studies.
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2.10. Isolation of RNA and Quantitative PCR

Total RNA was isolated from cultured HBO cells using an Ambion RNA isolation
kit and then treated with TURBO DNase. RNA was reversely transcribed using the High-
Capacity cDNA Reverse Transcription kit in a 20-µL reaction volume. Quantitative RT-PCR
(qRT-PCR) was performed on cDNA samples using specific primers designed from known
sequences in humans using SYBRgreen or Taqman PCR Mastermix. The target gene
copy number was quantified by measuring threshold cycle parameter, defined as the
fractional cycle at which the fluorescence generated by cleavage of probe passes a fixed
threshold above the baseline, and by using a standard curve to determine the starting
copy number. The primers are designed to satisfy the requirements for use of the 2−∆∆Ct

quantification method and normalize to β-actin expression. Final results are expressed
as fold changes in expression in test samples relative to control. All PCR reactions were
performed in an ABI stepOne Plus PCR. Specific human primer sequence for MASR1, ACE2,
TMPRSS2, TRPV1, GPER1, and β-actin are shown in Table 1. We used Taqman primers for
Calhm 1(Id: Hs00736332_m1), Calhm3 (Hs07290139_m1), and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH). The amplicons were detected by electrophoresis using 20 µL
of the amplified reaction mixture in a 10% agarose gel. A 100-bp (New England Biolabs#
N0467S) or 1kb (New England Biolabs# N3232S) molecular weight marker was used to
evaluate the PCR product. TRPV1 PCR product was purified and sequenced.

Table 1. RT-PCR primers.

Hs_MASR1 F: 5′ CCCAAGTACCAGTCGGCATT 3′

R: 5′ GTCATTCCGAGAGTGACTCTCTTCT 3′

Hs_ACE2 F: 5′ GGGATCAGAGATCGGAAGAAGAAA 3′

R: 5′ AGGAGGTCTGAACATCATCAGTG 3′

Hs_TMPRSS2 F: 5′ AATCGGTGTGTTCGCCTCTAC 3′

R: 5′ CGTAGTTCTCGTTCCAGTCGT 3′

Hs_TRPV1 F: 5′ GACTTCAAG GCTGTCTTCATCATCC

R: 3′ CAGGGAGA AGCTCAGGGTGCCC

Hs_ACTB F: 5′ CCCTGGACTTCGAGCAAGAG 3′

R: 5′ ACTCCATGCCCAGGAAGGAA 3′

Hs_GEPR1 F: 5′ AGTCGGATGTGAGGTTCAG 3′

R: 5′ TCTGTGTGAGGAGTGCAAG 3′

F = forward; R = reverse.

2.11. Western Blot Analysis

HBO cells or mouse gastric smooth muscle strips were solubilized in Triton X-100-
based lysis buffer plus protease and phosphatase inhibitors. After centrifugation of the
lysates at 20,000× g for 10 min at 4 ◦C, protein concentrations of the supernatant were
determined with the DC Protein Assay kit from Bio-Rad (Hercules, CA, USA). Equal
amounts of proteins were fractionated by SDS-PAGE and transferred to PVDF membranes.
Blots were blocked using blocking buffer (BioRad) for 10 min at room temperature and
then incubated overnight at 4 ◦C with various primary antibodies in a blocking buffer.
After incubation for 1 h with horseradish peroxidase-conjugated corresponding secondary
antibody (1:5000, GE Amersham) in the blocking buffer, immunoreactive proteins were
visualized using Clarity MaxTM kit (BioRad). All washing steps were performed with TBS-T.
A 10–250 kDa PageRulerTM plus pre-stained protein ladder (Fisher Scientific #PI26620) was
used to evaluate the protein expression.
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2.12. Protein-Protein Association

Sequential immunoprecipitation and immunoblot with selective antibodies were used
to determine the association of ACE2 with δ-ENAC; T1R3 with TRPV1; T1R3 with ACE2;
TRPV1 with ACE2; and GPER1 with AT1R, TRPV1, ACE2, and δ-ENaC. HBO cells or gastric
smooth muscle were lysed by incubation for 30 min at 4 ◦C in Triton X-100-based lysis buffer
plus protease and phosphatase inhibitors. After centrifugation of the lysates at 20,000× g
for 10 min at 4 ◦C, protein concentrations of the supernatant were determined with the
DC Protein Assay kit from Bio-Rad (Hercules, CA, USA). A total of 100 µg of protein was
precleared by incubation with 40 µL of protein A/G agarose for 4 h and then incubated
overnight with antibody to ACE2, T1R3, TRPV1, or GPER1. Protein A/G agarose was
then added and incubated for another 2 h, and the mixture was centrifuged at 13,000× g
for 5 min. The immune-precipitates were washed four times in lysis buffer and boiled in
Laemmli buffer. Samples were separated by SDS-PAGE, transferred to PVDF membranes,
and probed with antibody to δ-ENAC, T1R3, TRPV1, ACE2, and AT1R. After incubation
with secondary antibody, the proteins were visualized using Clarity MaxTM kit (BioRad).
All washing steps were performed with TBS-T. A 10–250 kDa PageRulerTM plus pre-stained
protein ladder (Fisher Scientific #PI26620) was used to evaluate the protein expression.

3. Results
3.1. Localization of ENaC in HBO Cells

We have previously shown that all four ENaC subunits (α, β, γ, and δ) are expressed
in a subset of HBO cells [5,23]. Here, we show that the δ-ENaC antibody co-localizes
with gustducin (Figure 1A) and PLCβ2 (Figure 1B) antibodies in HBO cells. Treating the
cells with δ-ENaC antibody plus goat anti-δ-ENaC peptide completely abolished δ-ENaC
immunofluorescence (Figure 1C). Both α-ENaC (Figure S1A) and γ-ENaC (Figure S1B)
subunit antibodies also co-localized with PLCβ2 antibodies in HBO cells. These results
suggest that α, γ, and δ-ENaC antibodies bind specifically to a subset of type II human
fungiform taste cells.
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Figure 1. δ-ENaC positive HBO cells: (A,B) co-localization of δ-ENaC in gustducin-positive (A); and
PLCβ2-positive (B) HBO cells; (C) peptide inhibition of δ-ENaC antibody binding to HBO cells. Left
panels transmitted images: blue 4′,6-diamidino-2-phenylindole (DAPI) stained cell nuclei; green
δ-ENaC antibody binding; red gustducin or PLCβ2 antibody binding. Scale bar = 50 µm.
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3.2. Localization of RAAS Components in HBO Cells

In HBO cell lysates, RT-PCR primers (Table 1) for ACE2 (124 bp), MASR1 (117 bp), and
TMPRSS2 (105 bp) yielded single bands of predicted sizes (Figure 2A). RT-PCR primers
(Table 1) for β-actin were used as a control and yielded a single band of 153 bp (Figure 2A).
In Western blot experiments, AT1R antibody detected a single band of AT1R in HBO cell
lysate (Figure 2B). These results suggest that in addition to RAAS components, HBO cells
express TMPRSS2.

Nutrients 2022, 14, x FOR PEER REVIEW 7 of 20 
 

 

. 

Figure 1. δ-ENaC positive HBO cells: (A and B) co-localization of δ-ENaC in gustducin-positive (A); 
and PLCβ2-positive (B) HBO cells; (C) peptide inhibition of δ-ENaC antibody binding to HBO cells. 
Left panels transmitted images: blue 4′,6-diamidino-2-phenylindole (DAPI) stained cell nuclei; 
green δ-ENaC antibody binding; red gustducin or PLCβ2 antibody binding. Scale bar = 50 µm. 

3.2. Localization of RAAS Components in HBO Cells 
In HBO cell lysates, RT-PCR primers (Table 1) for ACE2 (124 bp), MASR1 (117 bp), 

and TMPRSS2 (105 bp) yielded single bands of predicted sizes (Figure 2A). RT-PCR pri-
mers (Table 1) for β-actin were used as a control and yielded a single band of 153 bp (Fig-
ure 2A). In Western blot experiments, AT1R antibody detected a single band of AT1R in 
HBO cell lysate (Figure 2B). These results suggest that in addition to RAAS components, 
HBO cells express TMPRSS2. 

 
Figure 2. Detection of ACE2, TMPRSS2, MASR1, β-actin, AT1R, GPER1, and TRPV1 in HBO cells: 
(A) in HBO cell lysates, RT-PCR primers (Table 1) for ACE2 (124 bp), MASR (117 bp), TMPRSS2 (105 
bp), and β-actin (153 bp) yielded single bands of predicted sizes; (B) in Western blot experiments, 
AT1R antibody (1:500 dilution) detected a single band of AT1R in HBO cell lysate. Antibody binding 
was responsive to different concentrations of protein loading of the HBO cell lysate (30 or 40 µL); 

Figure 2. Detection of ACE2, TMPRSS2, MASR1, β-actin, AT1R, GPER1, and TRPV1 in HBO cells:
(A) in HBO cell lysates, RT-PCR primers (Table 1) for ACE2 (124 bp), MASR (117 bp), TMPRSS2
(105 bp), and β-actin (153 bp) yielded single bands of predicted sizes; (B) in Western blot experiments,
AT1R antibody (1:500 dilution) detected a single band of AT1R in HBO cell lysate. Antibody binding
was responsive to different concentrations of protein loading of the HBO cell lysate (30 or 40 µL);
(C,D) using human primers for GPER1 and TRPV1 (Table 1), RT-PCR yielded a single band of 240 bp
(C) and 371 bp (D), respectively. TRPV1 mRNA RT-PCR product was sequenced and was found to be
specific for the TRPV1 gene NM_080705.4 (Figure S2). Molecular weight (MW) DNA ladder bands
correspond to 100–800 bp (bottom to top).

3.3. Localization of GPER1 and TRPV1 mRNA in HBO Cells

Using human primers for GPER1 (Table 1), RT-PCR in HBO cell lysates yielded a
single band of 240 bp (Figure 2C). These results suggest that GPER1 is expressed in HBO
cells. RT-PCR primers (Table 1) for TRPV1 [27] yielded a single band of predicted size
(371 bp; Figure 2D). TRPV1 mRNA RT-PCR product was sequenced and was found to be
specific for the TRPV1 gene NM_080705.4 (Figure S2).

3.4. Localization of CALHM1/3 mRNA in HBO Cells

In mouse fungiform papillae and soft palate, Na+-specific salt taste was detected by
a subset of type II cells that express PLCβ2, inositol 1,4,5-trisphosphate receptor type 3
(ITPR3), voltage-dependent ATP release channel composed of calcium homeostasis modu-
lator 1 (CALHM1) and 3 (CALHM3), and skinhead-1a (SKN-1a, a transcription factor) [6,7].
Accordingly, we further tested if CALHM1/3 are expressed in HBO cells. In HBO cell
lysates, using CALHM1 and CALHM3 Taqman primer assay mix, RT-PCR yielded single
bands of 55 bp and 64 bp, respectively (Figure 3). These results suggest that CALHM1 and
CALHM3 are expressed in HBO cells.
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and CALHM3 Taqman primer assay mix, RT-PCR yielded single bands of 55 bp and 64 bp, respectively.
GAPDH was used as an endogenous control. Molecular weight (MW) DNA ladder bands correspond
to 100–1 Kb (bottom to top).

3.5. Interaction of ENaC Regulatory Proteins in HBO Cells

Co-IP studies were performed using ACE2, δ-ENaC, T1R3, and TRPV1 antibodies
and Western blots to investigate if they physically interact with each other [22]. Results
shown in Figure 4A demonstrate that δ-ENaC, T1R3, and TRPV1 interact specifically with
the immobilized ACE2 in HBO cell lysates. In turn, ACE2 antibody pulled down T1R3
and TRPV1 (Figure 4B). In additional experiments, TRPV1 antibody pulled down δ-ENaC.
When IgG was used instead of TRPV1 antibody, no δ-ENaC co-immunoprecipitation was
observed (data not shown). Taken together, these results suggest that ACE2 exists in a
complex with δ-ENaC and TRPV1 in salt-sensing HBO cells and in a complex with T1R3 in
sweet-sensing HBO cells [15].

Since TRPV1 is not expressed in rodent TRCs [10], we used mouse gastric smooth
muscle (MGSM) from male, female, and OVX female mice as controls to test if GPER1 is
co-expressed with TRPV1. In Western blots (Figure S3) relative to MGSM from female mice,
GPER1 protein expression was lower in males and further decreased in OVX females and
validates the use of GPER1 antibody. GPER1 protein was also expressed in HBO cells. In
Co-IP studies, GPER1 antibody pulled down AT1R [28], TRPV1, ACE2, and δ-ENaC in
HBO cell lysate (Figure S4). GPER1 was also associated with AT1R, TRPV1, and ACE2 in
MGSM. These results suggest that RAAS components GPER1 and the ENaC δ-subunit are
present in a complex with TRPV1 in HBO cells.

3.6. Immuno co-Localization of TRPV1 and δ-ENaC

At low magnification (20×), δ-ENaC antibody binding (Figure 5A; upper left panel)
and TRPV1 antibody binding (Figure 5A; lower left panel) were observed only in a subset
of HBO cells. At high magnification (40×; Figure 5A; right three panels), δ-ENaC- and
TRPV1-positive individual cells could be easily visualized. Dual immunofluorescence
studies show that TRPV1 co-localizes in δ-ENaC positive HBO cells (Figure 5B, “Merge”).
No significant labelling was observed when the primary antibody step was omitted (data
not shown).
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3.7. Modulation of ACE2 mRNA Expression in HBO Cells by High Salt (HS), Mutated S1 Protein,
AVE0991, and Losartan

Following transfection with either 30 nM scrambled siRNA or 30 nM ACE2 siRNA,
cells were cultured in media containing HS (20 mM NaCl) for 3 or 6 days and changes in
ACE2 mRNA expression were monitored. In HBO cells transfected with scrambled siRNA,
HS treatment for 3 and 6 days inhibited ACE2 mRNA expression by 74 and 71%, respec-
tively, (Figure 6A). Transfection with ACE2 siRNA almost completely abolished ACE2
mRNA expression in control and HS media (Figure 6A). These results suggest that culturing
HBO cells in the presence of media containing HS inhibits ACE2 mRNA expression.

To investigate the effect of SARS-CoV-2 S1 protein on ACE2 mRNA expression in
HBO cells, we used SARS-CoV-2 (2019-nCoV) spike S1 (D614G)-His recombinant protein
from Sino Biological. HBO cells were cultured in control media and in media containing
HS (20 mM NaCl) for 3 days in the absence and presence of 600 ng/mL of the mutated S1
protein. The binding EC50 of the spike S1 protein to immobilized human ACE2 protein has
been reported to be between 200 and 600 ng/mL (Sino Biological). Mutated S1 protein and
HS decreased ACE2 expression by 51% and 78.5%, respectively, (Figure 6B). In the presence
of mutated S1 protein, no additional HS-induced decrease in ACE2 mRNA expression was
observed. These results suggest that the binding of mutated S1 protein to ACE2 decreases
ACE2 mRNA expression and prevents a further decrease in ACE2 mRNA expression in the
presence of HS.
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Figure 5. Co-localization of δ-ENaC and TRPV: (A) localization of δ-ENaC and TRPV1 in HBO
cells; blue DAPI-stained cell nuclei and green δ-ENaC or TRPV1 antibody binding; the left column
shows low magnification (20×) images; the remaining panels are high-magnification images (40×)
that show δ-ENaC or TRPV1 antibody binding in individual cells; (B) localization of TRPV1 in
individual δ-ENaC-positive HBO cells at 40×magnification; green δ-ENaC antibody binding; red
TRPV1 antibody binding. Scale bars 10 µm.

We further tested if enhancing Ang-(1–7) or inhibiting AT1R will overcome the HS-
induced loss of ACE2 function in HBO cells [29]. HBO cells were cultured in control media
and control media + HS in the absence and presence of AVE0991 (1 µM; a MASR1 agonist),
and losartan (1 µM; an AT1R blocker) for 3 days. Relative to control media, HBO cells
cultured in HS media showed a decrease in ACE2 mRNA expression (Figure 6C). AVE0991
and losartan did not alter ACE2 expression in control media. However, in cells cultured in
control media. + HS showed significant enhancement in ACE2 mRNA expression. These
results suggest that increasing Ang-(1–7) or inhibiting AT1R can reverse the effects of HS
on ACE2 mRNA expression.

3.8. Effect of HS on ENaC and TRPV1 Expression in HBO Cells

Culturing HBO cells in media containing an additional 5, 10, or 20 mM NaCl for 3 days
produced a concentration-dependent increase in δ-ENaC mRNA expression in HBO cells
(Figure 7A). Culturing HBO cells in media containing an additional 10 or 20 mM NaCl for
3 days increased δ-ENaC mRNA expression and also decreased TRPV1 mRNA expression
(Figure 7B). These results raise the possibility that HS-induced changes in TRPV1 and
δ-ENaC are related. In contrast to HS, culturing HBO cells with 2.5 µM CAP increased the
expression of both TRPV1 and ACE2 mRNA (Figure 7C). These results suggest that HS and
CAP produce opposite effects on TRPV1 and ACE2 mRNA expression in HBO cells.
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Figure 6. Regulation of ACE2 mRNA expression in HBO cells: (A) effect of HS (20 mM NaCl) and
ACE2 siRNA on ACE2 mRNA expression in HBO cells, * p = 0.0001; (B) effect of HS and mutated
S1 protein on ACE2 mRNA expression in HBO cells; * p = 0.0172 (S1); ** p = 0.0001 (HS); and
* p = 0.0114 (HS + S1); (C) effect of AVE0991 and losartan on ACE2 mRNA expression in HBO cells.
HBO cells were cultured in control media and control media + HS in the absence and presence of
AVE0991 (1 µM) or losartan (1 µM) for 3 days. Values are mean of qPCRs performed in two separate
experiments. * p = 0.002 (HS); * p = 0.0008 (AVE0991); and * p = 0.007(losartan).
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3.9. Effect of TRPV1 siRNA and ACE2 siRNA on TMPRSS2 mRNA and MASR1 mRNA
Expression in HBO Cells

TMPRSS2 mRNA expression was inhibited when HBO cells were transfected with
TRPV1 or ACE2 siRNA (Figure 8A). In contrast, MASR1 mRNA expression was unaffected
when HBO cells were transfected with TRPV1 or ACE2 siRNAs (Figure 8A). These re-
sults suggest that in HBO cells, the expression of TMPRSS2 is modulated by altering the
expression of TRPV1 and/or ACE2.
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triplicate. * p = 0.0014 (Ang II); * p = 0.0075 (AVE0991).

3.10. Effect of Ang II and AVE0991on MASR1 mRNA Expression in HBO Cells

Culturing HBO cells in control media containing Ang II (1 µM) for 3 days decreased
MASR1 mRNA expression (Figure 8B), and in culture media containing AVE0991 (1 µM), a
non-peptide agonist of MASR1 [30], increased MASR1 mRNA expression (Figure 8B).

3.11. Changes in NaCl-Responsive HBO Cells following δ-ENaC and TRPV1 Enrichment

We measured changes in amiloride-sensitive (AS) and amiloride-insensitive (AI) re-
sponses to 150 mM NaCl in single HBO cells using calcium imaging. In three independent
experiments, 9.3% of cells demonstrated AS, and 3.2% demonstrated AI NaCl responses
(Figure 9A). Following δ-ENaC enrichment, 58% of HBO cells demonstrated AS, and
5.2% demonstrated AI NaCl response (Figure 9A). These results indicate that enriching
HBO cells with δ-ENaC specifically increases AS NaCl response in salt-sensing human taste
cells. In TRPV1 enriched HBO cells, 6.5% of cells demonstrated AS, and 1.7% demonstrated
AI NaCl response (Figure 9A). These results suggest that enriching HBO cells with TRPV1
tends to decrease AS NaCl responses in salt-sensing human taste cells. In contrast, δ-ENaC
and TRPV1 enrichment produced only small changes in the number of HBO cells that
demonstrated AI NaCl responses. After enrichment, approximately 70–98% of enriched
cells were immuno-reactive to targeted protein (data not shown).

3.12. Changes in Capsaicin (CAP) Responsive HBO Cells following TRPV1 Enrichment and
TRPV1 siRNA Treatment

We measured changes in [Ca2+]i in single HBO cells using calcium imaging in HBO
cells treated with CAP. In control HBO cells treated with 0.2 µM CAP, only 10% of the cells
responded with an increase in [Ca2+]i (Figure 9B). In contrast, in TRPV1-enriched HBO cells
treated with 0.2 µM CAP, 55% of the cells responded with an increase in [Ca2+]i (Figure 9B).
These results show that TRPV1 enrichment produced a 5.5-fold increase in CAP-responsive
HBO cells.
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Figure 9. Effect of δ-ENaC enrichment, TRPV1 enrichment, and TRPV1 siRNA on number of NaCl
and capsaicin (CAP) responsive HBO cells: (A) amiloride-sensitive (AS) and amiloride-insensitive (AI)
responses to 150 mM NaCl in single HBO cells using calcium imaging. In 11 independent experiments
under control conditions, out of 600 HBO cells investigated, 9.3% of cells demonstrated AS NaCl
response, while 3.2% of cells demonstrated AI NaCl response. In 6 separate experiments following
δ-ENaC enrichment, out of 286 HBO cells investigated, 166 cells (58%) demonstrated AS NaCl
response. While in 5 separate experiments, out of 134 HBO cells examined, 7 cells (5%) demonstrated
AI NaCl response. Thus, δ-ENaC enrichment produced a 6-fold (* p < 0.001) increase in AS-NaCl
response in HBO cells. Following TRPV1 enrichment, in 3 separate experiments, out of 180 HBO cells
examined, 6.5% of the cells demonstrated AS NaCl response, while 1.7% of the cells demonstrated
AI NaCl response. (B) Changes in [Ca2+]i, in single HBO cells using calcium imaging in HBO
cells treated with CAP, scrambled siRNA, or TRPV1 siRNA. Following treatment with 0.2 µM CAP,
10% of control HBO cells and 55% of TRPV1-enriched cells responded with an increase in [Ca2+]i.
Thus, TRPV1 enrichment produced a 5.5-fold (* p < 0.001) increase in CAP-responsive HBO cells.
Following treatment with 100 µM CAP, out of 148 un-transfected HBO cells examined, 82 cells
(55%) demonstrated an increase in [Ca2+]i. In contrast, out of 242 TRPV1 siRNA treated HBO cells
investigated, 24 cells (10%) demonstrated a CAP-induced increase in [Ca2+]i. Thus, TRPV1 siRNA
produced a 5.5-fold (* p < 0.001) decrease in CAP-responsive HBO cells.
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We also measured CAP-induced changes in [Ca2+]i in single HBO cells following
transfection of cells with scrambled siRNA or TRPV1 siRNA. In these experiments, CAP was
used at 100 µM. In HBO cells treated with scrambled siRNA, 55% of the cells demonstrated
CAP-induced increase in [Ca2+]i (Figure 9B). These results show that increasing CAP
concentration from 0.2 to 100 µM increases CAP-responsive HBO cells by 5.5-fold. In
contrast, in TRPV1 siRNA transfected HBO cells, only 10% of the cells demonstrated a CAP-
induced increase in [Ca2+]i (Figure 9B). These, results show that TRPV1 siRNA produced a
5.5-fold decrease in CAP-responsive HBO cells. These results further show the presence of
functional TRPV1 channels in HBO cells.

3.13. Changes in [Ca2+]i in HBO Cells in Response to Stimuli

In HBO cells cultured in a control media, increasing Na+ from 0 to 140 mM in-
duced a secondary increase in [Ca2+]i influx with an initial slope (∆FIR/min) and Vmax
of 0.099 ± 0.008 and 0.13 ± 0.013, respectively, (Figure 10A; #). In HBO cells cultured
in control media + CAP (2.5 µM), ∆FIR/min and Vmax increased to 0.397 ± 0.037 and
0.327 ± 0.025, respectively, (p = 0.0001) (Figure 10A; •). In HBO cells cultured in control
media + CAP, initiating Na+ influx with 140 mM NaCl + 1 µM I-RTX (1 µM) decreased
∆FIR/min and Vmax to 0.137 ± 0.019 (p = 0001) and 0.094 ± 0.028 (p = 0001), respectively,
(Figure 10A; ∆). I-RTX- sensitive Na+ influx reflects the CAP-induced increase in TRPV1
expression in HBO cells. Relative to control, HS alone increased ∆FIR/min and Vmax to
0.197 ± 0.018 (p = 0.0011) and 0.21 ± 0.021 (p = 0.015), respectively, (Figure 10A; N). The
Na+ flux-induced secondary changes in [Ca2+]i in the presence of HS are most likely related
to HS-induced upregulation in ENaC expression (Figure 7A,B). These results suggest that
the activation of TRPV1 by CAP affected ENaC expression and that this change was lost
when TRPV1 was inhibited.
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Figure 10. Regulation of Na+ influx by HS, CAP, AVE0991, and Ang II. (A) Effect of culturing HBO
cells in media containing HS and CAP on Na+ influx. Na+ flux-induced secondary changes in [Ca2+]i

were monitored in HBO cells in response to an increase in bath Na+ from 0 to 140 mM. The increase
in initial slope (∆FIR/min) and Vmax were measured under each experimental condition. Values
are mean (M) ± SEM of changes in FIR in 7–16 wells. (B) Effect of culturing HBO cells in media
containing AVE0991 and Ang II on Na+ influx. Values are mean (M) ± SEM of changes in FIR in
8 wells.

We next monitored the effect of RAAS modulators on Na+ flux-induced secondary
changes in [Ca2+]i in HBO cells [23]. HBO cells cultured in control media + AVE0991
(0.01 and 1 µM) demonstrated a dose-dependent secondary increase in [Ca2+]i influx,
whereas Ang II did not produce a significant change in [Ca2+]i influx (Figure 10B).

4. Discussion

Our results show that α, γ, and δ ENaC subunits are co-expressed in a subset of PLCβ2
positive HBO cells. In addition, δ-ENaC was also co-expressed in a subset of gustducin
positive HBO cells (Figure 1 and Figure S1). These results suggest that α, γ, and δ ENaC
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subunits are expressed in a subset of type II human fungiform taste cells. Consistent
with our results, in mouse fungiform papillae, the ENaC α-subunit was expressed in a
subset of type II TRCs that co-express PLCβ2, ITPR3, CALHM1/3, and SKN-1a [6,7]. This
subset of type II TRCs did not express TRPM5 (transient receptor potential cation channel
subfamily M member 5) and GNAT3 (guanine nucleotide-binding protein G(t) subunit
alpha-3; gustducin). Both SKN-1a and CALHM3-deficient mice demonstrated markedly
decreased amiloride-sensitive NaCl chorda tympani (CT) taste nerve responses [6]. Genetic
elimination of α-ENaC in CALHM1-expressing cells, as well as global CALHM3 deletion
abolished amiloride-sensitive NaCl CT taste nerve responses and attenuated behavioral
attraction to NaCl [7]. Genetically engineered mice lacking α-ENaC in TRCs exhibit a
complete loss of salt attraction and sodium taste responses [31].

ENaCs composed of both αβγ and δβγ subunits contribute to Na+ flux in HBO cells.
Treating HBO cells with α-ENaC and δ-ENaC siRNAs downregulated α-ENaC and δ-ENaC
subunit mRNAs, decreased the number of cells expressing α-ENaC and δ-ENaC protein,
and decreased the numbers of cells that responded to 150 mM NaCl alone from baseline,
respectively [23]. At the concentration of amiloride (50 µM) used in our experiments,
ENaCs composed of both αβγ and δβγ subunits will be blocked [4]. Further studies are
needed to determine if, in addition to the δ-ENaC subunit, other ENaC subunits in human
salt-sensing taste cells also co-express one or more of the above signaling effectors. A high
concentration of amiloride can block other transporters and hybrid non-selective cation
channels. We have previously shown that Ala-Arg-induced an increase in ENaC activity
in HBO cells that was blocked by amiloride. The effects of Ala-Arg and amiloride were
independent of Na+-H+ exchanger 1, Lysophosphatidic acid receptor 1, calcium-sensing
receptor, and PLCβ2 or signaling pathways depending upon these proteins [23].

In contrast to the above studies, mice carrying modified alleles that allow the synthesis
of green and red fluorescent proteins in cells expressing α- and β-ENaC subunits, demon-
strated that α-ENaC was exclusively expressed in type III cells in the fungiform papillae but
not in type I and type II cells, whereas β-ENaC was expressed in type I cells with no expres-
sion in type III cells. This suggests that α- and β-ENaC subunits are segregated in mouse
fungiform papillae [2]. These results further suggest that the amiloride-sensitive recogni-
tion of Na+-specific salt taste in mice is unlikely to depend on the classical ENaC channel
composed of α-, β-, and γ-subunits [2,3]. Thus, at present, there is a lack of consensus
regarding the exact identity of the TRCs involved in amiloride-sensitive salt responses.

Our results show that some of the ENaC regulatory hormones and signaling effec-
tors: TRPV1, RAAS components (ACE2, MASR1, AT1R), GPER1 (Figures 2 and S2), and
CALHM1/3 (Figure 3) are expressed in HBO cells. Functional TRPV1 channels are ex-
pressed in HBO cells (Figures 2D, 9B and 10A). Human TRCs differ from rodent TRCs
with respect to TRPV1 expression [10,11]. Most importantly, our data show that TRPV1 is
co-localized in a subset of HBO cells that also co-express the ENaC δ-subunit (Figure 5).
This raises the possibility that TRPV1 may have a prospective role in regulating ENaC
subunit expression and function in HBO cells.

Culturing HBO cells in media containing HS induces an increase in δ-ENaC mRNA
(Figure 7A,B) and protein (unpublished data) expression in HBO cells. Consistent with
these results, in rats, changes in dietary NaCl alter amiloride-sensitive NaCl CT taste nerve
responses. A diet containing 3% NaCl (HS) induced a greater amiloride-sensitive NaCl
CT taste nerve response than did a 1% NaCl diet, whereas reducing dietary NaCl from
1% to 0.1% led to a drastic decrease in the amiloride-sensitivity of NaCl CT taste nerve
responses [32]. Na+-deficient rats licked significantly more during the first NaCl intake
bout than did control rats [33]. In contrast to rats, mice do not seem to respond to changes
in ENaC subunit expression when fed a Na+-deficient diet or a HS diet [34].

Culturing HBO cells in media containing additional HS increased δ-ENaC mRNA
expression and decreased TRPV1 mRNA expression (Figure 7B). Alternately, culturing
HBO cells with 2.5 µM CAP increased the expression of TRPV1 (Figure 7C). Similar to our
results, α-ENaC and TRPV1 were co-localized in M1-cortical collecting duct (CCD) cells [12].
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Culturing M1-CCD cells with HS reduced TRPV1 but increased α-ENaC expression in
M1-CCD cells. CAP upregulated TRPV1 and reduced α-ENaC expressions in M1-CCD cells,
which was inhibited by the TRPV1-specific blocker, I-RTX. In CCD cells, an HS-induced
increase in α-ENaC was accompanied by an increase in with-no-lysine kinase (WNK1)
and serum and glucocorticoid-inducible protein kinase 1 (SGK1) [12]. At present, it is
not known, if these downstream kinases are involved in TRPV1-dependent regulation of
δ-ENaC expression in HBO cells. In this regard, the effect of CAP in mitigating HS-induced
changes in ENaC expression in human salt-sensing taste cells may be relevant in reducing
salt intake in humans [35,36]. In contrast to HBO cells, TRPV1 agonists and antagonists
seem to affect only the AI component of the NaCl CT response in rats and mice [37–39].

Our results (Figures 4, 6A and 7C) suggest that ACE2 exists in a complex with δ-ENaC
and TRPV1 in salt-sensing HBO cells and in a complex with T1R3 in sweet-sensing HBO
cells [15]. Our results further suggest that TRPV1 and δ-ENaC exist in a complex in salt-
sensing HBO cells (data not shown). Consistent with our results, human ACE2 has been
shown to interact with AT1R, AT2R, and MASR1 in adult lung tissue. Ligand binding
to AT1R resulted in the downregulation of ACE2 cell-surface expression, while ligand
binding to AT2R, but not to MASR1, resulted in upregulation of ACE2 cell-surface expres-
sion [16]. In human proximal tubule epithelial cells, AT2R and MASR1 have been shown
to co-localize [17]. In our studies, HS decreased the expression of ACE2 (Figure 6A) and
TRPV1 (Figure 7B) mRNA, and CAP increased both ACE2 and TRPV1 mRNA expression
in HBO cells (Figure 7C). These results suggest that HS-induced regulation of δ-ENaC
mRNA expression may involve changes in TRPV1 and ACE2 mRNA. AVE0991 (a MASR1
agonist) and losartan (an AT1R blocker) did not alter ACE2 expression in the control media
but significantly enhanced ACE2 mRNA expression in cells cultured in HS media. We
hypothesize that increasing Ang-(1–7) or inhibiting AT1R can reverse the effects of HS on
ACE2 mRNA expression.

Ang II decreased and AVE0991 (a non-peptide agonist of MASR1) [30] increased
MASR1 mRNA expression (Figure 8B). AVE0991 induced a Na+-dependent secondary
increase in [Ca2+]i influx, whereas Ang II did not produce a significant effect in [Ca2+]i
influx in HBO cells (Figure 10B). It is likely that the effects of AVE0991 and Ang II are
mediated via MASR1. It is suggested that long-term effects of Ang II may involve a
decrease, whereas the long-term effects of Ang-(1–7) may involve an increase in ENaC
expression and activity. Under conditions where ACE2 activity is inhibited, Ang II levels
may remain elevated over time.

While MASR1 mRNA expression was unaffected, TMPRSS2 mRNA expression was
inhibited when HBO cells were transfected with TRPV1 or ACE2 siRNAs (Figure 8A). These
results suggest that in HBO cells, the expression of TMPRSS2 mRNA is TRPV1 and/or
ACE2-dependent. SARS-CoV-2 spike S1 protein and HS decreased ACE2 expression
(Figure 6B). In the presence of a mutated S1 protein, no additional HS-induced decrease
in ACE2 mRNA expression was observed. However, at present the significance of these
findings in relation to SARS-CoV-2 infection and changes in salt taste in humans is not
clear [40].

In summary, in this study, we have localized ENaC subunits in a subset of type II
human taste cells. We have demonstrated the expression of the ENaC regulatory hormones
and signaling effectors: TRPV1, ACE2, MASR1, AT1R, GPER1, and CALHM1/3 in human
taste cells and have provided evidence that functional TRPV1 channels are expressed in
human taste cells. An important finding is that TRPV1 is co-localized in human taste
cells that express the ENaC δ-subunit. Modulating TRPV1 activity by HS and CAP can
alter ENaC mRNA expression. Our results suggest that in human salt-sensing taste cells,
some of the ENaC regulators are most likely present in a complex and that changes in the
expression of one or more regulators can alter the expression of other effectors. Another
important finding is that mutated S1 protein binds to ACE2 and decreases its expression. In
the presence of a mutated S1 protein, no additional HS-induced decrease in ACE2 mRNA
expression was observed. The expression of TMPRSS2 mRNA is TRPV1 and/or ACE2-
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dependent. We further show that it is likely that the effects of AVE0991 and Ang II on Na+

influx in human taste cells are mediated via MASR1. We hypothesize that changes in ACE2
expression in human fungiform taste cells can alter the balance between the two major
RAAS pathways, ACE1/Ang II/AT1R and ACE2/Ang-(1–7)/MASR, leading to changes in
ENaC expression and responses to NaCl.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14132703/s1, Figure S1: α- and -ENaC positive HBO cells.
Co-localization of α-ENaC (A) and -ENaC (B) antibodies in PLCβ2-positive HBO cells. Left panels
transmitted images, blue DAPI- stained cell nuclei, green α-ENaC or -ENaC antibody binding, red
PLCβ2 antibody binding. Scale bars = 50 µm; Figure S2: TRPV1 mRNA sequence. TRPV1 mRNA RT-
PCR product; Figure S3: Western blots for GPER1, TRPV1, and ACE2 in male, female and OVX female
mouse gastric smooth muscle (MGSM) and HBO cells lysates; Figure S4: Co-immunoprecipitation
(co-IP) studies of GPER1/AT1R, GPER1/TRPV1 and GPER1/ACE2 in mouse gastric smooth muscle
(MGSM) and GPER1/ENaC in HBO cell lysates.
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