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Abstract: The purpose of this study was to compare the composite, inter-individual, and
intra-individual differences in the patterns of responses for electromyographic (EMG) and
mechanomyographic (MMG) amplitude (AMP) and mean power frequency (MPF) during fatiguing,
maximal, bilateral, and isokinetic leg extension muscle actions. Thirteen recreationally active men
(age = 21.7 ± 2.6 years; body mass = 79.8 ± 11.5 kg; height = 174.2 ± 12.7 cm) performed maximal,
bilateral leg extensions at 180◦·s−1 until the torque values dropped to 50% of peak torque for two
consecutive repetitions. The EMG and MMG signals from the vastus lateralis (VL) muscles of
both limbs were recorded. Four 2(Leg) × 19(time) repeated measures ANOVAs were conducted to
examine mean differences for EMG AMP, EMG MPF, MMG AMP, and MMG MPF between limbs,
and polynomial regression analyses were performed to identify the patterns of neuromuscular
responses. The results indicated no significant differences between limbs for EMG AMP (p = 0.44),
EMG MPF (p = 0.33), MMG AMP (p = 0.89), or MMG MPF (p = 0.52). Polynomial regression analyses
demonstrated substantial inter-individual variability. Inferences made regarding the patterns of
neuromuscular responses to fatiguing and bilateral muscle actions should be considered on a
subject-by-subject basis.

Keywords: electromyography; mechanomyography; neuromuscular; fatigue; isokinetic; maximal;
dynamic; vastus lateralis

1. Introduction

Neuromuscular parameters from invasive [1] and non-invasive [2,3] assessments of muscle
function have been used in laboratory and clinical settings to examine factors relating to physical
performance [4] and muscular diseases [5]. Simultaneous measurements of surface electromyography
(EMG) and mechanomyography (MMG) have been used to non-invasively examine numerous aspects
of muscle function including muscle atrophy [6], sarcopenia [7], age-related changes in muscular
performance [8,9], and fiber type characteristics [4,10] in healthy subjects. Furthermore, neuromuscular
parameters have been used in a clinical setting to assess the influences of cerebral palsy [11], myotonic
dystrophy [12], and Parkinson’s disease [13] on muscle function and to improve the control of human
prosthetics [14,15]. Time and frequency domain parameters of the EMG and MMG signals provide
unique information regarding the motor unit activation strategies that modulate force production.
The amplitude and frequency content of the EMG signal reflect muscle activation [3] and action
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potential conduction velocity [16] respectively. The MMG signal is the mechanical counterpart of
muscle activation as represented by the EMG signal. The amplitude and frequency of the MMG signal
can reflect motor unit recruitment [2] and the global motor unit firing rate [17] of the activated unfused
motor units, respectively.

Neuromuscular patterns of responses for EMG and MMG have been used to make inferences
regarding the motor unit activation strategies that modulate force during fatiguing dynamic muscle
actions [18–21]. For example, Smith et al. [18] reported increases in electromyographic (EMG) amplitude
(AMP) and mechanomyographic (MMG) AMP, as well as decreases in EMG mean power frequency
(MPF), and no change in MMG MPF from the vastus lateralis (VL) during 25 maximal, concentric,
isokinetic leg extension muscle actions of the dominant limb at 120◦·s−1. Camic et al. [19] reported
decreases in EMG AMP, EMG MPF, MMG AMP, and MMG MPF from the VL during 30 maximal,
concentric, isokinetic leg extension muscle actions from the dominant limb at 30◦·s−1. Ebersole et al. [20]
reported increases in EMG AMP and MMG AMP, as well as decreases in EMG MPF and MMG MPF
from the VL during maximal, concentric, isokinetic leg extension muscle actions of the dominant limb
at 60 and 300◦·s−1. Perry-Rana et al. [21] demonstrated increases in EMG AMP, as well as decreases in
MMG AMP from the VL during 50 maximal, concentric, isokinetic leg extension muscle actions of the
dominant limb at 60, 180 and 300◦·s−1. In general, these studies demonstrated that during unilateral,
fatiguing, maximal, concentric, and isokinetic leg extension muscle actions, muscle activation (EMG
AMP) exhibited quadratic or cubic increases [18,20,21], muscle fiber action potential conduction velocity
(EMP MPF) [18–20], global motor unit firing rate (MMG MPF) [18,19] exhibited quadratic or cubic
decreases, and motor unit recruitment (MMG AMP) exhibited conflicting patterns of responses. Thus,
the assessment of the time and frequency domain parameters of EMG and MMG signals can provide
unique information regarding motor unit activation strategies during fatiguing isokinetic muscle
actions at various velocities.

Typically, the composite (data averaged across all subjects) patterns of neuromuscular responses
have been used to make inferences regarding fatigue-induced changes in motor unit activation
strategies [18–23]. Previous studies, however, have described great inter-individual differences in
the patterns of responses from the VL for EMG AMP, EMG MPF, MMG AMP, and/or MMG MPF
during ramp incremental [24,25] and step incremental [26–32] isometric muscle actions, concentric [33]
and eccentric [34] isokinetic muscle actions, and incremental [35–38] and continuous [22] cycle
ergometry that may be attributable to the inherent variability of EMG and MMG signals [24,39].
Furthermore, while previous studies [24,35] have demonstrated differences in the neuromuscular
patterns of responses between synergistic muscles of ipsilateral limbs during unilateral muscle actions,
there are limited data available regarding intra-individual differences for homologous muscles of
contralateral limbs during fatiguing, bilateral muscle actions. Bilateral asymmetries in force production
have been consistently demonstrated between dominant and non-dominant limbs, however, the
cause of inter-limb asymmetries remains unclear [40]. Recent research has suggested that force
asymmetries arise from the different specializations of the left and right hemispheres of the brain,
which manifest as functional differences in the contralateral limbs [41]. It is unclear, however, whether
inter-limb asymmetries in force production are reflected in neuromuscular parameters. During
fatiguing, submaximal (20% of maximal voluntary contraction), bilateral, and isometric leg extension
muscle actions, Matkowski et al. [42] reported no differences in the increase in EMG AMP from
the VL or rectus femoris (RF) muscle of the left and right limbs. No previous studies, however,
have examined the composite, inter-individual, or intra-individual variability of the fatigue-induced
patterns of neuromuscular responses during bilateral, dynamic, muscle actions. Understanding the
variability between these conditions will help to clarify whether inferences regarding the neuromuscular
patterns of responses can be generalized between individuals, as well as between the limbs of an
individual. Therefore, the purpose of this study was to compare the composite, inter-individual, and
intra-individual differences in the patterns of responses for EMG AMP, EMG MPF, MMG AMP and
MMG MPF during fatiguing, maximal, bilateral, and isokinetic leg extension muscle actions. Based on
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the results of previous investigations [24,33,42], we hypothesized that: 1) there will be no significant
intra-individual differences in the patterns of neuromuscular responses between the VL muscles of the
contralateral limbs; and 2) there would be inter-individual differences, as well as differences between
individual and composite patterns of responses, for all neuromuscular parameters during the bilateral,
fatiguing task.

2. Materials and Methods

2.1. Subjects

Thirteen healthy adult men (mean ± SD age = 21.7 ± 2.6 years; body mass = 79.8 ± 11.5 kg;
height = 174.2 = 7 ± 12.7 cm) volunteered to participate in this study. The subjects were recreationally
trained and participated in resistance and/or aerobic exercise at least 3 days a week [43]. All subjects
were free from previous knee or ankle injuries that would potentially hinder performance. The study
was approved by the University Institutional Review Board for Human Sciences, and all subjects
completed a health questionnaire and signed an informed consent document before testing.

2.2. Protocol

The first visit was an orientation session where the subjects were familiarized with the testing
protocol. During the familiarization, the subjects performed submaximal and maximal bilateral
isometric and isokinetic leg extensions at 180◦·s−1. For the test visits, the subjects warmed up by
performing 5 submaximal isokinetic leg extensions at 180◦·s−1 on a calibrated Cybex II dynamometer
(Cybex, Division of Lumex, Inc., Ronkonkoma, NY, USA). The subjects then performed two bilateral
maximal, voluntary isometric contractions (MVICs) for 6 s at a knee joint angle of 135◦ (full extension
corresponds to 180◦). This was followed by consecutive maximal, bilateral isokinetic leg extensions at
180◦·s−1 until the torque values dropped to 50% of peak torque for two consecutive repetitions.

2.3. Electromyographic, Mechanomyographic, and Force Signal Acquisition

During the test visit, bipolar (30-mm center-to-center) surface EMG electrode (circular 4-mm
diameter silver/silver chloride; Biopac Systems, Inc, Santa Barbara, CA, USA) arrangements were
placed on the VL muscles of both limbs according to the Surface Electromyography for the Non-Invasive
Assessment of Muscles project (SENIAM) recommendations [44]. The electrodes were placed 66% of
the distance between the anterior superior iliac spine and the lateral border of the patella and were
oriented at a 20◦ angle to align with the angle of pennation of the VL muscle fibers (Figure 1) [45]. A
reference electrode was placed over the anterior superior iliac spine. Prior to electrode placement, the
skin was shaved, carefully abraded, and cleaned with alcohol. The MMG signals for both VL muscles
were detected using miniature accelerometers (Entras EGAS FT 10, bandwidth 0–200 Hz, dimensions
1.0 × 1.0 × 0.5 cm, mass 1.0 g, sensitivity 668.1 mV·g−1 for the right VL, 655.1 mV·g−1 for the left VL)
placed between the bipolar EMG arrangements of both VL muscles using double-sided adhesive tape
(Figure 1).

The raw EMG and MMG signals were digitized at 2000 Hz with a 12-bit analog-to-digital converter
(Model MP150; Biopac Systems, Inc.) and stored on a personal computer (G5 15 Dell Inc., Round Rock,
TX, USA) for analyses. The EMG signals were amplified (gain: ×1000) using differential amplifiers
(EMG2-R Bionomadix, Biopac Systems, Inc. Goleta, CA, USA; bandwidth—10–500 Hz). The EMG and
MMG signals were digitally bandpass filtered (fourth-order Butterworth) at 10–500 Hz and 5–100 Hz,
respectively. Signal processing was performed using custom programs written with the LabVIEW
programming software (version 18.0f2, National Instruments, Austin, TX, USA). The EMG (µV root
mean square, µVrms) and MMG (m·s−2) AMP and MPF (Hz) values for each leg extension muscle
action were calculated for a period of time that corresponded to the middle 30◦ range of motion from
approximately 120◦ to 150◦ of the leg extension, to avoid the acceleration and deceleration phases of
the isokinetic muscle actions [46]. This corresponded to a signal epoch of 0.17 s used to calculate the
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AMP and MPF values of the EMG and MMG signals. The EMG and MMG, AMP and MPF values
for the MVIC were calculated from the middle 2 s of the 6 s trial. The corresponding values from the
MVIC with the highest torque output were used to normalize the EMG and MMG parameters for
each repetition during the bilateral leg extensions. The repetitions were normalized to each 5% of the
total number of repetitions completed. Torque values were normalized to the value at 10% of the total
repetitions completed.
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Figure 1. Image of the electrode and accelerometer arrangements for electromyographic (EMG) and
mechanomyographic (MMG) signal acquisition for both vastus lateralis (VL) muscles during the
fatiguing task.

2.4. Statistical Analysis

Data analyses began at 10% of total repetitions completed to eliminate initial submaximal
repetitions [47]. Four, 2 (Limb (right and left VL)) × 19 (Time (10–100% of the total repetitions at 5%
intervals)) repeated measures ANOVAs were used to examine mean differences for each normalized
neuromuscular parameter (EMG AMP, EMG MPF, MMG AMP, MMG MPF). A 1× 19 repeated measures
ANOVA was used to examine fatigue-related changes in normalized torque production. Post-hoc
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Student–Newman–Keuls [48] was used to identify if the normalized neuromuscular and torque values
changed from the values at 10% of the total repetitions.

Separate polynomial regression analyses (linear and quadratic) were used to define the individual
and composite normalized EMG AMP, EMG MPF, MMG AMP, MMG MPF for both limbs and the
composite normalized torque values versus total repetitions relationships during the fatiguing protocol.
All statistical analyses were performed using IBM SPSS v. 25 (Armonk, NY, USA). An alpha of p ≤ 0.05
was considered statistically significant for all comparisons.

3. Results

3.1. Torque Response

The subjects performed a total of 56 ± 17 leg extension repetitions with the average peak torque
of 326.5 ± 49.2 N·m. There was a significant effect for time (p < 0.01, η2

p = 0.78) for average peak
torque, with post-hoc Student–Newman–Keuls analyses indicating that torque was significantly less
for all values after the initial 10% of the total repetitions (Figure 2). Polynomial regression exhibited a
significant, negative quadratic (R = 0.95) relationship for torque across total repetitions (Figure 2).
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Figure 2. Time course of changes for the composite torque measures during maximal bilateral leg
extensions. * Indicates there was a significant relationship (R = 0.95, p < 0.05) between normalized
torque values and total repetitions as determined by polynomial regression. † Indicates significantly
(p < 0.05) lower torque from the initial 10% of total repetitions completed based on post-hoc
Student–Newman–Keuls mean comparisons.

3.2. EMG Response

The 2 (Limb (right and left VL)) × 19 (Time (10–100% of the total repetitions at 5% intervals))
repeated measures ANOVA for EMG AMP indicated no significant interaction (p = 0.91, η2

p = 0.05) or
main effects for limb (p = 0.44, η2

p = 0.05) or time (p = 0.06, η2
p = 0.12). For EMG MPF, there was no

significant interaction (p = 0.61, η2
p = 0.07) or main effect for the limb (p = 0.33, η2

p = 0.08), but there
was a significant main effect for time (p < 0.01, η2

p = 0.32). Post-hoc Student–Newman–Keuls analyses
indicated that EMG MPF at 80%, 85%, 90%, 95%, and 100% of the total repetitions was significantly
less than the initial value at 10% of the total repetitions (Figure 3).
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Figure 3. Time course of changes for EMG measures during maximal bilateral leg extensions for both
limbs (R = right and L = left). * Indicates there was a significant (p < 0.05) relationship between
normalized EMG values and the total repetitions as determined by polynomial regression. † Indicates
significantly (p < 0.05) lower EMG mean power frequency (MPF) collapsed across limbs than the initial
10% of total repetitions completed based on post-hoc Student–Newman–Keuls mean comparisons.

Polynomial regression analyses for the individual and composite EMG AMP responses (Table 1)
for the right limb exhibited positive, quadratic relationships (R = 0.69 to 0.75) for 2 of the 13 subjects;
a positive, linear relationship (r = 0.55) for one subject; no significant relationships for 10 subjects;
and a positive, quadratic relationship (R = 0.75) for the composite data. For the left limb, 3 of the
13 subjects exhibited positive, quadratic relationships (R = 0.56 to 0.81); 10 subjects exhibited no
significant relationships; and the composite data exhibited a positive, quadratic relationship (R = 0.79).

Polynomial regression analyses for the individual and composite EMG MPF responses (Table 1)
for the right limb exhibited negative, quadratic relationships (R = −0.95 to −0.72) for 8 of the 13 subjects;
a positive, quadratic relationship (R = 0.87) for one subject; no significant relationships for 4 subjects;
and a negative, quadratic relationship (R = −0.95) for the composite data. For the left limb, 9 of the
13 subjects exhibited negative, quadratic relationships (R = −0.75 to −0.56); one subject exhibited
a negative, linear relationship (r = −0.53); one subject exhibited a positive, quadratic relationship
(R = 0.58); 2 subjects exhibited no significant relationships; and the composite data exhibited a negative,
quadratic relationship (R = −0.91).



Sports 2019, 7, 175 7 of 15

Table 1. Polynomial regression model, correlation, and p-values for normalized EMG parameters for both limbs (R = right and L = left) during maximal, bilateral leg
extensions to fatigue.

Subjects R EMG AMP L EMG AMP R EMG MPF L EMG MPF

Model Correlation p-Value Model Correlation p-Value Model Correlation p-Value Model Correlation p-Value

1 – – – – – – Quadratic −0.733 0.002 Quadratic −0.563 0.047
2 Quadratic 0.685 0.006 Quadratic 0.831 <0.001 Quadratic −0.733 0.002 Quadratic −0.721 0.003
3 – – – – – – – – – Quadratic 0.579 0.039
4 – – – – – – – – – – – –
5 – – – Quadratic 0.590 0.033 Quadratic −0.949 <0.001 Quadratic −0.749 0.001
6 – – – – – – Quadratic 0.870 <0.001 Quadratic −0.585 0.035
7 Quadratic 0.749 0.001 – – – Quadratic −0.805 <0.001 Linear −0.525 0.021
8 – – – – – – – – – Quadratic −0.619 0.021
9 – – – Quadratic 0.562 0.048 Quadratic −0.700 0.005 Quadratic −0.739 0.002

10 – – – – – – – – – Quadratic −0.685 0.006
11 – – – – – – Quadratic −0.715 0.003 Quadratic −0.633 0.017
12 Linear 0.549 0.015 – – – Quadratic −0.778 0.001 Quadratic −0.718 0.003
13 – – – – – – Quadratic −0.767 0.001 – – –

Composite Quadratic 0.749 0.001 Quadratic 0.793 0.002 Quadratic −0.953 <0.001 Quadratic −0.913 <0.001
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3.3. MMG Response

The 2 (Limb (right and left VL)) × 19 (Time (10–100% of the total repetitions at 5% intervals))
repeated measures ANOVAs for MMG AMP indicated no significant interaction (p = 0.34, η2

p = 0.09) or
main effect for the limb (p = 0.89, η2

p = 0.00), but a significant main effect for time (p < 0.01, η2
p = 0.22).

Post-hoc Student–Newman–Keuls indicated that MMG AMP at 90%, 95%, and 100% of total repetitions
was significantly less than the peak value at 30% of total repetitions (Figure 4). For MMG MPF, there
was no significant interaction (p = 0.93, η2

p = 0.05) or main effects for the limb (p = 0.52, η2
p = 0.04) or

time (p = 0.62, η2
p = 0.07).

Sports 2019, 7, x FOR PEER REVIEW 8 of 15 

 

3.3. MMG Response 

The 2 (Limb (right and left VL)) × 19 (Time (10–100% of the total repetitions at 5% intervals)) 
repeated measures ANOVAs for MMG AMP indicated no significant interaction (p = 0.34, η2p = 0.09) 
or main effect for the limb (p = 0.89, η2p = 0.00), but a significant main effect for time (p < 0.01, η2p = 
0.22). Post-hoc Student–Newman–Keuls indicated that MMG AMP at 90%, 95%, and 100% of total 
repetitions was significantly less than the peak value at 30% of total repetitions (Figure 4). For MMG 
MPF, there was no significant interaction (p = 0.93, η2p = 0.05) or main effects for the limb (p = 0.52, η2p 
= 0.04) or time (p = 0.62, η2p = 0.07). 

 
Figure 4. The time course of changes for MMG measures during maximal bilateral leg extensions for 
both limbs (R = right and L = left). * Indicates there was a significant (p < 0.05) relationship between 
normalized MMG values and repetitions as determined by polynomial regression. † Indicates 
significantly lower (p < 0.05) for MMG amplitude (AMP) collapsed between limbs from 30% of total 
repetitions completed, based on post-hoc Student–Newman–Keuls mean comparisons. 

Polynomial regression analyses for the individual and composite MMG AMP responses (Table 
2) for the right limb exhibited positive, quadratic relationships (R = 0.62 and 0.79) for 2 of the 13 
subjects; a negative, quadratic relationship (R = −0.80 to −0.56) for 3 subjects; no significant 
relationships for 8 subjects; and a negative, quadratic relationship (R = −0.86) for the composite data. 
For the left limb, 5 of the 13 subjects exhibited negative, quadratic relationships (R = −0.87 to −0.56); 
one subject exhibited a positive quadratic relationship (R = 0.64); two subjects exhibited a negative, 
linear relationship (r = −0.496 and −0.469); 5 subjects exhibited no significant relationships; and the 
composite data exhibited a negative, quadratic relationship (R = −0.93). 

Polynomial regression analyses for the individual and composite MMG MPF responses (Table 
2) for the left limb exhibited negative, quadratic relationships (R = −0.89 to −0.60) for 3 of the 13 
subjects; a negative, linear relationship (r = 0.51) for one subject; a positive, linear relationship (r = 
0.48) for one subject; no significant relationships for 8 subjects; and a negative, linear relationship (r 
= −0.55) for the composite data. For the left limb, 1 of the 13 subjects exhibited a negative, quadratic 
relationship (R = −0.65); one subject exhibited a positive, quadratic relationship (r = 0.78); and 11 
subjects and the composite data exhibited no significant relationships.

Figure 4. The time course of changes for MMG measures during maximal bilateral leg extensions
for both limbs (R = right and L = left). * Indicates there was a significant (p < 0.05) relationship
between normalized MMG values and repetitions as determined by polynomial regression. † Indicates
significantly lower (p < 0.05) for MMG amplitude (AMP) collapsed between limbs from 30% of total
repetitions completed, based on post-hoc Student–Newman–Keuls mean comparisons.

Polynomial regression analyses for the individual and composite MMG AMP responses (Table 2)
for the right limb exhibited positive, quadratic relationships (R = 0.62 and 0.79) for 2 of the 13 subjects;
a negative, quadratic relationship (R = −0.80 to −0.56) for 3 subjects; no significant relationships
for 8 subjects; and a negative, quadratic relationship (R = −0.86) for the composite data. For the
left limb, 5 of the 13 subjects exhibited negative, quadratic relationships (R = −0.87 to −0.56); one
subject exhibited a positive quadratic relationship (R = 0.64); two subjects exhibited a negative, linear
relationship (r = −0.496 and −0.469); 5 subjects exhibited no significant relationships; and the composite
data exhibited a negative, quadratic relationship (R = −0.93).

Polynomial regression analyses for the individual and composite MMG MPF responses (Table 2)
for the left limb exhibited negative, quadratic relationships (R = −0.89 to −0.60) for 3 of the 13 subjects;
a negative, linear relationship (r = 0.51) for one subject; a positive, linear relationship (r = 0.48) for one
subject; no significant relationships for 8 subjects; and a negative, linear relationship (r = −0.55) for
the composite data. For the left limb, 1 of the 13 subjects exhibited a negative, quadratic relationship
(R = −0.65); one subject exhibited a positive, quadratic relationship (r = 0.78); and 11 subjects and the
composite data exhibited no significant relationships.
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Table 2. Polynomial regression model, correlation, and p-values for normalized MMG parameters for both limbs (R = right and L = left) during maximal, bilateral leg
extensions to fatigue.

Subjects R MMG AMP L MMG AMP R MMG MPF L MMG MPF

Model Correlation p-Value Model Correlation p-Value Model Correlation p-Value model Correlation p-Value

1 – – – Linear −0.498 0.030 Quadratic −0.603 0.020 – – –
2 – – – – – – – – – Quadratic −0.658 0.011
3 – – – – – – – – – – – –
4 Quadratic −0.769 0.001 Quadratic −0.679 0.001 – – – – – –
5 – – – – – – Linear −0.506 0.027 – – –
6 Quadratic −0.804 <0.001 Quadratic −0.759 0.001 Linear 0.480 0.037 Quadratic 0.779 0.001
7 – – – Quadratic −0.569 0.044 – – – – – –
8 – – – Quadratic −0.867 <0.001 – – – – – –
9 – – – Quadratic −0.651 0.012 – – – – – –

10 Quadratic 0.615 0.022 Quadratic 0.637 0.015 Quadratic −0.792 <0.001 – – –
11 – – – Linear −0.469 0.043 – – – – – –
12 Quadratic 0.789 <0.001 – – – Quadratic −0.890 <0.001 – – –
13 Quadratic −0.564 0.047 – – – – – – – – –

Composite Quadratic −0.864 <0.001 Quadratic −0.933 <0.001 Linear −0.547 0.015 – – –
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4. Discussion

The purpose of the present study was to compare the composite, inter-individual, and
intra-individual differences in patterns of neuromuscular responses during dynamic muscle actions.
The results indicated that there were no differences between limbs for any of the mean neuromuscular
(EMG AMP, EMG MPF, MMG AMP, or MMG MPF) responses during the fatiguing, maximal, bilateral,
or isokinetic leg extension muscle actions. This study is the first to compare the MMG, time and
frequency domain responses in both limbs during fatiguing, bilateral muscle actions. However,
previous studies [42,49–51] have examined EMG AMP and EMG MPF responses to bilateral muscle
actions using various study designs. For example, Matkowski et al. [49] reported no differences between
limbs for normalized EMG AMP (normalized to an electrically evoked M-wave during an MVIC) from
the RF, vastus medialis (VM), and VL during bilateral leg extension MVICs. Matkowski et al. [42] also
reported no difference between limbs for normalized EMG AMP from the RF and VL during sustained,
submaximal, bilateral, or isometric muscle actions at 20% of MVIC. Oda and Moritani [50] found no
differences between limbs for EMG AMP and EMG MPF from the biceps brachii following 64 s of
sustained, bilateral forearm flexion MVICs. In addition, Post et al. [51] reported no differences between
limbs for EMP AMP from the first dorsal interosseous muscles during bilateral MVICs. Thus, the
results of the present study supported previous studies [42,49–51] that have reported no differences
between homologous muscles of contralateral limbs for EMG AMP and/or EMG MPF during bilateral
isometric muscle actions, and extended these findings to include MMG AMP and MMG MPF responses
during isokinetic muscle actions.

The lack of difference between any of the neuromuscular parameters exhibited in the present
study may be due to a common efferent input to the active skeletal muscle [52]. During corticomuscular
activation, continuous interhemispheric communication between the cortices has been shown to elicit a
“bilateral coupling” of the efferent signal to homologous muscles and result in similar neuromuscular
activation [53,54]. During fatiguing bilateral tasks, increased intermuscular cross-correlation and
coherence [55,56] suggests the bilateral coupling of the efferent signal—similar to a common drive
described by De Luca et al. [57,58]—could be a mechanism to mitigate task failure. The results from
the present study demonstrated similar neuromuscular patterns of responses in homologous muscles
for the composite results during the fatiguing task, which was consistent with a bilateral coupling of
the efferent signal to active skeletal muscle. Interlimb differences in the neuromuscular patterns of
responses for individual subjects, however, may suggest the presence of intra-individual variation in
efferent signaling during fatiguing, isokinetic, bilateral muscle actions.

In the present study, the composite data for EMG AMP and EMG MPF of both VL muscles
demonstrated quadratic increase and quadratic decreases, respectively. Increases in EMG AMP during
fatiguing muscle actions have been attributed to increases in muscle activation [59]. Decreases in
EMG MPF have been attributed to the reductions in conduction velocity of the myoelectric signal [60],
caused by a build-up of metabolic by-products such as extracellular potassium [61]. The composite
results of this study indicated that throughout the fatiguing task, the decline in force was associated
with increased muscle activation and the build-up of metabolic by-products that were similar in both
limbs. The composite results for the MMG AMP of both VL muscles indicated quadratic decreases
over the time course of the fatiguing task. Decreases in MMG AMP have been attributed to decreases
in muscular compliance caused by increased muscle thickness, fluid content, and intramuscular
pressure [62,63]. The composite data suggested the development of fatigue may have reduced muscle
compliance, which restricted the lateral oscillation of the active muscle fibers and resulted in a decrease
in MMG AMP. The composite results for the MMG MPF for the right leg indicated a linear decrease
over the time course of the fatiguing task, while the left leg demonstrated no significant change over
time. The MMG MPF qualitatively reflects the global firing rate of the active motor units [17,64]. The
composite results indicated that the MMG MPF differed between the right and left leg during the
fatiguing task.
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The results of the composite regression analyses demonstrated the same fatigue-induced patterns
of responses in both limbs for EMG AMP, EMG MPF, and MMG AMP. For MMG MPF, the right limb
exhibited a negative, linear pattern of response, while the left limb exhibited no significant pattern
of response. There were, however, inter-individual differences for the patterns of neuromuscular
responses between limbs (Tables 1 and 2). Specifically, 9 of the 13 subjects had the same fatigue-related
patterns of response for EMG AMP between limbs; 8 of the 13 subjects had the same fatigue-related
patterns of response for EMG MPF between limbs; and 6 of the 13 subjects had the same fatigue-related
patterns of response for MMG AMP between limbs. Previous studies have demonstrated the importance
of subject-by-subject analyses of EMG [39] and MMG [24], due to the inherent variability of the EMG
and MMG signal during isometric contractions. The continuous change in the range of motion during
isokinetic muscle actions further adds to the variability of the surface EMG signal [65,66] and likely the
MMG signal. Cochrane-Snyman et al. [22] similarly demonstrated inter-individual variability for both
EMG and MMG patterns of responses during fatiguing cycle ergometry. Thus, the results from the
current study and future studies assessing fatiguing, isokinetic muscle actions should be interpreted
on a subject-by-subject basis in addition to the composite analyses.

In the present study, the individual subjects’ patterns of neuromuscular responses differed from
the patterns of responses exhibited by the composite results (Tables 1 and 2). The composite EMG AMP
data of both VL muscles demonstrated quadratic increases across repetitions, while MMG AMP and
EMG MPF decreased quadratically. There was also a significant linear decrease across repetitions for
the composite MMG MPF response of the right VL. For the 26 neuromuscular patterns of responses for
both VL muscles (13 subjects × 2 VL muscles), approximately 23% of the individual responses resulted
in significant increases for the EMG AMP versus total repetitions relationships. For MMG AMP, 50%
of the individual responses had a significant MMG AMP versus total repetitions relationship; of those,
approximately 80% had a negative relationship, with the remaining 20% having a positive relationship.
For MMG MPF of the right VL muscle, approximately 39% of the individual responses exhibited a
significant relationship during the fatiguing task; of those, approximately 80% of the subjects had a
negative relationship, while 20% had a positive relationship. For EMG MPF, the composite results
indicated a negative quadratic relationship and 77% of the individual responses had a significant
relationship. Of those individuals, 90% had a negative relationship, while the remaining 10% had a
positive relationship versus repetitions. These findings indicated that the significant fatigue-induced
composite increases for EMG AMP of both VL muscles, decreases for MMG AMP of both VL muscles
and decreases for MMG MPF of the right VL muscle were generally reflective of a minority of subjects
(n = 2 for right EMG AMP, n = 3 for left EMG AMP, n = 3 for right MMG AMP, n = 5 for left MMG
AMP, and n = 1 for right MMG MPF), while the majority of the patterns of neuromuscular responses
demonstrated no significant relationships across total repetitions (Tables 1 and 2). The individual EMG
MPF patterns of response, however, were closely related to the composite pattern (n = 8 for the right
VL and n = 10 for the left VL). Thus, interpreting fatigue-related changes in motor unit activation
strategies from the composite patterns of EMG AMP, MMG AMP, and MMG MPF responses would
not be consistent with the individual responses for most subjects. The EMG MPF patterns of responses
were the most consistent between individual subjects, as well as between the individual and composite
responses. The discrepancy between the neuromuscular patterns of responses between subjects in the
present study may be indicative of interindividual variations in fatigue-related changes in motor unit
activation strategies.

5. Conclusions

In conclusion, the results of this study demonstrated no significant differences in neuromuscular
responses between limbs during fatiguing, maximal, bilateral leg extensions. There were, however,
differences between subjects for both limbs and differences between the individual and the composite
results for all of the neuromuscular parameters. In general, these findings demonstrated the importance
of considering both the individual and composite results when attempting to interpret motor unit
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activation strategies. While both individual and composite results indicated fatigue-induced declines
in EMG MPF, inter-individual variations for EMG AMP, MMG AMP, and MMG MPF suggested that the
observed neuromuscular patterns of responses of the composite results may not be representative of the
whole population under investigation. Future studies are warranted to further explore intra-individual
neuromuscular control strategies during bilateral muscle actions and to determine the relationship
between individual and composite interpretations of motor unit control strategies during maximal,
dynamic, fatiguing tasks.
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