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Abstract: Photothermal therapy based on nanoparticles is a promising method for cancer treatment.
However, there are still many limits in practical application. During photothermal therapy, improving
therapeutic effect is contradictory to reducing overheating in healthy tissues. We should make
the temperature distribution more uniform and reduce the damage of healthy tissue caused by
overheating. In the present work, we develop a simple computational method to analyze the
temperature distribution during photothermal therapy at three levels (nanoscale, micron scale, and
millimeter scale), and investigate the effects of nanoparticle size, volume fraction, light intensity, and
irradiation shape on temperature distribution. We find that it is difficult to achieve good therapeutic
effect just by adjusting the volume fraction of nanoparticles and light intensity. To achieve good
therapeutic effect, we propose a new irradiation shape, spot array light. This method can achieve
a better temperature distribution by easily regulating the positions of spots for the tumor with a
large aspect ratio or a small one. In addition, the method of irradiation with spot array light can
better reduce the overheating at the bottom and top of the tumor than the full-coverage light or
others such as ring light. This theoretical work presents a simple method to investigate the effects
of irradiation shape on therapy and provides a far more controlled way to improve the efficacy of
photothermal therapy.

Keywords: photothermal therapy; nanoparticles size; irradiation shape; temperature distribu-
tion; overheating

1. Introduction

Photothermal therapy is a promising alternative therapy to traditional cancer therapy
due to a better treatment effect, less pain, and fewer side effects [1–4]. The principle is
to inject the material with high photothermal conversion efficiency into the body and
gather them near tumor tissue by targeted recognition technology. Under the irradiation
of an external light source, the material converts light energy into heat energy, which
causes the tissue temperature increase to kill the cancer cells [5–9]. Since light usually
irradiates the entire top surface of the tumor in photothermal therapy, the method often
leads to the uneven temperature distribution of tumor and overheating, which results in
incomplete treatment of tumor and damage of healthy tissue. These problems limit the
further development and application of photothermal therapy.
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Researchers have made efforts basically to study the surface cooling and heating
strategy to overcome the uneven temperature distribution and overheating. Dombrovsky
et al. [10] found that the period heating strategy can prevent the overheating of tissue
surface. However, the proposed method cannot solve the problem of uneven temperature
distribution. Ren et al. [11] used the Monte Carlo method and Beer’s law to calculate the
heat generation of nanoparticles irradiated by laser. They found that irradiation with a
smaller radius than tumor radius can achieve better therapeutic results. Nevertheless, this
method is suitable for only tumors with a large aspect ratio, and not for tumors with a
small aspect ratio. Furthermore, Wang et al. [12] found that irradiation with ring light
can also bring about a better therapeutic effect, but how to regulate the shape of the ring
was not studied. Changing the shape of light irradiation provides a way to improve the
therapeutic effect. However, there are still some problems to be solved for irradiation with
a smaller light radius and ring light, such as further reducing overheating and difficulty in
adjusting the shape for optimal temperature distribution.

In this work, we develop a computational method based on the heat conduction
equation to investigate the temperature distribution at three levels (nanoscale, micron
scale, and millimeter scale). We use this method to analyze the effects of volume fraction,
light intensity, and irradiation shape on temperature distribution. We propose a method of
irradiation with spot array light. This method can obtain better temperature distributions of
tumors with both large and small aspect ratios. More importantly, it is easy to regulate the
irradiation shape for obtaining better tumor temperature distributions, and the irradiation
with this shape can better reduce the damage to healthy tissue caused by overheating.

2. Theory and Methods

The process of photothermal therapy consists of injecting the photothermal conversion
material into the body, and the material converts light energy into heat energy under
external light source irradiation, which causes a temperature increase in tissue to kill the
cancer cells. The essence of the tumor temperature increase is the photothermal conversion
of nanoparticles and heat transfer from nanoparticles to cells and then to tumor tissue.
Therefore, we can divide the process into three levels by scale: (i) nanoscale (temperature
distribution caused by the photothermal conversion of nanoparticles), (ii) micron scale
(temperature distribution caused by the heat transfer from nanoparticles to cells), and (iii)
millimeter scale (temperature distribution of tissue and the surrounding environment).

2.1. Temperature Distribution Caused by the Photothermal Conversion of Nanoparticles (Nanoscale)

Sphere nanoparticles (SNPs) have the simplest shape and are easy to fabricate and
widely used in photothermal therapy [6,13]. Under irradiation, SNPs can couple with
light within picoseconds. Then, heat transfer from hot SNPs to the surrounding medium
takes place, and finally thermal equilibrium is established in nanoseconds [5]. The thermal
equilibrium results in a temperature increase in the nanoparticles and the surrounding
environment, which is related to the light intensity, absorption cross section of SNP, and
density of SNPs in the environment. In detail, high light intensity, large absorption cross
section, and high density of SNPs mean a strong increase in temperature. Taking an isolated
sphere nanoparticle with radius RNP as an example, as shown in Figure 1a, temperature
distribution can be obtained by the heat conduction equation [14–16]. The temperature
distribution after equilibrium can be given as

∆Tnp =
σabs I
4πκ

1
r

{
r = RNP, |→r | < RNP

r = |→r |, |→r | ≥ RNP
(1)

where κ is the thermal conductivity of the medium, σabs is the absorption cross section
of a single sphere nanoparticle, which is estimated by Mie theory [14,16–18], and

→
r is

the position vector of a point in the irradiation region. At the point outside the particle
(|→r | ≥ RNP), r is equal to the distance from the point to the center of the nanoparticles
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(r = |→r |). At the point inside the particle (|→r | < RNP), r is equal to the radius of the
nanoparticle (r = RNP). I is the light intensity. According to Beer’s law, the variation in
light intensity with depth is very small on the nanoscale. We consider that the light intensity
is constant when we calculate the temperature distribution caused by nanoparticles.

Figure 1. Simplified physical model of (a) a nanoparticle, (b) a cell, and (c) tumor tissue.

If there are multiple nanoparticles in the irradiation region, the temperature increase
is due to the sum of the contributions of all nanoparticles. Therefore, the temperature
distribution caused by the photothermal conversion of multiple nanoparticles is as follows:

∆Tnps = ∑N1
i=1

σabs I
4πκ

1
r

{
r = RNP, |→r −→r i| < RNP

r = |→r −→r i|, |
→
r −→r i| ≥ RNP

(2)

where N1 is the number of SNPs,
→
r is the position vector of a point in irradiation region,

and
→
r i is the position vector at the ith SNP center. If the point is located outside the

ith nanoparticle (|→r − →r i| ≥ RNP), r is equal to the distance from the point to the cen-
ter of the ith nanoparticle (r = |→r − →r i|). If the point is located inside the ith particle
(|→r −→r i| < RNP), r is equal to the radius of the nanoparticle (r = RNP).

2.2. Temperature Distribution Caused by the Heat Transfer from Nanoparticles to Cells (Micron Scale)

During photothermal therapy, the modification of nanoparticles by targeted materials
can make nanoparticles directional in the cancer cells, and there are very few nanoparticles
outside the cells [19]. The common targeted coatings include polyethylene glycol (PEG),
transactivator of transcription (TAT) peptide, Arg-Gly-Asp (RGD) peptide, etc. [5]. So
we only consider the heat production of particles in the cell. A cell with radius Rcell is
shown in Figure 1b. We consider that SNPs are uniformly distributed in the cells after
being injected into the tissue. d1 is the distance between particles. The heat production of
nanoparticles is much larger than that of the surrounding environment in cells because
of the high photothermal conversion efficiency of nanoparticles [20,21]. So, only the heat
production of nanoparticles is considered. The temperature distribution caused by the heat
transfer from SNPs to cells is affected by each SNP in the cell, which is as follows:

∆Tcell = ∑Nnp
i=1

σabs I
4πκ

1
r

{
r = RNP, |→r −→r i| < RNP

r = |→r −→r i|, |
→
r −→r i| ≥ RNP

(3)

where Nnp is the number of nanoparticles in a cell. According to Beer’s law, the variation
of light intensity with depth is very small on the micron scale. We still consider that the
light intensity is constant when we calculate the temperature distribution caused by cells,
because the cell size is tens of microns.
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When there are multiple cells in the irradiation region, the temperature distribution is
affected by each particle in each cell, which can be obtained by

∆Tcells = ∑N2
j=1 ∑Nnp

i=1
σabs I
4πκ

1
r

{
r = RNP, |→r −→r ij| < RNP

r = |→r −→r ij|, |
→
r −→r ij| ≥ RNP

(4)

where N2 is the number of cells,
→
r is the position vector of a point in the irradiation region,

and
→
r ij is the position vector of the ith nanoparticle in the jth cell. Because the number

of nanoparticles (N2 × Nnp) in the tissue is very large, the calculation will become very
complex. It will take a long time to simulate the temperature field by using software.
We find that the calculation can be simplified by taking one cell as a whole. In this
case, the temperature distribution of the cells and the surrounding environment can be
approximately expressed as

∆Tcells = ∑N2
j=1

Nnp · σabs I
4πκ

1
r

{
r = Rcell , |

→
r −→r j| < Rcell

r = |→r −→r j|, |
→
r −→r j| ≥ Rcell

(5)

where N2 is the number of cells, Rcell is the radius of the cell,
→
r is the position vector of

a point in the irradiation region, and
→
r j is the position vector at the jth cell center. If the

point is located outside the jth cell (|→r −→r j| ≥ Rcell), r is equal to the distance from the

point to the center of the jth cell (r = |→r −→r i|). If the point is located inside the jth cell
(|→r −→r i| < Rcell), r is equal to the radius of the cell (r = Rcell).

By comparing the temperature distribution obtained by the simplified method
(Equation (5)) with that obtained by Equation (4), we find that the temperature distri-
bution obtained by the two methods is almost identical outside cells and there is only about
0.1 ◦C difference inside cells (The comparison is shown in Figure 3). The temperature rise
in photothermal therapy exceeds 10 ◦C [9], so the effect of the difference on temperature
distribution inside cells can be negligible.

2.3. Temperature Distribution of Tissue and the Surrounding Environment (Millimeter Scale)

When the cell temperature increases, the tissue temperature also increases due to
further heat transfer. A tissue with a radius and depth of 2 mm is shown in Figure 1c. We
consider that the cells are of the same size, shape, and uniform distribution in the tissue
and the distance between cells is 50 µm. The temperature distribution of the tissue and the
surrounding environment can be calculated by

∆Ttissue = ∑Ncell
j=1

Nnp · σabs I
4πκ

1
r

{
r = Rcell , |

→
r −→r j| < Rcell

r = |→r −→r j|, |
→
r −→r j| ≥ Rcell

(6)

where Ncell is the number of cells in the tissue, and other parameters are similar to Equation
(5). The variation of light intensity can be obtained from Beer’s law [11,15,18]:

I(z) = I0 · e−(µa+µ′s)·z (7)

where I0 is the incident light intensity, I(z) is the light intensity at the depth z, and µa
and µ′s represent absorption and scattering coefficients, respectively, which are deter-
mined by the absorption and reduced scattering coefficients of both the medium and the
nanoparticles (µa = µa,m + µa,n, µ′s = µ′s,m + µ′s,n) [7]. µa,n and µ′s,n are the absorption and
reduced scattering coefficients of nanoparticles, respectively, which can be expressed as
µa,n = 0.75 fvQa/RNP and µ′s,n = 0.75 fvQ′s/RNP [22,23]. fv is the volume fraction of
nanoparticles. RNP is the radius of nanoparticles. Qa and Q′

S
stand for the efficiency factor

of absorption and scattering for single particles, calculated by means of Mie theory [17,18].
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After the tissue temperature rises, continuous irradiation for a period of time can make
cancer cells undergo permanent damage, and the irradiation time is related to the tissue
temperature. The Arrhenius equation is commonly used to describe the irreversible heating
damage rate of biological tissues [24], which can be expressed as Ω(t) = A exp(−Ea/RT) · t.
Here Ea and A stand for the activation energy and frequency factor, respectively. R is the gas
constant, which equals 8.314 J/(mol·K) [25], T is the temperature of tissue, t is irradiation
time, and Ω represents the thermal damage rate. If Ω is larger than 1, the tissue is assumed
to have permanent damage. So the irradiation time required for permanent damage of
tissue at temperature T is t ≥ 1/[A · exp(−Ea/RT)]. The higher the temperature, the
shorter the light time the tissue needs to get permanent damage.

3. Results and Discussion

In this paper, we take the typical gold sphere nanoparticle (Au SNP) as an example.
The common preparation methods of gold nanoparticles include the Turkevich–Frens
method and the Brust–Schiffrin method. The principle of the Turkevich–Frens method is
that HAuCl4 undergoes a reduction reaction to form gold nanoparticles by using citrate,
in which the citrate ion is both reducing agent and sealing agent. When producing large-
size gold nanoparticles, the amount of citrate should be reduced to 0.05%. Although
citrate ions are not sufficient to make all gold ions undergo a reduction reaction, lower
citrate content causes small particles to aggregate into larger particles. The principle of
the Brust–Schiffrin method is that HAuCl4 undergoes a reduction reaction to form gold
nanoparticles by using tetraoctyl ammonium bromide (TOAB) in toluene, in which TOAB
is both phase transfer catalyst and stabilizing agent. The radius of Au SNP is selected as
20 nm (RNP = 20 nm), as shown in Figure 1a. The corresponding peak plasma wavelength
is about 532 nm, and the absorption cross section can be calculated as 4292.98 nm2 by Mie
theory (σabs = 4292.98 nm2) [17,18,26,27]. The thermal conductivity of tumor with Au SNPs
is 0.55W/(K·m) (κ = 0.55W/(K · m)) [11]. The light intensity is selected as 15 W/cm2

(I = 15 W/cm2). In this paper, we use Matlab (www.mathworks.com) to simulate the
temperature distribution.

3.1. Temperature Distribution
3.1.1. Temperature Distribution Caused by the Photothermal Conversion of Nanoparticles
(Nanoscale)

For nanoscale, we analyze the temperature distribution caused by single and multiple
particles. Figure 2a shows the temperature distribution caused by the photothermal
conversion of a single Au SNP obtained by Equation (1). The result shows that the
temperature inside the particle is the highest and the temperature decreases gradually
with increased distance from the particle. Figure 2b–d shows the calculated temperature
distributions caused by the photothermal conversion of multiple nanoparticles using
Equation (2) in case of one-dimensional (N1= 5), two-dimensional (N1 = 5× 5), and three-
dimensional (N1= 5 × 5 × 5). The results show that the higher the number of Au SNPs in
the illuminated region, the higher the temperature rise. This is because the temperature
rise of the light field is the common action of multiple particles. In addition, Figure 2e
shows a comparison of the temperature distributions of single and multiple particles. We
can see that the higher the number of particles, the greater the temperature rise, but the
temperature rise is always small (∆T < 0.005 °C). This is because the light intensity that
we selected in our calculations is suitable for photothermal therapy and the value of light
intensity is small. Interestingly, the conclusion we get from the temperature distributions is
similar to that of Baffou et al [14]. Because the light intensity selected in their calculations
is much larger than ours, the temperature in their results is higher than ours.

www.mathworks.com
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Figure 2. The temperature distributions with laser intensity I = 15 W/cm2 caused by the photothermal conversion of (a) a
single nanoparticle, (b) 5 nanoparticles uniformly distributed along the x axis, (c) 5 × 5 nanoparticles uniformly distributed
in the x–y 2D plane, and (d) 5 × 5 × 5 nanoparticles uniformly distributed the in x-y-z 3D space. (e) A comparison of the
temperature distributions caused by the photothermal conversion of single and multiple particles. The distance between
the nearest particles is 500 nm.

3.1.2. Temperature Distribution Caused by the Heat Transfer from Nanoparticles to Cells
(Micron Scale)

If nanoparticles enter the cell, we can calculate the temperature distributions of in-
dividual or more cells and their surrounding environment by Equations (3) and (4). We
consider that the nanoparticles in the cell are uniformly distributed, as shown in Figure 1b.
Figure 3a shows the temperature distribution of a single cell by using Equation (3). We find
that the temperature of the cell center is the highest, and the temperature around the center
gradually decreases, as shown by the black solid line in Figure 3b. Figure 3c,d gives the
temperature distributions of two and four cells with their surroundings. We find that the
more the cells, the higher the temperature increase, because multiple nanoparticles in cells
work together, as shown by the solid lines in Figure 3c,d. In the calculations, we strictly
consider the influence of each particle in the system on the temperature distribution using
Equation (4). To simplify the calculations, we can consider the cell as a whole and calculate
the temperature distributions using Equation (5). The results calculated by Equation (5) are
shown by the red dotted lines in Figure 3b–d. We find that the temperature distributions
outside cells obtained by Equations (4) and (5) are almost consistent, but the temperature
distribution inside cells obtained by Equation (5) is obviously lower than that of Equa-
tion (4). When we analyze the temperature distributions of the tumor and the surrounding
environment, we focus on the temperature outside the cells. In addition, there are a large
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number of cells inside the tumor, so the amount of computation is very large if calculated
by Equation (4).

Figure 3. (a) The 2D temperature distributions caused by the heat transfer from nanoparticles to
a single cell obtained by Equation (2) with laser intensity I = 15 W/cm2. (b) The 1D temperature
distribution along the x axis in (a). The 1D temperature distributions in the case of two cells and
four cells are shown in (c) and (d). the red dotted lines in (b–d) represent the calculated results using
simplified formulas (Equation (5)).

3.1.3. Temperature Distribution of the Tissue and the Surrounding Environment
(Millimeter Scale)

For millimeter scale, we analyze the temperature distribution of a tumor and the
surrounding environment. Figure 1c shows a tissue with a cylindrical shape where both
radius and depth are 2 mm (RT = 2 mm, z = 2 mm). For the millimeter-scale tumor,
the light intensity changes dramatically with depth. In this case, we should consider the
variation of light intensity with depth, which can be calculated according to Beer’s law
(Equation (7)). In our calculations, the absorption and scattering efficiency factor for a single
nanoparticle are 3.4 and 0.27, respectively, calculated by means of Mie theory (Qa= 3.4,
Q′s = 0.27) [22,23]. The absorption coefficient and reduced scattering coefficient of the tissue
are 32.26/cm and 1.3/cm (µa,m = 32.26/cm, µ′s,m = 1.3/cm), respectively [28]. Figure 4
shows the temperature distributions under different volume fractions of Au SNP and light
intensity according to Equation (6) in the case of full-coverage light (RL ≥ RT). Figure 4a
shows the temperature distribution in the case of fv = 5.6 × 10−6 and I = 10 W/cm2. We
can see that the isotherm through point B is above point C, which means that the bottom
of the tumor cannot be completely damaged when we do not want to damage healthy
tissue. On the other hand, from the isotherm through point D, we can see that it will cause
overheating of healthy tissue (see the area indicated by the red arrow) if we want to kill the
whole tumor tissue. Therefore, there is a contradiction between improving the therapeutic
effect and avoiding overheating of healthy tissue. For the ideal treatment, we hope that
the temperature inside the tumor is relatively uniform; that is, the temperature at point B
should be close to that at points C and D.
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Figure 4. The temperature distributions of tissue and the surrounding environment under different laser intensities and
SNP volume fractions. Both tumor depth and radius are 2 mm (RT = 2 mm, z = 2 mm). The tumor tissue is in the dotted
frame, and healthy tissue is outside of the frame. In (a), the white solid line is isotherm through point B, and the green
solid line is isotherm through point D. Time t is the minimum time required to make tissue undergo permanent damage
at the isotherm temperature. The laser intensities and SNP volume fractions in (a–i) are shown on the top and left of the
figure, respectively.

The reason that the isotherm through point B is above point C is mainly the attenuation
of light intensity with depth. We can reduce the volume fraction of particles to weaken the
attenuation of light intensity. From Figure 4a,d,g, the lowest point of the isotherm moves
down as the volume fraction decreases. We can see that the smaller the volume fraction,
the more uniform the temperature distribution, but the temperature decreases at the same
time. The results are in agreement with the results calculated by Ren et al. [11]. However,
lower temperature means an increase in the treatment time required for irreversible tissue
damage. The therapy time can be calculated by the Arrhenius equation [24]. In the figures,
the time, t, is the minimum time required for irreversible tissue damage. In Figure 4d,g, the
treatment times become very long (about 103–105 s) due to the decrease in the nanoparticle
volume fraction. We can increase the temperature by increasing the light intensity. By
comparing Figure 4a–c, we find that the temperature increases with an increase in light
intensity, but the effect of light intensity on the temperature distribution is not obvious.
In other words, the position of the isotherm hardly changes with the increase in light
intensity. We find that the temperature distribution can be controlled by adjusting the
volume fraction, but the temperature distribution is still not ideal. The temperatures at
points C and D are still less than that at point B even if the volume fraction is very low.

3.2. Influence of Irradiation Shape on Temperature Distribution

We know that the temperature at point C is always lower than that at point B from
Figure 4. To obtain a better treatment effect, we expect the temperature at point C to be
close to that at point B. To investigate whether changing the irradiation shape has a better
therapeutic effect, we discuss the effect of irradiation shape on temperature distribution.

3.2.1. Irradiation of Spot Light with a Smaller Radius Than Tissue Radius (RL < RT)

The method of irradiation of spot light with a smaller radius can concentrate light
energy in the middle of the tissue, and then the temperature on the side will decrease,
which can make the temperature at point B and point C closer. The laser irradiation shape
is shown in Figure 5a. Figure 5c shows the temperature distribution with RL= 1.2 mm.
We find that the temperatures of points B and C are very close, which indicates that the
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temperature distribution is better than that under irradiation with full-coverage light
in Figure 5b. However, the irradiation radius cannot be made too small, because the
temperature at the bottom will exceed that at the side when the radius is too small, as
shown in Figure 5d. The results are in good agreement with those of Ren et al. [11], who
discovered this irradiation strategy. In addition, although the use of irradiation of spot
light with a smaller radius can bring about a better temperature distribution, it causes
the temperature to decrease (the time required for treatment becomes large). In this case,
we can increase the temperature by increasing the light intensity while the temperature
distribution hardly changes, as shown in Figure 5e.

(i)

Figure 5. (a) Schematic of irradiation of a single spot light with a smaller radius than tissue radius
(RL < RT). (b–d) The temperature distributions of a tumor and the surroundings irradiated with
I = 15 W/cm2 and under different irradiation radii for z/RT = 1 (RT = 2 mm, z = 2 mm). (e)
The temperature distribution in case of RL = 1.2 mm and I = 30 W/cm2. (f–i) The temperature
distributions with I = 15 W/cm2 and under different irradiation radii in the case of z/RT = 0.5
(RT = 2 mm, z = 1 mm). The volume fraction is 5.6 × 10−6 (fv = 5.6 × 10−6).

Although irradiation of spot light with a smaller radius can improve the therapeutic
effect, it may not be good for tumor tissues with a small aspect ratio. We changed the
geometry of the tissue to RT = 2 mm and z = 1 mm. For the tumor with a small aspect
ratio, the temperature at point C is higher than that at point B under irradiation with full-
coverage light, as shown in Figure 5f. If the irradiation radius is reduced, the temperature
difference between points B and C becomes larger, as shown in Figure 5g–i. Therefore,
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reducing the light radius is not useful for improving the temperature distributions of
tumors with a small tumor aspect ratio.

3.2.2. Irradiation with Ring Light

For tumors with a small aspect ratio, we find that the temperature distributions under
irradiation with full-coverage light and irradiation with spot light with a smaller radius
are not good because the temperature at the side (point B) is lower than that at the bottom
(point C), as shown in Figure 5f–i. To reduce the temperature difference between points B
and C, the light should be close to the edge properly. When we use ring light to irradiate
the tumor, we can make the light close to the edge of the tissue by adjusting the position
of the ring light. Figure 6a shows the laser irradiation strategy of ring light. We find that
better temperature distributions can be obtained by using ring light for a tumor with a
small aspect ratio, as shown in Figure 6b–d. This method is also effective for a tumor with
a large aspect ratio, as shown in Figure 6f–h. However, the temperature of the tissue under
irradiation with ring light is small; we can increase the temperature without affecting the
temperature distributions by increasing the light intensity, as shown in Figure 6e,i. When
we change the width of the ring light to obtain the optimal temperature distribution, we
find that the regulation of ring light is difficult, because the temperature distribution is
sensitive to the inner and outer radius of the ring light. The temperature distributions vary
greatly when the changes in L1 and L2 are small, as shown in Figure 6j–m.

Figure 6. (a) Schematic of irradiation with ring light. (b–d) The temperature distributions of a tumor
and the surroundings with I = 15 W/cm2 and under different irradiation inner radius L1 and outer
radius L2 in the case of z/RT = 0.5 (RT = 2 mm, z = 1 mm). (e) The temperature distribution in the
case of L1 = 1.17 mm and L2 = 1.77 mm with I = 30 W/cm2. (f–h,j–m) The temperature distribution
of a tumor and the surroundings with I = 15 W/cm2 and different irradiation inner radius L1 and
outer radius L2 in the case of z/RT = 1 (RT = 2 mm, z = 2 mm). (i) The temperature distribution in
the case of L1 = 0.17 mm and L2 = 1.17 mm with I = 30 W/cm2.



Materials 2021, 14, 2407 11 of 17

3.2.3. Irradiation with Spot Array Light

Although the temperature distribution can be improved by illuminating with ring
light, it is difficult to find the optimal shape of the ring because the temperature distribution
is sensitive to the position of the ring. To make the irradiation conditions of the optimal
temperature distribution easier to regulate, we propose to use irradiation with spot array
light, as shown in Figure 7.

Figure 7. Schematic of spot array light irradiation. P1 and P2 are the positions of the inner spot and
outer spot. In our calculations, the numbers of the inner spot light and the outer spot light are both
eight, and the radius of the spot, RC is equal to 0.15 mm.

Figure 8a shows the temperature distribution in the case of P1 = 0.4 mm and
P2 = 1.0 mm, where P1 and P2 represent the positions of the spots in the inner and outer
rings, respectively. We find that the irradiation with spot array light can bring about
better temperature distributions. Further, we find that the temperature distributions hardly
change when the P1 and P2 change in a small range, as shown in Figure 8b–e. The results
indicate that this method is easier to bring about a better temperature distribution than
irradiation with ring light. When the temperature is low, we can increase the light intensity
to raise the temperature without changing the temperature distribution. Figure 8f shows
the temperature distribution after increasing the light intensity.

Figure 8. (a–e) The temperature distributions of a tumor and the surroundings with I = 15 W/cm2

and the different positions of the inner spot P1 and the outer spot P2 in the case of tumor aspect ratio
z/RT = 1 (RT = 2 mm, z = 2 mm). (f) The temperature distribution in the case of P1 = 0.4 mm and
P2 = 1.0 mm with I = 90 W/cm2.
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For tumors with small aspect ratios, a better temperature distribution can also be
obtained under irradiation with spot array light. Figure 9a,b shows the temperature
distributions of a tumor and the surroundings with different combinations of P1 and P2.
We see that the temperature distribution is also ideal. In addition, we can increase the light
intensity to raise the temperature without changing the temperature distribution, as shown
in Figure 9c.

Figure 9. (a,b) The temperature distributions of a tumor and the surroundings with I = 15 × 104 W/cm2 and different
positions of the inner spot P1 and the outer spot P2 in the case of tumor aspect ratio z/RT = 0.5 (RT = 2 mm, z = 1 mm). (c)
The temperature distribution in the case of P1 = 1.1 mm and P2 = 1.7 mm with I = 90 W/cm2.

3.3. Influence of Nanoparticle Size and Morphology on Temperature Distribution

The size of nanoparticles also affects the therapeutic effect. To fully optimize the pho-
tothermal therapy, we discuss the effects of nanoparticle size on temperature distribution.

When the nanoparticle radius RNP is selected as 50 nm, the temperature distributions
in the case of a tumor with a large aspect ratio (z/RT= 1, RT = 2 mm, z = 2 mm) is shown
in Figure 10b. We find that the bottom (point C) becomes lower than that at the side (point
B), which means that the temperature distribution of tissue with RNP= 50nm is not as
good as that with RNP= 20 nm in Figure 10a (all the parameters except nanoparticle radius
in the calculations for (a) and (b) are the same). This is because the volume fraction of the
particle with RNP= 50 nm is larger than that with RNP= 20 nm when the distance between
the particles is the same, so that the light intensity attenuates more strongly with depth.
In addition, we find that the temperature of tissue with RNP= 50 nm is higher than that
with RNP= 20 nm. This is because the larger the radius of the particles, the more the light
energy absorbed by the particles when the particle radius is below 50 nm in the case of
same number of particles. To improve the temperature distribution, we can change the
positions of the spots of light in Figure 7. Since the temperature at the bottom (point C)
is lower than that at the side (point B) in Figure 10b, the positions of the spots (P1 and P2)
should be appropriately moved inward to concentrate the light energy in the middle of the
tissue, as shown in Figure 10c. Although moving the positions of the spots can improve the
temperature distribution, the temperature is still much higher than the temperature with
RNP= 20 nm. We can reduce the temperature by reducing the light intensity, as shown in
Figure 10d. In addition, a good temperature distribution can also be obtained by reducing
the volume fraction, i.e., increasing the distance between the particles, d1, as shown in
Figure 10e. We find that reducing the volume fraction properly can not only improve the
temperature distribution but also reduce the temperature. This is because a smaller volume
fraction means a decrease in the number of particles.
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Figure 10. The temperature distributions of a tumor with (a–e) a large aspect ratio, z/RT = 1 (RT = 2 mm, z = 2 mm), and
(h–j) a small aspect ratio, z/RT = 0.5 (RT = 2 mm, z = 1 mm). The radius of the nanoparticles is 20 nm in (a) and 50 nm in
(b), and the other parameters used in the calculations in (a) and (b) are the same. To improve the temperature distribution
in (b), we can change P1 and P2 in (c). We can reduce the temperature by reducing the light intensity in (d). We can also
improve the temperature distribution by changing the distance between the particles in (e). Similar results can be obtained
in the case of small aspect ratios in (f–j).

For tumors with small aspect ratios (z/RT= 0.5, RT = 2 mm, z = 1 mm), we can get a
conclusion similar to that of tumors with large aspect ratios. We find that the temperature
distribution of tissue with RNP= 50 nm is also not as good as that with RNP= 20 nm, as
shown in Figure 10f,g. We can also improve the temperature distribution by moving the
positions of the spots and reduce the temperature by reducing the light intensity, as shown
in Figure 10h,i. In addition, the temperature distribution can be improved by reducing the
volume fraction properly, as shown in Figure 10j.

Besides the size of nanoparticles, the morphology of nanoparticles is also an important
factor affecting the therapeutic effect. Besides spherical gold nanoparticles, nanorods are
also commonly applied in photothermal therapy [2,5,21]. The temperature distribution in
the case of nanorods can be studied using the presented model, in which the resonance
peak and optical parameters (absorption and scattering coefficients) differ from spherical
nanoparticles. If we determine the absorption peak and optical parameters of the nanorods,
our model can be used to analyze the temperature distribution in the case of nanorods.
However, there are two absorbance peaks in gold nanorods, one correlated with the shorter
transverse axis around 520 nm and one with the longer longitudinal axis. The longitudinal
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peak is more sensitive to aspect ratio (length/width), and the longitudinal peak shifts
from 640 to 850 nm when the aspect ratio is increased from 1.1 to 4.4 [5]. In calculations,
the longitudinal peak is usually chosen as the illumination wavelength, because this
wavelength is larger and the skin penetration depth is deeper. Based on our model, we
infer that the results in the case of nanorods should be similar to the results in the case
of nanospheres.

3.4. Influence of Irradiation Shape on Overheating

From the above results, we can see that overheating of healthy tissues is inevitable
when illuminated with different irradiation shapes, especially the area above the top of the
tumor. In the case of tumor tissue with a small aspect ratio, overheating is more obvious.

Figure 11a shows the temperature distribution along the x–z plane (y = 0) under
irradiation with full-coverage light. We define healthy tissue over 52 ◦C as overheating.
We find the overheating of healthy tissue at the top and bottom of tumor. Figure 11b
shows the temperature distribution under irradiation with ring light. We find that the
overheating of healthy tissue at the bottom of tumor can be avoided and the overheating
of the top of the tumor can be reduced under irradiation with ring light. Figure 11c
shows the temperature distribution under irradiation with spot array light. We find that
the overheating at the bottom of the tumor can be avoided, but overheating at the top
still exists. To compare the overheating at top of tumor, we calculated the temperature
distribution at the x–y, z = 0.5 mm plane under irradiation with three shapes, as shown in
Figure 10d–f. We find that the overheating at the top of the tumor under irradiation with
ring light is much smaller than that under irradiation with full-coverage light. In addition,
we also find that the overheating of healthy tissue at the top of the tumor can be further
reduced under irradiation with spot array light. This is because the spot array light makes
the light region more dispersed on the top of the tumor.

Noticeably, during the process of illumination, nanoparticles not only absorb light, but
also scatter light. The light scattered by the nanoparticles not only leads to the attenuation of
light with depth, but also causes interference between scattered light or between scattered
light and incident light, which further affects the absorption of light by particles. In our
model, we considered that the light scattered by nanoparticles leads to the attenuation of
light with depth. When we use Bill’s law (seen in Equation (7)) to calculate the attenuation
of light, the scattering coefficient is one of the most important parameters. However, we
ignore the influence of scattered light and interference caused by the scattered light on the
absorption of light by particles. This influence should be relatively small. In our model,
the absorption coefficient is much larger than the scattering coefficient (µa = 39.5/cm,
µ′s = 1.9/cm), so we consider that the effect of scattering on absorption is relatively small.
Because the process of scattering and interference is very complex and difficult to be
expressed quantitatively, we do not consider the influence of scattering and interference in
our model in order to simplify our model. Similar considerations have also been adopted
in the literature [9,16], and they yielded results that match the experiments [11,18].
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Figure 11. Temperature distributions of tumor tissue at the x–z plane and y = 0 irradiated by different
irradiation shapes: (a) full-coverage light, (b) ring light, and (c) spot array light. Temperature
distribution of tumor tissue at the x–y, z = 0.5 mm plane irradiated by different irradiation shapes:
(d) full-coverage light, (e) ring light, and (f) spot array light.

4. Conclusions

In this paper, we develop a computational method based on the heat conduction
equation to analyze the temperature distribution during photothermal therapy at three
levels (nanoscale, micron scale, millimeter scale). We simply analyze or study the effect
of volume fraction, light intensity, and irradiation shape on the therapeutic effect by this
method. We find that it is difficult to achieve a good therapeutic effect by adjusting the
volume fraction of nanoparticles. Furthermore, we improve the therapeutic effect by
changing the shape of light. We arrive at some important conclusions.

(1) For tumors with large aspect ratios, reducing the irradiation radius and using ring
light are beneficial to the temperature distribution. However, for tumors with small
aspect ratios, reducing the irradiation radius cannot get a better temperature distribu-
tion, but using ring light can still get a better temperature distribution.

(2) Whether for tumor tissues with a large aspect ratio or small, the method of irradiation
with spot array light can achieve a good therapeutic effect. More importantly, this
method is easier to regulate for obtaining an ideal temperature distribution than
irradiation with ring light.
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(3) The smaller nanoparticle radius means better temperature distribution of the tumor. If
the nanoparticles are large, we can improve the temperature distribution by increasing
the distance between particles or changing the position of illumination.

(4) Overheating under different irradiation shapes is inevitable. The method of irradia-
tion with spot array light can further reduce the overheating at the bottom and the
top of a tumor compared to full-coverage light and ring light.
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