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Abstract

Background

Plasmodium falciparum histidine-rich protein 2 (HRP2)-based rapid diagnostic tests (RDTs)

are exclusively recommended for malaria diagnosis in Uganda; however, their functionality

can be affected by parasite-related factors that have not been investigated in field settings.

Methods

Using a cross-sectional design, we analysed 219 RDT-/microscopy+ and 140 RDT+/micros-

copy+ dried blood spots obtained from symptomatic children aged 2–10 years from 48 dis-

tricts in Uganda between 2017 and 2019. We aimed to investigate parasite-related factors

contributing to false RDT results by molecular characterization of parasite isolates. ArcGIS

software was used to map the geographical distribution of parasites. Statistical analysis was

performed using chi-square or Fisher’s exact tests, with P� 0.05 indicating significance.

Odds ratios (ORs) were used to assess associations, while logistic regression was per-

formed to explore possible factors associated with false RDT results.

Results

The presence of parasite DNA was confirmed in 92.5% (332/359) of the blood samples. The

levels of agreement between the HRP2 RDT and PCR assay results in the (RDT+/micros-

copy+) and (RDT-/microscopy+) sample subsets were 97.8% (137/140) and 10.9% (24/

219), respectively. Factors associated with false-negative RDT results in the (RDT-/
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microscopy+) samples were parasite density (<1,000/μl), pfhrp2/3 gene deletion and non-P.

falciparum species (aOR 2.65, 95% CI: 1.62–4.38, P = 0.001; aOR 4.4, 95% CI 1.72–13.66,

P = 0.004; and aOR 18.65, 95% CI: 5.3–38.7, P = 0.001, respectively). Overall, gene dele-

tion and non-P. falciparum species contributed to 12.3% (24/195) and 19.0% (37/195) of

false-negative RDT results, respectively. Of the false-negative RDTs results, 80.0% (156/

195) were from subjects with low-density infections (< 25 parasites per 200 WBCs or

<1,000/μl).

Conclusion

This is the first evaluation and report of the contributions of pfhrp2/3 gene deletion, non-P.

falciparum species, and low-density infections to false-negative RDT results under field con-

ditions in Uganda. In view of these findings, the use of HRP2 RDTs should be reconsidered;

possibly, switching to combination RDTs that target alternative antigens, particularly in

affected areas, may be beneficial. Future evaluations should consider larger and more

representative surveys covering other regions of Uganda.

Background

In 2019, the World Health Organization (WHO) estimated that there were 229 million cases

of and 409,000 deaths due to malaria globally. The WHO African region accounts for a dispro-

portionately high share of the global burden (94% of malaria cases in 2019 alone) [1,2]. Nearly

all malaria cases in the WHO African region are caused by Plasmodium falciparum. Uganda is

ranked among the top six countries with the highest malaria burdens [1–3]. Malaria remains a

major public health problem in Uganda, with 16 million cases annually, accounting for 30% of

outpatient visits to health facilities (HF), 14–20% of hospital admissions and 8–10% of inpa-

tient deaths [4–6]. Although the epidemiology of malaria varies, it is endemic throughout the

whole country, and transmission occurs year-round. P. falciparum accounts for >95% of

malaria infections in Uganda [6–11]. Efforts to reduce the burden of malaria have included the

use of long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS) of insecticides,

intermittent preventive therapy (IPT) and diagnosis and treatment of cases [10,12].

Case management that involves testing and treatment is a major intervention for malaria

control in Uganda. The WHO recommends parasitological confirmation of malaria in all

suspected malaria cases prior to the administration of antimalarial treatment [13]. Uganda

adopted the policy shift from a clinical to parasite-based diagnosis with microscopy or rapid

diagnostic tests (RDTs) in 2011 [10]. Blood smear microscopy is the gold standard for malaria

diagnosis because it is inexpensive to perform and is able to differentiate malaria species and

quantify parasites. However, microscopy requires well-trained, competent microscopists and

functional infrastructure as well as effective quality control (QC) and quality assurance (QA)

systems. RDTs utilise monoclonal antibodies that are impregnated on a test strip and directed

against the target parasite antigen to detect malaria antigens in a small amount of blood. RDTs

are increasingly favoured for malaria diagnostic confirmation because they require no capital

investment or electricity, are simple to perform and are easy to interpret [10]. Due to the pre-

dominance of P. falciparum which accounts for>95%, the country’s malaria diagnosis policy

recommends the use of HRP2 antigen-based RDTs as the most effective type of RDT [10,11].

Since the introduction of RDTs in the late 2000s, over 900 million RDTs have been used for
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malaria testing in Uganda, all of which were HRP2-based and targeted P. falciparum. As a

result, HRP2-specific RDTs currently account for >80% of the total malaria tests in Uganda

[6,10]. However, with the changing epidemiology of malaria as countries advance towards

elimination, highly sensitive diagnostic tools that detect low-density parasite infections and

sub-patent infections will be required. Currently, only nucleic acid amplification tests

(NAATs) are sufficiently sensitive to detect these low-density infections. However, this method

is limited to well-equipped laboratory settings due to its inherent complexity and need for lab-

oratory equipment [14,15].

Malaria RDTs are known to capture at least three target antigens: lactate dehydrogenase

(LDH), Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and pan-plasmodial aldol-

ase. HRP2 RDTs are the most sensitive for parasite detection and are heat-stable under field

conditions compared to the other antigen tests [16,17]. However, HRP2 RDTs have limita-

tions, as their performance has been shown to be affected by product quality and parasite-

related factors such as pfhrp2/3 gene deletion, non-P. falciparum species and prozone effects

that lead to false-negative RDTs [18–23]. The presence of pfhrp2 and pfhrp3 gene deletions in

P. falciparum parasite populations has been reported in Uganda [24,25] and other malaria

endemic countries in sub-Saharan Africa [18,19,21,26–31]. Additionally, there is an increasing

prevalence of non-P. falciparum species in Uganda [5,11]. P. falciparum parasites that lack the

pfhrp2/3 genes and non-P. falciparum species are not detected by HRP2 RDTs and may con-

tribute to false-negative RDT results, leading to a reduction in the effectiveness of these tests

[19,21,32,33]. Evidence of the possible contributions of parasite gene deletions, non-P. falcipa-
rum species and low-density infections to false-negative HRP2 RDT results in Uganda is lim-

ited. As Uganda advances towards malaria elimination, it is important to ensure that all

malaria infections are detected by effective diagnostic tools and treated promptly to enhance

case management and surveillance-based interventions. In this study, we assessed the possible

factors contributing to false-negative HRP2-based RDTs in blood samples collected from 48

districts in Uganda.

Methods

Study design and setting

This was a cross-sectional study that analysed dried blood spots collected during previous

malaria surveys of symptomatic individuals in 48 districts of Uganda between 2017 and 2019

[34–36]. The surveys were designed to evaluate the effect of different types of LLINs on para-

site prevalence, covering nearly half of the country and a wide range of epidemiological set-

tings [35,36]. Malaria is endemic in 95% of the country, and transmission occurs throughout

the year, with two peak transmission seasons in June—July and November—December [35–

37]. The parasite surveys were conducted at 6-month intervals that coincided with the two

peak transmission seasons.

Study population, participant selection and data collection

Details of sampling, participant selection and enrolment in the previous malaria surveys in

which the DBS were obtained have been described and published elsewhere [35,36]. In brief, a

total of 104 clusters (health sub-districts) across 48 districts were selected and randomized to

receive different LLINs. Fifty (n = 50) households were randomly selected from each cluster to

participate in the study. In the selected households, children aged 2–10 years were assessed

for the presence of fever (based on an axillary temperature of>37.5˚C) before enrolment.

Enrolled children were tested for malaria using HRP2 RDTs, and diagnosis was confirmed

by microscopy [35,36]. Additionally, dried blood spots (DBS) were collected and stored for
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molecular testing of parasites. Written consent was obtained from the parents/guardians of the

children, and assent was obtained from the children aged 8 years and above prior to com-

mencement of the study procedures. This study utilised the data and DBS collected during

malaria surveys. A GIS map of sites where the DBS samples were collected is indicated in Fig 1.

Selection of dried blood spots

A total of 7,276 symptomatic participants were tested for malaria in previous surveys using

HRP2 RDTs and blood smear microscopy, of whom 2,058 (28.3%) had positive blood smears

Fig 1. Geographical distribution of DBS samples across the study areas. The red dots represent the DBS samples.

https://doi.org/10.1371/journal.pone.0244457.g001
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according to microscopy. In addition, DBS were collected for all samples. Of the 2,058 positive

samples, 10.8% (222/2058) had a negative HRP2 RDT despite a positive blood smear (RDT-/

microscopy+). Out of these 222 samples, three (3) samples were excluded due to contamina-

tion, leaving 219 for final analysis. In this study, we conducted molecular analyses for all 219

(RDT-/microscopy+) samples and a randomly selected subset of (RDT+/microscopy+) sam-

ples. In brief, from a list of all 1,836 (RDT+/microscopy+) samples, simple random sampling

was used to select 140 DBS for molecular analysis. PCR was performed on all the selected sam-

ples to confirm the presence of parasite DNA and species determination. Details of the sample

selection procedure are indicated in the study profile (Fig 2).

Laboratory analysis

Rapid diagnostic tests (RDTs). The HRP2 RDT results were available in the previous

malaria survey database. During the surveys, HRP2-based P. falciparum-specific RDTs (SD

Bioline Malaria Ag Pf 05FK120; Standard Diagnostics, Gyeonhhi-do, South Korea) were used

to test for malaria in febrile patients with a history of fever (based on an axillary temperature

of>37.5˚C). The test is designed to detect only P. falciparum infections. RDTs were performed

according to the manufacturer’s instructions.

Blood smear microscopy. All blood smear microscopy results were obtained from the

previous survey database. In brief, blood smears were stained with 2% Giemsa for 30 minutes.

Fig 2. Study profile. Shows how the (RDT-/microscopy+) and (RDT+/microscopy+) DBS samples were selected. (RDT-/microscopy+) means samples that were

RDT negative but microscopy positive for malaria while (RDT+/microscopy+) are samples that were positive on both RDTs and microscopy.

https://doi.org/10.1371/journal.pone.0244457.g002
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Each blood smear slide was read independently by two competent (level 1 WHO certified

reader) laboratory scientists. The slide readers were blinded to each other’s results and were

not aware of participants’ RDT results. Thick blood smears were evaluated for the presence of

parasites (asexual forms) and gametocytes following the standard WHO methodology [38].

Parasitaemia was determined by counting the number of parasites per 200 or 500 WBCs for

low-density infections on thick smears (assuming a standard of 8,000 WBCs per μl in accor-

dance with WHO methods) [38]. Smears were considered negative if no parasites were

observed in 200 oil-immersion fields (1000X) in a thick blood film. For quality assurance pur-

poses, 20% of blood smears were retrieved and crosschecked for the presence of parasites.

Parasite DNA extraction. The dried blood spots (DBS) were shipped to the Australian

Defence Forces Malaria and Infectious Disease Institute (ADFMIDI) Brisbane, Queensland,

Australia, where all molecular testing was conducted. Details of DNA extraction by QIAamp

DNA Mini Kits (QIAGEN, Crawley, UK) and the QIAcube robotic platform (QIAGEN, Craw-

ley, UK) have been described and published elsewhere [21,25,32,33,39,40]. In brief, from each

DBS sample, three discs of dried blood were punched into 1.5 mL microfuge tubes. DNA was

extracted using QIAamp DNA Mini Kits and the QIAcube robotic platform (QIAGEN, Craw-

ley, UK) according to the manufacturer’s instructions. Samples were eluted to a volume of

100 μL with AE buffer. P. falciparum positive control DBS spots were processed and run along-

side the samples.

Confirmation of parasite DNA and Plasmodium speciation. The detailed procedure for

the controls, primers and PCR conditions used for amplification, speciation and detection of

parasite DNA has been widely described and published elsewhere [21,25,32,33,39,40]. In brief,

different Plasmodium species in the blood samples were confirmed by amplification of the 18S
ribosomal RNA (18S rRNA) gene using multiplex PCR. The primer sequences used for PCR

amplification of the different species are indicated in S1 Table. The presence of P. falciparum
infection was further confirmed by P. falciparum-specific PCR and amplification of the MSP1

and MSP2 single-copy genes. Gel electrophoresis using 2% agarose was used to confirm the

presence of bands.

Amplification of pfhrp2 and pfhrp3 genes. The detailed procedure, primers used and

PCR conditions used for amplification and detection of the pfhrp2 and pfhrp3 genes are well

described and published elsewhere [21,25,32,33,41]. In brief, all samples that were confirmed

as P. falciparum-positive and in which Merozoite Surface Protein 1 (MSP1) and Merozoite Sur-
face Protein 2 (MSP2) genes were detected, the exon 1 and exon 2 of the pfhrp2 and pfhrp3
genes were amplified to investigate the presence or absence of the pfhrp2 and pfhrp3 genes.

The primer sequences used for the amplification of pfhrp2 and pfhrp3 exon 1 and exon 2 are

indicated in the supplemental data (Table 2). PCR controls using laboratory lines DD2, 3BD5,

HB3 and 3D7 with known pfhrp2/3 status and human negative controls were included in each

PCR run. PCR runs were considered valid only if all controls were amplified and resulted in

bands of expected sizes on gel electrophoresis. In all cases, samples were considered gene-

deleted if they were positive for P. falciparum DNA on PCR and the presence of the MSP1 and

MSP2 single-copy genes were confirmed but exon 1 or exon 2 of the pfhrp2 or pfhrp3 genes

failed to amplify despite amplification in assay controls.

Quality control. As part of quality control, blood smear microscopy was performed in a

blinded manner by level 1 WHO-certified microscopists. In addition, a random sample of 20%

of the slides was re-read by two level one WHO-certified microscopists. A third level 1 expert

resolved any discrepancies (difference in parasite counts between two microscopy readings

>20%). All three slide readers were independent of the process and from an external labora-

tory. The research laboratory in Australia, where molecular analysis of the samples was per-

formed, is a WHO collaborating centre for malaria, a member of the WHO pfhrp2 and pfhrp3
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gene deletion detection laboratory network and participates in the WHO NAAT external qual-

ity assurance programme.

Ethical approval. The study was approved by the Makerere University School of Medi-

cine Research Ethics Committee (#REC REF 2017–111), the Uganda National Council of Sci-

ence and Technology (Ref No: HS271ES), and the Australian Department of Defence and

Veterans’ Affairs Human Research Ethics Committee (DDVA HREC 096–18). In the primary

surveys in which the samples were collected, participants were enrolled after providing written

informed consent. Only samples from participants who provided consent for future use of bio-

logical samples were selected for this analysis.

Data management and statistical analysis. As part of data management, demographics

and predictor variables linked to the blood samples were extracted from the previous survey

database. All data were entered and managed in Excel before they were exported to STATA

for analysis. Data quality checks were performed to check for and correct any inconsistencies

using pivot tables in Excel. ArcGIS software version 10.8 (Environmental Systems Research

Institute (Esri), California U.S.) was used to map the sites where the DBS were collected and

where the different parasite species occurred. Data analysis was performed with STATA ver-

sion 14 (StataCorp LP, College Station, TX). Statistical testing was performed with chi-square

or Fisher’s exact tests, with P� 0.05 indicating significance. The odds ratio was used to evalu-

ate the association, while logistic regression analysis was performed to explore the factors asso-

ciated with false RDT results.

Results

Baseline characteristic of the samples

In this study, we conducted molecular analysis of 359 DBS samples that were collected from

symptomatic individuals in previous malaria surveys to investigate parasite-related factors

contributing to false-negative HRP2 RDTs in Uganda. Overall, 92.5% of the samples (332/359)

contained parasite DNA confirmed by PCR. The majority of the DBS samples came from par-

ticipants who were aged�5 years (58.8%), male (50.7%) and mostly from the eastern region of

Uganda (51.3%). Most had a parasite density�1,000/μl (59.6%). P. falciparum was the most

predominant species (83.5%), followed by P. malariae (6.4%) and P. ovale (1.9%). Molecular

characterization by pfhrp2/3-specific PCR showed that 24 isolates in the (RDT-/microscopy+)

subset and 5 in the (RDT+/microscopy+) subset were infected with parasites with pfhrp2 and

pfhrp3 gene deletions. The 24 gene-deleted isolates in the RDT-/microscopy+ subset included

9 isolates with pfhrp2 single deletions (pfhrp2-), 5 isolates with pfhrp3 single deletions (pfhrp3-

) and 10 isolates with pfhrp2/3 double deletions (pfhrp2-/pfhrp3-). The detailed characteristics

of the samples are indicated in Table 1.

Based on multiplex PCR, all the four Plasmodium parasite species (P. falciparum, P. malar-
iae, P. ovale and P. vivax) were encountered in the samples. Using GIS, the different parasite

species and gene deleted isolates observed in the samples were mapped to determine their dis-

tribution pattern. Overall, the non-P. falciparum species were distributed across both regions

(Fig 3a); however, P. falciparum was the most prevalent species (Fig 3b).

Summary of RDT, microscopy and PCR results of the DBS samples

The levels of agreement between the HRP2 RDT and PCR results in the (RDT+/microscopy+)

and (RDT-/microscopy+) sample subsets were 97.9% (137/140) and 10.9% (24/219), respec-

tively. This observation suggests that 195 (89.0%) of 219 (RDT-/microscopy+) samples falsely

registered as negative on HRP2 RDTs (Table 2). An important observation is that out of the

195 false-negative RDT results identified, non-P. falciparum species and pfhrp2/3 gene
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deletions contributed 19.0% (37/195) and 12.3% (24/195), respectively. All 195 samples falsely

registered as negative on RDTs were from subjects with low-density infections [median (IQR);

420 (112–880)]. On the other hand, the levels of agreement between blood smear microscopy

and PCR in the (RDT+/microscopy+) and (RDT-/microscopy+) subsets were 97.9% (137/140)

and 89.0% (195/219), respectively. This suggests that 10.9% (24/219) of the (RDT-/microscopy

+) samples falsely registered as positive on blood smear microscopy. Reports of false-positive

blood smears from the field are not uncommon, particularly in resource-limited settings

where the functionality of malaria microscopy is highly compromised by inadequate infra-

structure, skills and logistics [38]. The presence of extremely low parasitaemia and non-P. fal-
ciparum infections, particularly among (RDT-/microscopy+) samples, may have posed

detection challenges to slide readers.

Table 1. Baseline characteristics of the samples.

Variable Frequency (n) Proportion (%)

Age (year)

<5 148 41.2

�5 211 58.8

Sex

Male 182 50.7

Female 177 49.3

Parasite density (μL)

<1000 145 40.4

�1000 214 59.6

Region

Eastern 184 51.3

Western 175 48.7

Endemicity

Low 249 69.4

Moderate 110 30.6

Parasitaemia (PCR)

Positive 332 92.5

Negative 27 7.5

Gene deletion

pfhrp 2/3 deletion (any) 29 8.1

No deletion 330 91.9

Parasite species

P. falciparum 300 83.5

Non-P. falciparum 39 10.9

Species composition

P. malariae 25 6.4

P. falciparum 295 82.2

P. ovale 7 1.9

P. falciparum/malariae 2 0.6

P. malariae/ovale 2 0.6

P. falciparum/vivax 2 0.6

P. falciparum/ovale 1 0.3

Frequency is the number of observations, while proportion is the percentage of those observations. <1,000 and

�1,000 indicate parasite densities of less than 1,000 and more than 1,000 parasites per microlitre of blood,

respectively. Mixed infections are samples infected with more than one Plasmodium species.

https://doi.org/10.1371/journal.pone.0244457.t001
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Fig 3. 3a and 3b: Each circle represents one parasite isolate. Black lines represent administrative boundaries.

https://doi.org/10.1371/journal.pone.0244457.g003
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Factors associated with false-negative RDTs

Additional data were obtained to assess factors possibly contributing to false-negative RDTs.

We performed two-level logistic regression analysis. First, we fit and ran a model with all the

variables, and then using backward model selection, we retained only those factors that were

significant (P<0.05) (Table 3). In the final regression model, the factors associated with false-

negative RDT results were pfhrp2/3 gene deletion, non-P. falciparum species and low parasite

density (aOR = 4.4 (95% CI: 1.7–13.7) P = 0.004; aOR = 18.7 (95% CI: 5.5–118.7) P = 0.001;

and aOR = 2.7 (95% CI: 1.6–4.4) P = 0.001, respectively) (Table 3).

Table 2. Summary of DBS results for RDTs, microscopy and PCR.

Variable PCR (RDT-/microscopy+) n = 219) PCR (RDT+/microscopy+) n = 140)

Positive Negative Positive Negative

RDT

Positive 0 (0%) 0 (0%) 137 (97.9%) 3 (2.1%)

Negative 195 (54.3%) 24 (10.9%) 0 (0%) 0 (0%)

Microscopy

Positive 195 (89.0%) 24 (10.9%) 137 (97.9%) 3 (2.1%)

Negative 0 (0%) 0 (0%) 0 (0%) 0 (0%)

(RDT-/microscopy+) are samples that were negative on the RDT but positive on blood smear microscopy, RDT+/microscopy+ are samples that were positive on both

the RDT and blood smear microscopy.

https://doi.org/10.1371/journal.pone.0244457.t002

Table 3. Factors associated with false-negative RDT results using PCR as a reference.

Variable RDT-/PCR+/False-negative Univariable Multivariable

n (%) OR (95% CI) p-value aOR (95% CI) p-value

Age (year)

�5 108 (55.7) 1 (Reference) 0.179 1 (Reference)

<5 87 (63.0) 1.36 (0.87–2.13) 1.35 (0.83–2.19) 0.224

Parasite density (μL)

�1000 105 (51.0) 1 (Reference) 1 (Reference)

<1000 90 (71.4) 2.4 (1.51–3.89) 0.001 2.65(1.62–4.38) 0.001

Gene deletion

No deletion 171 (56.4) 1 (Reference) 1 (Reference)

pfhrp 2/3 deletion 24 (82.8) 3.71 (1.49–11.23) 0.01 4.4 (1.72–13.66) 0.004

Parasite species

P. falciparum 165 (55.0) 1 (Reference) 1 (Reference)

Non-P. falciparum 37.0 (93.9) 12.76 (3.77–79.7) 0.001 18.65 (5.3–118.71) 0.001

Endemicity

Moderate 63 (61.2) 1 (Reference) 1 (Reference)

Low 132 (57.6) 1.16 (0.72–1.87) 0.547 1.19 (0.63–2.24) 0.595

Region

Western 95 (57.6) 1 (Reference) 1 (Reference)

Eastern 100 (59.9) 0.91 (0.59–1.41) 0.67 0.83 (0.45–1.5) 0.527

OR = unadjusted odds ratio, aOR = adjusted odds ratio.

https://doi.org/10.1371/journal.pone.0244457.t003
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Discussion

Summary of findings

HRP2-based RDTs are currently the most commonly used tools for malaria diagnosis in

Uganda and other parts of sub-Saharan Africa, where P. falciparum is the predominant para-

site species [1,3,10]. However, many factors can affect the effectiveness of RDTs as malaria

diagnostic tools and require periodic monitoring [18–21,31,33]. In Uganda, there are unpub-

lished field reports on and concerns about the occurrence of false-negative RDT results; how-

ever, previous investigations focused on only the products, systems and user-related factors. In

this study, we used molecular assays to assess the parasite-related factors contributing to false-

negative RDTs using 359 (RDT-/microscopy+) and (RDT+/microscopy+) DBS samples col-

lected from different malaria epidemiological settings in 48 districts in Uganda. Overall, the

presence of parasite DNA was confirmed in 195 DBS that had registered as negative on HRP2

RDTs. The low level of agreement between the HRP2 RDT and PCR results could be attributed

mainly to the reduced ability of HRP2 RDTs to detect antigens at low parasite densities and

parasites with HRP2 gene deletions and the inability to detect non-falciparum species observed

in these samples.

Low parasite densities

We investigated parasite densities in relation to false-negative RDT results. Parasite densities

were generally lowest in the RDT-/PCR+ samples. We showed that 71.4% (95% CI: 62.7–79.1)

of low-density samples were in the RDT-/PCR+ group, in which all the false-negative RDTs

occurred (p = 0.001). This correlated with the multiple logistic regression analysis that showed

that samples with low parasite densities were more likely to produce false-negative RDT results

(aOR = 2.65, 95% CI (1.62–4.38), P = 0.001). This observation can be explained by the fact that

there are inadequate or undetectable levels of HRP2 antigens available in low-parasite density

samples, as shown in other studies [42–44]. The implication of this observation is that as

Uganda advances towards malaria elimination, the burden due to extremely low parasitaemia/

a low-density and sub-microscopic parasite load is likely to increase, requiring more appropri-

ate diagnostic tools.

HRP2 deletions

When further investigated by molecular characterization, 24 out of the 195 false-negative

RDTs were blood samples infected with P. falciparum parasites that lacked the pfhrp2 (n = 9),
pfhrp3 (n = 5) or both the pfhrp2 and pfhrp3 (n = 10) genes. Importantly, all parasites with

both pfhrp2 and pfhrp3 gene deletions were identified in the RDT-/PCR+ group, in which all

the false-negative RDT results occurred. These parasites do not express HRP2/3 antigens

and thus cannot be detected by HRP2-based RDTs [20,31–33]. In this study, gene deletions

accounted for 12.3% (24/195) of the total false-negative RDT results in the (RDT-/microscopy

+) samples. However, an interesting observation in this study was the occurrence of five para-

site strains that carried gene deletions (one with pfhrp2 deletion and four with pfhrp3 deletion)

in the RDT+/PCR+ group that were originally reported as RDT+. No parasite in this group

carried the double pfhrp2/3 deletion. The occurrence of gene deletion in the RDT-/PCR+ sam-

ples suggests that gene deletion is a contributing factor to false-negative RDTs, particularly

in areas where the isolates were collected. This was consistent with the results of the logistic

regression analysis, which showed a significant relationship between gene deletion and false-

negative RDT results (aOR = 4.4, 95% CI (1.7–13.7), P = 0.004). This observation suggests that

parasite gene deletion was one of the contributing factors to false-negative RDTs in these
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samples and supports the results of previous studies that found a similar association

[18,19,21,29,32]. Gene deletions have been shown to cause false-negative RDT results in the

Amazon region, where they were first identified in clinical samples, Eritrea, Mali, Rwanda and

India [18,19,21,32,45,46]. Many studies conducted in the Amazon and Africa have indicated

that gene-deleted P. falciparum parasites lack the pfhrp2/3 genes and therefore lack the HRP2

antigen epitopes and repeat sequences that are essential for antibody binding [18,19,21,29,32].

Studies have suggested the possibility of the evolution of gene-deleted parasites by a genetic

event due to selective pressure resulting from long-term use of HRP2-based RDTs [21]. Long-

term use of HRP2 RDTs has been shown to cause selective pressure that leads to the emer-

gence, multiplication and spread of pfhrp2/3 gene-deleted parasites [21,31]. In Uganda, HRP2

RDTs were introduced into the testing programme in 2011 and have been used nationwide to

scale up parasite-based diagnosis since 2010 [10]. In Eritrea, studies suggested that clonal

expansion of pfhrp2/3-deleted parasites may have been caused by selective pressure due to

long-term use of HRP2-based RDTs. This explanation is supported by recent mathematical

modelling that showed that the exclusive use of HRP2-based RDTs exerts strong selection

pressure for pfhrp2-negative parasites in the population that can potentially spread [14,21,47].

This suggests that parasites with deleted genes are likely to be among the contributors to false-

negative HRP2 RDTs in Uganda, particularly in areas that have been mapped.

Non-P. falciparum species

We performed multiplex PCR and showed that 37 out of the 195 false-negative RDTs were

samples infected with non-P. falciparum species, Pm (n = 25), Po (n = 5) and mixed infections

(n = 7). Non-P. falciparum species do not express HRP2 protein antigen and therefore are not

detected by HRP2-based RDTs. In this study, non-P. falciparum species contributed to 19.0%

(37/195) of false-negative RDTs. The observed presence of non-P. falciparum species in these

samples is consistent with the results of a recent 2019 national malaria indicator survey that

reported an increase in non-falciparum species, particularly P. malariae and P. ovale, in

Uganda [5]. Interestingly, over 90.0% of non-P. falciparum species observed in this study

occurred in the samples that had tested negative by RDTs in the (RDT-/PCR+) group, in

which all the false negatives occurred. This corelated with the logistic regression analysis

results that showed an association between non-P. falciparum species and false-negative RDTs

(aOR = 18.7, 95% CI (5.3–118.71), P = 0.001). This observation is consistent with the results of

a number of studies elsewhere that showed the occurrence of false-negative HRP2 RDTs in

non-P. falciparum clinical samples [22]. The increase in the prevalence of non-P. falciparum
species in Uganda suggests that combination RDTs that target alternative antigens may be

more appropriate for use in case management and surveillance in these settings [48].

Other causes of false-negative HRP2 RDTs

Many factors can affect the functionality of RDTs; these factors include product design, trans-

port and storage conditions, parasite-related factors and operator-related factors [33,45,49].

Prior to this study, there was limited evidence of parasite-related factors contributing to false-

negative RDTs in real field settings in Uganda, as previous investigations focused on products

and user-related factors. Many parasite-related factors, including pfhrp2/3 gene deletion, have

not been studied on a broad scale in many parts of Africa, and evidence remains limited

[31,33]. Failure of the parasite to express the HRP2 target antigen or alteration in the HRP2

protein sequence has been shown to affect the efficacy of RDTs [50–53]. Variation in the pat-

tern and sequence of histidine repeat tandems and the number, frequency and composition of

amino acids within the HRP2 protein antigen are known to affect the efficacy of HRP2 RDTs
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[51,53]. Other known causes of false-negative RDTs include product design, transport and

storage conditions and user-related factors [33,45,49]. Many endemic countries that collabo-

rate with the WHO and manufacturers have instituted QA systems to address most of the pos-

sible causes of false RDT results related to handling and product design through centralized

RDT product testing programmes [49,54,55]. Moreover, the test used in this study was a qual-

ity-assured RDT that was WHO prequalified and had passed the WHO product testing pro-

gramme requirements [54,55]. Transportation, handling and storage records were all reviewed

and found to be satisfactory. The users who performed the tests in the field were well-trained

laboratory technicians. The above suggests that product design, handling and user-related fac-

tors were unlikely to be the major causes of the false-negative RDT results observed in these

samples.

Implication for malaria control

The study documented for the first time the contribution of non-P. falciparum species, pfhrp2/
3 gene deletions and low parasite density infections to false-negative RDT results in Uganda.

These results imply that real malaria cases are frequently missed, suggesting that HRP2 RDTs

are inappropriate for the diagnosis of malaria, particularly in affected areas. Failure of HRP2

RDTs to diagnose pfhrp2/3-deleted parasites, non-P. falciparum species and low-density infec-

tions may have implications for malaria case management and surveillance, which impacts

malaria control efforts in Uganda. In this study, blood samples were collected during malaria

surveys from symptomatic individuals who had fever. Individuals were screened with a HRP2

RDT and treated immediately with ACTs if they had a positive RDT result [35,36]. The impli-

cation of these findings is that individuals infected with gene-deleted parasites and non-falcipa-
rum species could have missed treatment due to false-negative RDT results. Untreated non-P.

falciparum species and pfhrp2/3-deleted parasites could undergo selection pressure that

favours their survival, multiplication and spread, threatening malaria control efforts

[21,31,33]. The Uganda National Malaria Control Policy recommends that treatment should

be given only to individuals with a confirmed parasite-based diagnosis [10,13]. In view of the

fact that HRP2 RDTs account for over 85% of malaria tests in Uganda [4], treatment and sur-

veillance strategies may need to consider issues related to gene deletions, non-P. falciparum
species and low-density infections to minimize the risk of false-negative RDT results, particu-

larly in areas in which the parasites have been recorded. The occurrence of false-negative

RDTs may also affect the overall user confidence in RDTs, which may prompt a switch to

presumptive treatment and clinical diagnosis, threatening malaria control gains [33].

In view of these findings and the systematic challenges limiting the functionality of micro-

scopic malaria diagnosis, particularly in remote and peripheral health facilities [38], combina-

tion RDTs that target alternative parasite antigens, such as lactate dehydrogenase (LDH) and

aldolase, are likely to be suitable alternatives. Combination RDTs that target other antigens

have been evaluated and demonstrated good performance as alternative malaria diagnostic

tools in field trials in Uganda and similar settings abroad [46,56–59]. Molecular-based meth-

ods, such as PCR and loop-mediated isothermal amplification (LAMP), could provide suitable

alternatives; however, they are expensive and may not be feasible for use in routine surveillance

and patient care [39,40,60]. As Uganda advances towards malaria elimination, false-negative

RDT results due to low-parasite density infections will be a potential threat [61,62]. Efforts to

address low-parasite density infections should consider the deployment of highly sensitive

diagnostic tools, including nucleic acid amplification-based tests [61,63–68]. However, the

current WHO guidance does not recommend the use of ultrasensitive RDTs for routine diag-

nosis until additional evidence becomes available [67].
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Limitations of the study

Our study was limited by the fact that the P. falciparum isolates and the DBS samples were

obtained from two regions in Uganda, meaning that the status and risk of false-negative RDT

results in other regions is unknown. We recommend that future studies consider sampling

from a broader area to achieve national representation. We recognize that there are other fac-

tors that may contribute to false-negative RDTs that were outside the scope of this study,

including variation in the composition of the pfhrp2 repeat sequence, number of repeat types

and amino acid composition of the HRP2 protein antigen [50,51,53]. However, the other pos-

sible contributors and causes of false-negative HRP2 RDTs are well studied and published

[18–21,31,33,53].

Conclusion

This was the first wide-scale investigation to analyse the contribution of low-parasite density

infections, pfhrp2/3 gene deletions and non-P. falciparum species to false-negative RDT results

in real field settings in Uganda. In view of these findings, the use of HRP2 RDTs for malaria

case management and surveillance may need to be reconsidered; a switch to combination

RDTs that target alternative antigens, particularly in affected areas, may be necessary. Future

evaluations of false-negative HRP2 RDT results should include larger and more representative

surveys covering other regions of Uganda.
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