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Abstract: In large bowel investigations using endoscopic capsules and upon detection of significant
findings, physicians require the location of those findings for a follow-up therapeutic colonoscopy.
To cater to this need, we propose a model based on tracking feature points in consecutive frames of
videos retrieved from colon capsule endoscopy investigations. By locally approximating the colon as
a cylinder, we obtained both the displacement and the orientation of the capsule using geometrical
assumptions and by setting priors on both physical properties of the intestine and the image sample
frequency of the endoscopic capsule. Our proposed model tracks a colon capsule endoscope through
the large intestine for different prior selections. A discussion on validating the findings in terms
of intra and inter capsule and expert panel validation is provided. The performance of the model
is evaluated based on the average difference in multiple reconstructed capsule’s paths through
the large intestine. The path difference averaged over all videos was as low as 4± 0.7 cm, with
min and max error corresponding to 1.2 and 6.0 cm, respectively. The inter comparison addresses
frame classification for the rectum, descending and sigmoid, splenic flexure, transverse, hepatic, and
ascending, with an average accuracy of 86%.

Keywords: capsule endoscopy; feature points tracking; localization; large bowel

1. Introduction

Wireless capsule endoscopy may be a useful supplement to colonoscopy for non-
invasive diagnostics of the digestive system. It can either supplement incomplete colonoscopy
or be a useful diagnostic test investigating the need for a therapeutic colonoscopy or surgery.
The invasive nature of colonoscopy may cause discomfort and unwanted side-effects which
might negatively affect acceptability and cause diagnostic delay; performing a capsule
study first might circumvent some of the issues. Severe complications after colonoscopy
are infrequent in screening programs, but, in the high number of investigations with a
relatively low frequency of positive findings, it causes concerns. Colon capsule endoscopy
(CCE) is especially beneficial in patients with previous incomplete attempted colonoscopies.
Knowing the location of the capsule, even an incomplete CCE may complete an incomplete
colonoscopy investigation as long as it captures the most proximal point of the previous
conducted attempt. Deding et al. [1] underlined this clinical importance of a localization
algorithm that is able to estimate the whereabouts of the capsule.

The large intestine runs from the ileocecal valve to the anus (See Figure 1). It frames
the small intestine, despite being half the length. The diameter varies several folds from
the wide cecum to the narrow sigmoid and rectum. The length, diameter, and position of
individual sections vary significantly from person to person.
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Figure 1. Illustration of the large intestine. Taken from Anatomy and Physiology, OpenStax (Licensed:
CC-BY).

When the capsule moves through the intestine, it records frames that are sent wire-
lessly to a mobile receiver [2]. The portability of the systems allows patients to be free to
pursue their regular daily routine without being confined to a medical facility. Studies
have shown that the capsule-based endoscopy aids in detecting an increasing number of
medically relevant features, e.g., intestinal bleeding, ulcers, vascular lesions, inflammatory
diseases, polyps, tumors, and cancers [3–10].

The large bowel camera capsule technology might be more sensitive and specific in
polyp detection than colonoscopy. Polyp miss rate of colonoscopy is estimated to be 22%
and polyps flat in nature can be particularly challenging to identify [11,12]. In a population
of 253 colorectal cancer screening individuals, CCE proved more sensitive to polyps than
colonoscopy in complete investigations [13]. On the other hand, the capsule technology
is lacking the therapeutic capability when early pathologies, suitable for endoscopic re-
section, are demonstrated. Therefore, positive CCE investigations are often followed by a
therapeutic colonoscopy. An accurate indication of the position of pathologies would be
of help to the succeeding endoscopist and would potentially reduce time, resources, and
risk of complications for the patient. Even though capsule systems provide a non-invasive
and portable monitoring system, the inability to estimate or track its whereabouts requires
a physician or trained staff with extensive domain knowledge and practice. This work
proposes a tool to aid the process of localizing and tracking the capsule inside the human
body. More precisely, this study proposes a model that can identify the two flexures,
ascending-, transverse-, and descending-colon parts of the large intestine. In many cases,
polyp identified by CCE is not found in the succeeding colonoscopy [13,14], and, thus, such
information is of clinical importance to the physicians, as it narrows down the location of
the disease, reducing the time and ambiguity of following therapeutic endoscopies and
increased chance of successful identification of polyps.

Numerous publication bare witness to the attempts of capsule localization and
tracking [15–21], of which selective ones were summarized by Bianchi et al. [22] and
Mateen et al. [23] and are outlined below. Radio frequency (RF) localization and other
external approaches, such as magnetic field based localization, rely on the modeling of the
tissue between transmitter and receivers and are sensitive to the position of the receivers.
The localization of the endoscopy capsule is done in the three-dimensional space of the
human body, using RF triangulation from external sensor arrays in combination with time-
to-arrival estimations. Studies based on simulations and in vitro experiments have shown
that RF localization can be performed and can theoretically achieve precise and accurate re-
sults [24]. Isolated in vivo studies have addressed RF localization as well. Nadimi et al. [25]
investigated, through trial programs on a live pig, the effective complex permittivity in
the gastrointestinal track organs. As a result, updated models for the effective complex
permittivity of multilayer non-homogeneous medium have been proposed [26,27]. Recent
results from magnetic field localization have experimentally shown to be accurate [18], but
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implementations are still in their early stages. Development in image processing and deep
learning have provided another framework for localization of the endoscopy capsule. It has
been demonstrated that, based on geometrical models, pure visual aided localization can
be performed in vitro [28–32]. In particular Wahid et al. [19] and Bao et al. [20] provided a
simple geometrical approximation to the colon.

One disadvantage of the tracking systems is the wide variation of the large bowel
position within the body and its anatomy. Its length, position, movability, and diameter
cannot be judged from outside and the external monitored localization might be very
difficult to convert into a colonic position usable to the endoscopist. It does thus not
come as a surprise that reconstructions of segments or the entire colon is a challenging
task. As of the time of writing, the authors are not aware of any published work on a full
reconstruction of the large intestine (or segments thereof) based on capsule endoscopy
videos in variable anatomy and colon environment, in any of the above frameworks.

The working hypothesis under which this work is conducted has been that an internal
picture-based tracking of camera capsules can be easily converted to useful information
towards the following endoscopic investigation. Given that external approaches still have
to be implemented in real life case studies, and visual based approaches show promising
results, the following work demonstrates and supports that visual-based approaches
can provide the localization of an endoscopy capsule. In this work, we combine the
experimental work into a framework that can fully reconstruct the large intestine. To this
end, we assume that the colon properties as well as external factors can be approximated by
prior distribution for both the large intestine’s radius and the capsule’s sample frequency.
We extend the work of Wahid et al. [19] and Bao et al. [20] to estimate the most likely
movement parameters in contrast to ensemble averages and use data from patient’s capsule
investigations. Furthermore, we address the information content in each frame by including
a measure of cleanliness into the model in order to allow for full colon reconstructions.

2. Methodology

The PillCam™ COLON2 system includes the PillCam™ Capsule, a receiver belt,
and RAPID™ software. The endoscopy capsule captures images with enhanced optics
supported by three lenses. To cover most of the tissue, the camera is equipped with two
camera heads that each provide η = 172◦ field of view for a total of 344◦ coverage. Frames
are automatically recorded with varying frequencies, 4–35 Hz.

As the endoscopy capsule captures frames on short time intervals and moves relatively
slow compared to the sample frequency, this means that individual frames can contain
the same or similar information. This information aids in identifying conditions in the
bowel when evaluated by a human expert, such as detecting and tracking of internal
bleeding, polyp identification, or assessing the cleanliness of the intestine. However, this
relies on the skill of the experts involved and performance may vary [13]. Assuming the
shared information across frames are quantifiable, consecutive frames are used to estimate
the relative movement of the endoscopy capsule. The proposed model is composed of
two parts: (1) a model for the shape of the intestine; and (2) converting recorded video
information into a movement estimator for the endoscopy capsule. Both are explained in
greater details below.

2.1. Model for the Shape of the Intestine

For the time being, let P and Q be two different points in the intestine. As long as
these points are in the field-of-view of the camera head, P and Q will be recorded in the
frames. These points are referred to as feature points.When the endoscopy capsule is
moving relative to P and Q, it will result in mapping the points into feature points in
different locations on the frame. Tracking the changes in feature points gives an estimation
of the endoscopy capsule’s displacement. However, to do so, it is necessary to provide a
model describing the shape of the intestine.
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When looking at a single frame, as shown in the lower left corner of Figure 2, one
observes that the frame consists of two regions:
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η

P (r, φ; t)

b

P (x, y; t)

Figure 2. (Top) From left to right: Schematic drawing of the frame captured on the CMOS in polar coordinates and
transformed frame into Cartesian coordinates. (Bottm) From left to right: Actual frame as captured by the CMOS and actual
frame as seen when transformed into Cartesian coordinates.

1. Dark center region: When the endoscopy capsule is aligned with the intestine, each
frame comprises an underexposed area in the center. This area is not illuminated
by the light-emitting diode (LED) flash and thus is outside the view range of the
camera head.

2. Tissue: The colored tissue forms the wall of the intestine.

This can be said for the majority of the frames, except for frames of poor visual quality
and when the camera head is facing only tissue. Thinking of the intestine as a tunnel-
shaped object that coils through the human body, with properties as described in Points 1
and 2, a three-dimensional geometric shape could be used as an approximation to its form.
For all practical purposes, the proposed model approximates the intestine locally, as a
cylinder of radius R. This approach was introduced by Wahid et al. [19] and Bao et al. [20].
This framework is extended to include distribution based estimations of the involved
parameters, and a post-processing step is added that accounts for the variability in the
quality of frames. The extension into the destitution-based estimation, and there-through
the most similar parameter value, is a necessity as pure ensemble means can be skewed
when P and Q are errorlessly match between consecutive frames.

Figure 3 (top) shows a camera head in a cylindrical tube.
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Figure 3. (Top) Illustration of a camera head in a cylinder at time t and later at time t + 1 moved by a
distance d; and (Bottom) illustration of a camera head in a cylinder at time t and later at time t + 1
but with the cylinder symmetry axis inclined by Θ. Drawing not to scale.

A point P, at distance D from the center point Ct of the camera head, is recorded as
P(r, φ; t) on the CMOS forming the frame at time t. Any P and its representation on the
CMOS form a line that intersects Ct with an angle,

θP,t = tan−1
(

R
D

)
. (1)

The next sampled frame is taken after the camera head has moved a distance d. The
same point P is now represented by P(r, φ; t + 1), and its corresponding angle is given by:

θP,t+1 = tan−1
(

R
D− d

)
. (2)

Solving for d in Equation (2) and substituting into Equation (1) gives the distance
traveled between times t and t + 1 as a function of the intestine geometry, namely the
radius R, and the angles for the projection of P at these times:

dP,t+1 =
R

tan(θP,t+1)

(
tan(θP,t+1)

tan(θP,t)
− 1
)

. (3)

Equation (3) holds true for all P in the field-of-view of the camera head. However,
it is impossible to localize and track all recorded points, i.e., all pixels of the frame. In
this work, feature points are utilized to localize and track information across frames. A
feature point is a distinct point of interest in a frame (e.g., edge, corner, blob, or ridge).
The task is to find and track corresponding feature points between two frames. There are
different approaches for extracting and matching feature points; an implementation of
SURF (Speeded-Up Robust Features [33]) was selected as a trade-off between computational
complexity and accuracy in identifying and matching feature points. The detected and
matched feature points are further filtered for erroneous matching. This is achieved by a
random sample consensus (RANSAC) approach [34]. Here, the algorithm takes all matched
points and proposes a model for the majority of the feature points. Feature points deviating
from that model are considered outliers and removed from the final set of feature points.

Thus far, feature points are said to be recorded on the CMOS of an endoscopy capsule.
For computational convenience, the feature points are mapped into a Cartesian coordinate
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system, as shown in Figure 2, such that x = Lφ/2π, where L is the number of pixels of the
frame length and y = r. This allows estimation of the displacements in a linear manner
rather than based on arcs in polar coordinates. Figure 2 (bottom) shows how this looks in
the case of a single frame. In this coordinate system, the angle θP,t is estimated as:

θP,t = tan−1
( rP,t

R
tan(η)

)
(4)

≈
( η

H

)
yP,t, (5)

with H being the number of pixels of the frame hight.

2.2. Capsule Endoscopy Movement Estimation

From now on, this work addresses the relative movement of the endoscopy capsule.
The movement estimation, both displacement and orientation, is treated as one-step-ahead
predictions. Given the estimates θP,t and θP,t+1 for the case shown in Figure 3 (top), the
most likely speed, vt+1, of the endoscopy capsule is calculated by evaluating the ensemble
distribution, P(·), of displacements dP,t+1 multiplied with the sample frequency ft+1:

vt+1 ← arg max
∀P

P( ft+1dP,t+1). (6)

Further, the most likely displacement ∆xP,t+1 = xP,t+1 − xP,t in the Cartesian coordi-
nate system is used for an estimation of the roll, γt+1, of the endoscopy capsule:

γt+1 ← arg max
∀P

P(∆xP,t+1). (7)

To account for possible tilt of the camera head, the setup, as shown in Figure 3
(bottom) is considered. The camera head at t + 1 is inclined by an angle Θ with respect
to the alignment of its position at t. Depending on the direction in which the endoscopy
capsule is facing, the change in angle for any two points in the intestine, P and Q, is written
as δθP,t+1 = θP,t+1 − θP,t and δθQ,t+1 = θQ,t+1 − θQ,t. In the case of two opposite points, as
shown in Figure 3, the change in angle is larger for P than for Q. The magnitude of the tilt
for a pair of feature points is defined as:

Ω =
δθP,t+1 − δθQ,t+1

max(δθP,t+1, δθQ,t+1)
, ∀P 6= Q. (8)

The final estimated most likely magnitude of the tilt is given by the distribution over
Equation (8):

Ωt+1 ← arg max
Ω

P
(

δθP,t+1 − δθQ,t+1

max(δθP,t+1, δθQ,t+1)

)
,

∀
{

P, Q | P
(

δθP,t+1 − δθQ,t+1

max(δθP,t+1, δθQ,t+1)
≥ ξ

)
, P 6= Q

}
, (9)

where ξ ∈ [0, 1] is the amount of the cumulative distribution of Equation (8) under consideration.
After having estimated Ωt+1, as defined in Equation (9), the associated most likely

direction of the tilt is estimated as:

ωt+1 ← arg max
φ

P(φP,t+1),

∀
{

P, Q | P
(

δθP,t+1 − δθQ,t+1

max(δθP,t+1, δθQ,t+1)
≥ ξ

)
, P 6= Q

}
. (10)
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The information obtained from Equations (9) and (10) is separated into the endoscopy
capsule’s pitch and yaw angles:

αt+1 = Ωt+1 cos(ωt+1) (11)

βt+1 = Ωt+1 sin(ωt+1). (12)

The above-mentioned orientation estimation is based on the yaw, pan, and tilt of the
camera’s reference frame. For an external observer, this is transformed into the relative
movement of the endoscopy capsule, with respect to a reference point in the observer’s
coordinate system, by using a rotation matrix. Let st = [sx, sy, sz]> be a unit vector in the
observer’s coordinate system with α, β, γ spanning the vector space. For any consecutive
estimations of α, β, and γ, the orientation is then given by:

st+1 = Rorientation
t+1 st, (13)

where the orientation matrix can be updated as follows:

Rorientation
t+1 = Rorientation

t Rx,t+1Ry,t+1Rz,t+1(Rorientation
t )−1 (14)

with standard individual rotation matrices:

Rx,t+1 =

 1 0 0
0 cos(γt+1) − sin(γt+1)
0 sin(γt+1) cos(γt+1)

, (15)

Ry,t+1 =

 cos(βt+1) 0 sin(βt+1)
0 1 0

− sin(βt+1) 0 cos(βt+1)

, (16)

Rz,t+1 =

 cos(αt+1) − sin(αt+1) 0
sin(αt+1) cos(αt+1) 0

0 0 1

. (17)

Given the orientation of the endoscopy capsule and its estimated speed, the tracking
of the endoscopy capsule is given by a vector representation in the observer’s frame
of reference:

tt+1 = Tt+1tt (18)

xt+1
yt+1
zt+1

st+1

 =


I vt+1 ft+1I

0 Rorientation
t+1





xt
yt
zt

st

, (19)

where tt and tt+1 are the initial and predicted tracking vectors, T is the matrix mapping
from one vector to the other, and vt+1 is given by Equation (6).

2.3. Post-Processing of Frame Cleanliness

Depending on the quality of the video and ambient conditions in the intestine, it
might be necessary to post-process the estimated movement before progressing to the
next time stamps. For that, we distinguish between two assessments, one based on the
number of feature points in a frame and one based on the cleanliness of a frame. A frame is
defined to be of unacceptable quality if the number of matched feature points fall under a
threshold. For this study, a threshold of 20 feature points was chosen. Ambient conditions
in the intestine are assessed by the cleanliness. The reasoning is best explained by an
example: imagine the camera head passes a section of the intestine covered in fecal matter.
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In this case, no features associated with the intestine are available; thus, the corresponding
movement update should account for this. Assessing the cleansing quality has been studied
previously [35–38]. In the following, the cleanliness assessment and the post-processing
step are outlined.

For the assessment of the cleanliness, a support vector machine (SVM) classification
algorithm based on experts’ input is utilized to contract an assessment model. The SVM is
used to determine the cleanliness of individual pixels in a frame, classifying them as either
clean or dirty. The frame cleanliness is then determined based on the number of clean
and dirty pixels. Pixels that were over- or underexposed are omitted in the assessment.
According to Buijs et al. [36], the cleanliness level of a frame at time t + 1, Lt+1, is classified
as follows:

Lt+1 =


0 Unacceptable
1 Poor
2 Fair
3 Good

, (20)

where for the remainder of this work Lt+1 = 1, 2, 3 are considered to be of adequate
quality in order to perform estimations of the movement parameters. In the case of an
insufficient frame, the movement update, as described by Equation (18), is changed to
estimate the movement from the previous tracking matrix Tt, penalized by additive noise
on the previous estimated parameters, such that:

tt+1 =

{
(Tt(h + εi))tt if Lt+1 = 0 or FP < 20

Tt+1tt else
, (21)

where FP is the number of matched feature points, Tt(h + εi) is a function of h and εi, and
εi ∼ N (0, σ2

h ) are additive Gaussian distributed noise components for h = vt, ft, αt, βt, γt,
with zero mean and variance:

σ2
h =

1
t

t

∑
i=1

(
hi −E

[
h[1,t]

])2
, h = α, β, γ. (22)

The expected values in Equation (22) are the mean values of the previous t estimated
v, f , α, β, and γ.

3. Results

This section explores the experimental set-up, evaluating the proposed model ad-
dressing endoscopy capsule videos. The model presented in this work does not have
a standardized ground truth validation yet, because it is providing the first attempt at
solving the problem of tracking the endoscopy capsule through the intestine. As of the
time of writing, the authors are likewise not aware of any ground truth validated approach.
This is attributed to the lack of control of the endoscopy capsule after it is swallowed by a
patient. However, different studies under controlled environment and simulations have
been performed, showing that high accuracy is achieved when estimation translation and
rotation based on feature point extraction and matching [19–21]. These studies support the
idea of the proposed model for capsule videos.

3.1. Data and Parameter Selection

This study is comprised of 42 patients, as representative of the study by
Kobaek-Larsen et al. [13] (P = 84 videos), where each frame is converted to gray-scale.
The endoscopy capsule, as a commercial product, only provides access through ded-
icated software. The RAPID™ software is used to extract videos into a common file
format. This comes at the cost of loosing unique time stamps as the exact sampling at
variable frequencies is lost. The software compresses the recorded video to fixed frames
per seconds. To account for that loss of information, two statistical driven scenarios



Diagnostics 2021, 11, 193 9 of 17

are considered: (i) the sample frequencies are random and drawn from a continuous
uniform distribution, ft+1 ∼ U (a, b) on the interval [a, b]; or (ii) sample frequencies are
truncated Gaussian [39,40] distributed, with mean frequency µ f , standard deviation σf ,
and bound [a, b].

The prior selection is based on the studies by Gilroy et al. [41] and Ohgo et al. [42],
where the average diameter of the large intestine is reported to be µ2R = 4.6 cm, with
standard deviation σ2R = 0.7 cm, on the interval [a2R = 2.5, b2R = 9] cm. Following the
idea of drawing sample frequencies, the intestine diameter, 2Rt+1, is drawn from either a
uniform distribution U (2.5, 9) or a truncated Gaussian distribution with µ2R, σ2R, a2R, and
b2R. For Equations (9) and (10), ξ = 0.25 has shown to be suitable for all practical purposes.

The model is illustrated on series of 400 frames sampled at 2 Hz, with intestine
radius 5 cm. Figure 4 gives a more intuitive understanding of patterns encountered in
an endoscopy capsule video. Here, examples on a stationary case (blue), fast movement
(orange), and slow movement (yellow) are given. The first sequence of frames, marked
in blue, produce stationary behavior of the endoscopy capsule. This is supported by the
corresponding frames above the speed graph, facing the same part of the intestine wall
with small or no variations. The next sequence, highlighted in orange, shows a sudden
burst of movement.

0 50 100 150 200 250 300 350 400

-4

-2

0

2

4

6

Figure 4. Selected examples of speed estimations based on a fixed sample frequency of 2 Hz and corresponding frames.

3.2. Results of 42 Patient Study

For simplicity and comparison to colonoscopy, the path taken by the endoscopy
capsule is reconstructed from the anus. As shown below, selecting the anus as the origin
of the localization and manually choosing the direction have a significant impact on the
characteristics of the estimated paths.

The abbreviations T-T, T-U, U-T, and U-U refer to the combinations of prior distribu-
tions of the intestine diameter and endoscopy capsule’s sample frequency, where the first
letter refers to the diameter and the second to the sample frequency. T is read as truncated
Gaussian distributions and U as uniform distributions. In Figure 5, all reconstructions
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of the large intestine are shown for a random patient and camera head. The density in
Figure 5 is obtained by N = 25,000 path reconstructions for this video. A first comparison
to Figure 1 illustrates that the proposed model is able to estimate a path that resembles the
large intestine. Similar figures can be obtained from the other patients and camera heads.

Figure 5. Reconstruction of the large intestine for a random patient, for different prior distributions.

For a more in depth analysis of the obtained estimated paths, let xt,q =
[
xt,q, yt,q, zt,q

]>
be the vector containing the Cartesian coordinates (in an arbitrary reference frame but fixed
for all reconstructions) at time t for the qth reconstruction. Further, let S = I, II, III, IV, V, VI
be for each video ad hoc placed boxes loosely associated with the anus (I), descending
colon (II), splenic flexure (III), transverse colon (IV), hepatic flexure (V), and ascending
colon (VI), as seen in Figure 1. The path difference between xt,q ∈ S with respect to any
other Cartesian vector xt,w is given by:

∆S =
∣∣xt,q − xt,w

∣∣, q 6= w ∈ {1, . . . , N} (23)
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where q, w are an index associated with one of the N simulations based on different intestine
radii and sample frequencies. Equation (23) is used to extract an assemble of error estimates
for all combination of q and w. The distribution and mean value of ∆ are shown in Figure 6
conditioned on each section, S . Overall, Figure 6 shows that the path difference increases
as the endoscopy capsule passes more and more sections. Figures 5 and 6 are explained
below in greater detail depending on the prior selection:

T-T Figure 5 shows the density of the 25,000 paths estimated, where high densities
corresponds to large accumulation of estimated sets of coordinates per unit
volume. In the case of T-T, it leads to local patterns of high density. First, the
truncated priors estimate a narrow shape of the large intestine compared to
the other combinations of priors making the recommended model in the study.
This is also seen in the overall path difference, spanning approximative 2–8 cm,
well below the other prior combinations (see Figure 6) and in the same order of
magnitude as the average radius of the intestine (4.6 cm). Further, as for all cases,
the spread of ∆ increases as the endoscopy capsules passes the different sections.

In Section I, the capsules’ path is initialized, which leads the estimated path
to be very localized in space resulting in the high density, as seen in Figure 5.
In other words, the paths have not yet deviated from one another, apart from
small perturbations. As the endoscopy capsule passes the descending colon (II),
the individual path appear to spread out more evenly. When reaching the left
colic flexure (III), the density in this area is increased, suggesting that the camera
spends a period of time in this section in order to complete the turn into the
next section.

When passing along the transverse colon (IV), the paths spread out further, as
seen in the distribution of ∆ in Figure 6. However, in comparison to Section II, the
path along the Transverse Colon has areas of high density. This is explained by
the endoscopy capsule spending more time overcoming different segments of the
transverse colon. This is an important observation as it might hint to the potential
ability of the proposed model recreating local structures in the large intestine.

Passing Sections V and VI, the local structure is less distinct, while the error
increases significantly compared to Section IV with increasing spread of the path
difference ∆ (see Figure 6).

T-U Adopting a uniform prior for the sample frequency yields the same outcome as
in the case of a truncated prior, with the change that the path difference is slightly
higher. When comparing the path difference to the one of T-T in Figure 6, the
distribution of ∆ are comparable in shape to each other, and distinct from the
ones using a uniform prior for the radii. Thus, selecting the sample frequency
prior has minor impact on the movement estimation.

U-(T/U) Both prior combination do not improve the reconstruction and perform worse by
almost a factor of two compared to the favored combinations mentioned above.
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Figure 6. Path difference by large intestine section, S , averaged over all reconstructions for the same
video as in Figure 5.

To evaluate the error propagation further, Figure 7 comprises the descriptive statistics
for all 84 videos. For all P = 84 videos, the mean value and variance per section are
given by:

µS =
1
P

P

∑
p=1

Ep[∆S ] (24)

σ2
S =

1
P

P

∑
p=1

Ep

[(
∆S −Ep[∆S ]

)2
]
. (25)

In Figure 7, the same increasing trend as ∆ in Figure 6 is shown, sorting T-T, T-U, U-T,
and U-U in the same way with similar average values. This shows that the propagation of
the path difference for the case study of one patient follows the average path difference
per section for all patients. The low variance is also evidence for the reproducibility of the
reconstructions across patients.

I II III IV V VI

0

5

10

15

T-T

T-U

U-T

U-U

Figure 7. Path difference (solid lines) and variance (dashed lines) by large intestine section, S ,
averaged over all video.

A source of estimation error can be attributed to the quality of the individual frames
and the number of feature points extracted from each frame. In the case of the estimated
speed, vt+1, if the distribution in Equation (6) does not converge sufficiently, especially
when the sample size of the distribution is small, the estimate might be wrong. If then poor
frames are added, as discussed in Section 2.3, the error will further increase. Table 1 shows
the average number of feature points per frame conditioned on the assessed cleanliness
and the associated speed.
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Table 1. Average number of feature points per frame conditioned on the cleanliness and
estimated speed.

Cleanliness Avg. # of Feature Points per Frame

per Frame Speed Intervals [mm/s]

|[0, 2[| |[2, 4[| |[4, 6[| |[6, 8[| |[8, ∞)|
Good (0) 131 98 32 29 24
Fair (1) 90 76 25 25 21
Poor (2) 54 28 - - -

Unacceptable (3) - - - 186 210

For increasing speed, and decreasing frame quality, Table 1 shows a decrease in a
number of matched feature points between successive frames. This implies fewer samples
for the estimation of the movement parameters in Equations (6), (9), and (10). Assuming
that more feature points provide better estimates, it is clear that frames of less quality and
higher speeds will have an impact on the accuracy of the estimates. Further, through lack
of either occurrence or number of feature points, there are no speed estimates for frames
of poor quality above 4 mm/s. Ignoring the inferential post-processing of unacceptable
frames, the presented model estimates high speeds with many feature points. A high
amount of feature points would under normal circumstances (clean frames) be desirable,
but justifies here the need to use an inferential predictor, as described in Section 2.3. If this
step is omitted, the speed of the endoscopy capsule would have been overestimated—and
possibly other parameters would have been estimated erroneously as well. These errors
will again be propagated further as the endoscopy capsule advances, compromising the
accuracy of the localization.

4. Validation

In the absence of a point-wise base line, an inter capsule and expert panel valida-
tion and intra endoscopy capsule validation is presented and discussed as an objective
evaluation criterion.

4.1. Inter Endoscopy Capsule and Expert Panel Validation

Concerning the 84 videos, Sections III and V are annotated by an expert panel, while
Section I is chosen as the starting point of the investigation. This allows labeling the
remaining Sections II, IV, and VI. With annotated landmarks, the reconstruction, based on
the different prior combination, is validated by direct comparison of the individual path
segments in the ad hoc boxes and the experts’ labels. Table 2 shows the confusion matrix
between the predicted sections and expert labeled sections, for each prior combination.
Here, the expert labels are considered ground truth for the investigation.

On the diagonal of Table 2, the accuracy of the reconstruction is shown. Across all
prior combinations, the accuracy decreases the further away the capsule is from Section
I. The T-T model performs the best among the presented prior compilations, with the
accuracies 0.92, 0.93, 0.87, 0.82, and 0.76, and U-T the lowest, 0.82, 0.81, 0.72, 0.64, and
0.60. This is in agreement with what has been observed in the path difference, where the
error increases with each section. Further, T-T and T-U, as well as U-T and U-U, are closely
related to each other, as observed in the path difference. The off-diagonal component of the
confusion matrix shows the misclassification of the proposed framework with respect to the
experts’ labels. Notice that, in Section VI, the models U-T and U-U show a large spread with
contributions in the transverse colon (Section IV). This can be seen in the reconstruction in
Figure 5 as part of the estimated paths cross over in other sections. The average accuracy
of the T-T model reach reaches 0.86, which is an indication and big encouragement for the
potential practical usage of identifying the location and extends of diseases. Furthermore,
the misclassification is never larger than the neighboring location.
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Table 2. Confusion matrix of predicted and expert labeled sections.

True (Expert) Label

Section II III IV V VI

Prior T-T T-U U-T U-U T-T T-U U-T U-U T-T T-U U-T U-U T-T T-U U-T U-U T-T T-U U-T U-U

Pr
ed

ic
te

d
La

be
l

II

T-T 0.92 0.02
T-U 0.91 0.03
U-T 0.86 0.05
U-U 0.82 0.05

II
I

T-T 0.08 0.93 0.07
T-U 0.09 0.92 0.07
U-T 0.14 0.85 0.09
U-U 0.18 0.81 0.09

IV

T-T 0.05 0.87 0.09
T-U 0.05 0.85 0.09
U-T 0.10 0.76 0.11 0.03
U-U 0.14 0.72 0.12 0.07

V

T-T 0.06 0.82 0.24
T-U 0.08 0.78 0.26
U-T 0.15 0.65 0.33
U-U 0.19 0.63 0.33

V
I

T-T 0.09 0.76
T-U 0.13 0.74
U-T 0.24 0.63
U-U 0.25 0.60

4.2. Intra Endoscopy Capsule Validation

The fact that the endoscopy capsule is equipped with two camera heads, facing
opposite directions, presents an opportunity for internal validation. As both camera heads
would see the same path, the path estimated by each camera head would be the same up
to a minus sign. However, as mentioned above, due to the re-sampling of the time stamps
in RAPID™ software, the sample frequency is lost. This loss prohibits a direct time-to-time
validation of the movement estimation across the camera heads of a capsule.

Assuming that on average the camera heads perform the same, the estimations will
asymptotically be identical for N growing large. As an example, Figure 8 provides the
cumulative absolute speed distribution for the patient, with N = 25,000 path estimations per
camera head. In Figure 8a–d, the asymptotic behavior for the different prior combinations
is shown. In Figure 8a, high agreement between the camera heads estimations is found,
suggesting a robust estimator with high cumulative precision. Note that high precision
does not necessarily imply accuracy. Figure 8b,c shows agreement between the two camera
heads within their 95% confidence interval. In contrast, the model based on only uniform
priors (see Figure 8d) shows no agreement between the camera heads.

0

0.5

1

 camera head #1

0.95-confidence

 camera head #2

0.95-confidence

0 2 4 6

0 2 4 6
0

0.5

1

Figure 8. Comparison of the estimated speed cumulative distribution for each camera head for (a–d)
the combinations of priors T-T, T-U, U-T, and U-U, respectively.
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5. Discussions and Conclusions

In this work, we present a movement estimation model for capsule endoscopy based
on feature point tracking in successive frames. Furthermore, to reconstruct the large in-
testine as viewed by the endoscopic capsule, a tracking and localization model is also
proposed. This demonstration contributes to aid physicians in assessing the location of
an endoscopic capsule based on the retrieved videos, without implementing invasive
measures. This carries especially clinical relevance in terms of identification of complete
visualizations and thereby location of significant findings and abnormalities such as col-
orectal polyps, while revealing the anatomy of individuals undergoing the examination of
the colonic segment. This knowledge impacts determining further treatment of the patients,
such as type of diagnostic, therapeutic, or bowel preparation procedure.

Besides introducing different realizations of reconstructed paths of an endoscopic
capsule, namely prior selection, each model’s path difference was evaluated and compared
against each other. This showed that the choice of priors on sample frequency has less
impact than that of the priors on the radius of large intestine. We further pointed out
and thoroughly discussed a list of challenges associated with the visual based models,
concluding that error propagation and frame cleanliness can contribute to the estima-
tion error. Nonetheless, the T-T model of this study achieves an average accuracy of
0.86, with misclassification error not larger than the neighboring section throughout the
large intestine.

Applications of this study will focus on evaluating the feasibility in clinical use,
especially with respect to aiding in localization of significant findings such as colorectal
polyps in combination with polyp detection algorithms and estimation of complete and
incomplete investigations. Future research on the localization will address the remaining
challenge of validation and error propagation. Other areas to which this work can be
extended to are the reconstruction of the small intestine. One way of facilitating this could
be through inclusion of other visual-based processing techniques. As neural networks have
become better and better in image processing, smart image processing could pave the way
in the near future. Deep learning and smart image processing in capsule endoscopy have
recently attracted attention in texture classification [43], polyp, abnormality detection and
segmentation [44–46], and localization [31,32].
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