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A B S T R A C T   

Background: SARS-CoV-2 infection can lead to the abnormal induction of cytokines and a dysregulated hyper
inflammatory state that is implicated in disease severity and risk of death. There are several molecules present in 
blood associated with immune cellular response, inflammation, and oxidative stress that could be used as 
severity markers in respiratory viral infections such as COVID-19. However, there is a lack of clinical studies 
evaluating the role of oxidative stress-related molecules including glial fibrillary acidic protein (GFAP), the re
ceptor for advanced glycation end products (RAGE), high mobility group box-1 protein (HMGB1) and cyclo- 
oxygenase-2 (COX-2) in COVID-19 pathogenesis. 
Aim: To evaluate the role of oxidative stress-related molecules in COVID-19. 
Method: An observational study with 93 Brazilian participants from September 2020 to April 2021, comprising 
23 patients with COVID-19 admitted to intensive care unit (ICU), 19 outpatients with COVID-19 with mild to 
moderate symptoms, 17 individuals reporting a COVID-19 history, and 34 healthy controls. Blood samples were 
taken from all participants and western blot assay was used to determine the RAGE, HMGB1, GFAP, and COX-2 
immunocontent. 
Results: We found that GFAP levels were higher in patients with severe or critical COVID-19 compared to out
patients (p = 0.030) and controls (p < 0.001). A significant increase in immunocontents of RAGE (p < 0.001) and 
HMGB1 (p < 0.001) were also found among patients admitted to the ICU compared to healthy controls, as well as 
an overexpression of the inducible COX-2 (p < 0.001). In addition, we found a moderate to strong correlation 
between RAGE, GFAP and HMGB1 proteins. 
Conclusion: SARS-CoV-2 infection induces the upregulation of GFAP, RAGE, HMGB1, and COX-2 in patients with 
the most severe forms of COVID-19.   

1. Introduction 

Coronavirus disease 2019 (COVID-19) is defined primarily as a res
piratory disease caused by a single-stranded RNA virus known as SARS- 
CoV-2. This novel betacoronavirus has a genome size of approximately 

29.9 kb [1] packed in an envelope with four associated structural (S, E, 
M, and N) and sixteen non-structural proteins (nsp1 − 16) [2]. There is 
evidence that the SARS-CoV-2 S protein is essential for infectivity [3]. 
The binding between the SARS-CoV-2 S protein and the human 
angiotensin-converting enzyme 2 (hACE2) [4], which is expressed 
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particularly in the kidneys, heart, and respiratory and gastrointestinal 
tract tissues can lead to the abnormal induction of cytokines and a 
dysregulated hyperinflammatory state that is implicated in disease 
severity and risk of death [5,6]. 

Growing evidence has shown that hACE2 can also be expressed in 
brain capillary endothelial cells, neurons, astrocytes, oligodendrocytes, 
and the olfactory bulb [7]. In addition to the possibility of direct viral 
invasion, it has been proposed that SARS-CoV-2 infection can affect the 
nervous system through cerebrovascular changes, immune-mediated 
injury, and peripheral organ dysfunction [8,9]. In a study carried out 
in Wuhan, China, with hospitalized COVID-19 patients, a prevalence of 
36.4% of nervous system manifestations was found, mainly dizziness, 
headache, and chemosensory disturbances. Moreover, neurological 
symptoms were significantly more common in severe infections and 
included acute cerebrovascular disease, impaired consciousness, and 
skeletal muscle injury [10]. 

Although studies have suggested a possible direct viral invasion of 
SARS-CoV-2 into hepatocytes [11], cardiomyocytes [12], alveolar 
epithelial cells [13] and the nervous system [14], most clinical mani
festations of COVID-19 are associated with systemic inflammation and 
oxidative stress. It has been demonstrated that reduction in ACE2 
bioavailability after SARS-CoV-2 binding allows angiotensin II to be 
available to interact with AT1R, which mediates signals for activate 
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase leading 
to oxidative stress and inflammatory responses [15]. Therefore, several 
molecules present in the blood that are associated with immune cellular 
response, inflammation, and oxidative stress could be used as severity 
markers in COVID-19 patients. There is evidence that the increased 
levels of IL-6, C-reactive protein, ferritin, and procalcitonin; increased 
erythrocyte sedimentation rate; decreased CD4 and CD8 count cells; 
changes in biochemical indices (albumin, blood urea nitrogen, creati
nine, creative kinase, hypersensitive cardiac troponin I, and lactate de
hydrogenase); and coagulation abnormalities, including prolonged 
prothrombin time, increased d-dimer and thrombocytopenia, are 
important predictors for mortality in patients with COVID-19 [6]. 
However, there is a lack of clinical studies evaluating the role of 
oxidative stress-related molecules including glial fibrillary acidic pro
tein (GFAP), receptor for advanced glycation end products (RAGE), high 
mobility group box-1 protein (HMGB1) and cyclo-oxygenase-2 (COX-2) 
in COVID-19 pathogenesis. 

GFAP is a cytoskeleton glial protein expressed in astrocytes that 
regulates the morphology and function of these cells in the central 
nervous system (CNS). The plasmatic concentration of GFAP is typically 
not detectable in healthy individuals [16], but increased GFAP levels are 
considered a nonspecific marker of CNS pathology [17]. Recent studies 
have shown increased levels of GFAP in patients with COVID-19 and 
discussed the potential role of this biomarker in SARS-CoV-2 neuro
pathogenesis [18–20]. 

RAGE is a member of the immunoglobulin superfamily of receptors 
and can be present in two forms: membrane-bound RAGE (mRAGE) and 
soluble RAGE (sRAGE). This receptor is expressed in a wide array of cell 
types including microglia, neurons, endothelial vascular cells, car
diomyocytes and alveolar pneumocytes [21–23], and is involved in in
flammatory responses, oxidative stress, and cellular dysfunction in 
several conditions [24,25]. It was found that RAGE can play an impor
tant role as a receptor target for HMGB1, a nonhistone chromosomal 
protein that mediates late activation of the innate immune response to 
infection, including the release of chemotactic factors, the upregulation 
of the COX-2/PGE2 axis, and the production of proinflammatory cyto
kines [26–28]. In addition, there is evidence that some respiratory vi
ruses can lead to oxidative stress due to the sequestration of the 
secretory pathway for the manufacture of viral glycoproteins on infected 
cells [29], and thus mediate HMGB1 secretion, amplifying the inflam
matory response and disease severity [30,31]. 

This clinical study evaluated the role of RAGE, HMGB1, GFAP (and 
breakdown products) and COX-2 in patients with COVID-19. 

2. Materials and methods 

2.1. Study design 

This observational study enrolled 93 individuals from Sergipe state, 
Northeast Brazil, from September 2020 up to April 2021. This group 
comprised 23 patients with COVID-19 admitted to intensive care unit 
(ICU), 19 outpatients with COVID-19 with mild to moderate symptoms, 
17 individuals reporting a COVID-19 history, and 34 healthy controls. 
All individuals were tested using real-time reverse-transcriptase poly
merase chain reaction (RT-PCR) from a nasopharyngeal swab or by 
serology because of the limited availability of laboratory resources and 
molecular tests in a resource poor setting. Blood was collected from all 
individuals to test for oxidative stress-related molecules using western 
blot assay. Demographic data (age and sex) were collected from all 
patients. Participants with negative serology without a history of posi
tive RT-PCR for SARS-CoV-2 were included in the control group. All 
participants received written information about the study and were 
asked to give written informed consent for participation. This study was 
approved by the institutional review board of the Federal University of 
Sergipe (CAAE: 34240620.7.0000.5546). 

2.2. Plasma sample preparation 

Blood samples were collected with 4 mL EDTA tubes and processed 
by centrifugation at 2500 g for 15 min at room temperature. Plasma 
aliquots were frozen at − 80 ◦C and the samples were thawed only once 
during the processing. To perform the analysis, total plasma proteins 
were measured by Bradford assay [32]. The levels of RAGE, HMGB1, 
GFAP, and COX-2 were measured in plasma samples as described below. 

2.3. Western blot assay 

Western blot assay was used to determine the RAGE, HMGB1, GFAP, 
and COX-2 immunocontent. Plasma aliquots from patients and controls 
were prepared by addition of Laemmli buffer 4x and heated at 95 ◦C for 
5 min. First, measured plasma proteins (total proteins) allowed the 
equivalent amount of proteins required for each sample to be deter
mined (40 μg of proteins). Samples were separated by SDS-PAGE and 
transferred to nitrocellulose membranes (BioRad) for 1 h at 25 V in a 
transfer buffer (48 mM Tris, 39 mM glycine, 20% methanol and 1.3 mM 
SDS). The nitrocellulose membranes were washed for 5 min in 
Tris–buffered saline with 0.1% Tween-20 (T-TBS; 0.5 M NaCl, 20 mM 
Tris, 0.1% Tween-20, pH 7.5), followed by 1 h incubation in blocking 
solution (T-TBS plus 5% defatted dried milk). The blots were incubated 
overnight at 4 ◦C in blocking solution containing the following anti
bodies at a dilution of 1:1000: anti-COX2 [(clone D5H5) Cell Signaling 
Technology], anti-RAGE [Cell Signaling Technology, cs 4679], anti- 
HMGB1 [(D3E5) Cell Signaling Technology, cs 6893] and anti-GFAP 
[(GA5) Cell Signaling Technology, cs 3670]. Then, the blots were 
washed three times for 15 min with T-TBS and incubated for 2 h in 
blocking solution containing peroxidase conjugated anti-rabbit or anti- 
mouse IgG diluted 1:4000. Finally, the blots were washed twice again 
for 15 min with T-TBS and twice for 15 min with TBS, and developed 
using a chemiluminescence substrate. The densitometric band quanti
fication was performed by ImageJ 1.5 k software (National Institute of 
Health, USA). Normalization of western blots was performed using 
Ponceau S. Results were expressed as arbitrary units. 

2.4. Statistical analysis 

Data were expressed as median and quartiles (Q1 and Q3). Differ
ences in biomarker levels between groups were determined using the 
Kruskal-Wallis test followed by Dunn’s post hoc test for multiple com
parisons. Correlations between biomarkers were tested using Spear
man’s correlation coefficients (rho). The strength of the correlation was 
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considered very weak if the rho was 0–0.19; weak, 0.2–0.39; moderate, 
0.4–0.59; strong, 0.6–0.79; and very strong, 0.8–1.0. Two-sided p-values 
less than 0.05 were considered statistically significant. Analyses were 
performed using Prism 8.0 software (GraphPad Prism Software Inc., San 
Diego, CA, USA). 

3. Results 

3.1. Sample characteristics 

The mean age of participants was 44.6 ± 16.4 years (minimum 11, 
maximum 100), and most of them were female (55.9%; 52/93). All 
patients with COVID-19 admitted to the ICU had severe or critical 
COVID-19, whereas all outpatients had mild to moderate symptoms and 
most individuals with COVID-19 history were asymptomatic 

3.2. Immunocontent of GFAP in plasma 

Fig. 1 summarizes the levels of GFAP and GFAP breakdown products 
(GFAP-BDP) among COVID-19 patients admitted to the ICU, outpatients, 
individuals with COVID-19 history and controls. We found that GFAP 
and GFAP-BDP levels were higher in patients with severe or critical 
COVID-19 compared to the outpatients (GFAP: 1.22 [0.97 – 1.66] vs. 
1.07 [0.60 – 1.30]; p = 0.030 / GFAP-BDP: 1.16 [0.97 – 1.43] vs. 0.74 
[0.59 – 1.21]; p = 0.012) and controls (GFAP: 1.22 [0.97 – 1.66] vs. 0.86 
[0.61 – 1.13]; p < 0.001 / GFAP-BDP: 1.16 [0.97 – 1.43] vs. 0.67 [0.51 – 
0.82]; p < 0.001). Individuals with COVID-19 history had also higher 
levels of GFAP (p = 0.018) and GFAP-BDP (p = 0.007) than controls. In 
addition, our analysis showed that GFAP-BDP was higher in outpatients 
with COVID-19 compared to the healthy control group (p = 0.034). 

3.3. Immunocontent of RAGE and HMGB1 in plasma 

A significant increase in immunocontents of RAGE were found 
among patients admitted to the ICU (1.11 [0.96 – 1.43]) compared to 
those with a COVID-19 history (0.61 [0.46 – 1.05]; p < 0.001) and 
healthy controls (0.71 [0.53 – 1.03]; p < 0.001). Outpatients with 
COVID-19 also had higher levels of RAGE than individuals with a 

COVID-19 history (p = 0.040) and controls (p = 0.013) (Fig. 2A). 
HMGB1 levels were higher among patients in ICU group (0.91 [0.61 

– 1.29]) compared to outpatients with COVID-19 (0.67 [0.49 – 0.99]; p 
= 0.032) and controls (0.62 [0.42 – 0.71]; p < 0.001). In addition, we 
found differences between HMGB1 levels between patients with COVID- 
19 history (higher levels) and healthy controls (p = 0.023) (Fig. 2B). 
RAGE and HMGB1 levels, representative blots and Ponceau S stain for 
each study group are shown in Fig. 2. 

3.4. Immunocontent of COX-2 

The present study demonstrated that the inducible COX-2 is over
expressed in patients with severe or critical SARS-CoV-2 infection (1.04 
[0.60 – 1.33]) compared to patients with mild to moderate COVID-19 
(0.47 [0.35 – 0.69]; p = 0.004) and healthy controls (0.45 [0.25 – 
0.65]; p < 0.001). Individuals with COVID-19 history had also higher 
levels of COX-2 than controls (p = 0.004) (Fig. 3). 

3.5. Correlations between biomarkers levels 

We explored the relationship between (1) RAGE and HMGB1; (2) 
RAGE and GFAP; (3) RAGE and COX-2; (4) HMGB1 and GFAP; and (5) 
HMGB1 and COX-2 using the samples from patients admitted to the ICU. 
There was a strong positive correlation between RAGE and HMGB1 (p <
0.001; rho = 0.735) (Fig. 4A) and a moderate positive correlation be
tween RAGE and GFAP (p = 0.014; rho = 0.532) (Fig. 4B). In addition, 
we found a moderate positive correlation between HMGB1 and GFAP (p 
= 0.014; rho = 0.518) (Fig. 4C). No correlation was found between 
RAGE and GFAP-BDP (p = 0.434), RAGE and COX-2 (p = 0.141), 
HMGB1 and GFAP-BDP (p = 0.360), and HMGB1 and COX-2 (p =
0.375). 

4. Discussion 

There is evidence that SARS-CoV-2 infection can increase the risk of 
cardiac, renal, gastrointestinal, and endocrine complications [33,34]. 
Moreover, patients with COVID-19 can develop a broad spectrum of 
neurological symptoms including ischemic stroke, meningoencephalitis, 

Fig. 1. GFAP (A) and GFAP-BDP (B) levels among COVID-19 patients admitted to the ICU (ICU), outpatients (OP), patients with COVID-19 history (HP), and healthy 
controls (HC). Representative blots and Ponceau S stain are shown in Fig. 1C and 1D, respectively. Statistically significant differences were determined by Kruskal- 
Wallis test followed by Dunn’s post hoc test for multiple comparisons. 
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encephalopathy, acute necrotizing encephalopathy, Guillain-Barré syn
drome, and acute disseminated encephalomyelitis [14,35–37]. A wide 
range of biomolecules associated with the inflammatory and immune 
cell response, which are used as predictors of organ failure and severity 
in other diseases, are also being studied in patients with COVID-19 
[38,39]. It has been found that several inflammatory and oxidative 
mediators are misregulated in COVID-19 and are associated with mul
tiorgan damage and poor disease prognosis [40,41]. 

This study evaluated the role of the inflammatory and oxidative 
biomolecules GFAP, RAGE, HMGB1 and COX-2 in the COVID-19 path
ophysiology. Our findings showed that the levels of these biomarkers 
were higher in patients with the most severe forms of COVID-19. In 
addition, we found a moderate to strong correlation between RAGE, 
GFAP and HMGB1 proteins. 

The results obtained from the analysis of GFAP and GFAP-DBP levels 
may suggest that patients with SARS-CoV-2 infection are at increased 
risk of astrocytic damage and neural dysfunction, especially among 
those with severe or critical COVID-19. These findings have also been 
suggested in other studies [19,42,43] and reinforce the capacity for 
neural damage caused by the infection. There is growing evidence of the 
role of astrocytes in the brain response to SARS-CoV-2-triggered neu
roinflammation. It has been found that these cells might be targets of 
SARS-CoV-2 [44] and play a key role in the control of the cytokine 
microenvironment and brain function in COVID-19 [45,46]. Therefore, 
elevated serum levels of GFAP may be useful for diagnosis and prognosis 
of COVID-19 and brain dysfunction. 

Furthermore, the disintegration of astrocytes, detected by the GFAP 
upregulation, can stimulate the overexpression of other inflammatory 
mediators involved in neurological damage. Necroptotic astrocytes 
release the HMGB1 protein and stimulate the HMGB1-RAGE axis 
[47,48] that can induce inflammatory events leading to organ dys
functions, including the brain. The binding of HMGB1 to RAGE pro
motes the transcription of inflammatory factors including the NFκB and 
MAPK pathways [49], and its sustained activation causes cell death by 
stimulating the production of reactive oxygen species [50]. It has been 

found that the HMGB1-RAGE axis plays a significant role in a wide 
spectrum of pathological responses such as Alzheimer’s disease, brain 
injury-induced pulmonary dysfunction, chronic inflammatory condi
tions, cancer, and sepsis [51–55]. 

Recent studies have suggested the activation of HMGB1-RAGE 
cascade in COVID-19 pathogenesis [56,57] and an association with 
disease severity [21,58]. In this respect, our results showed an over
expression of HMGB1 and RAGE proteins in the plasma of patients with 
COVID-19, confirming that this effect is a common finding in the most 
severe forms of the disease. In addition, the misregulation of RAGE 
signaling has been reported as an important factor in sustaining the 
pathological states in the most common comorbidities of COVID-19 
[59]. Therefore, the assessment of the HMGB1-RAGE axis as a predic
tor of COVID-19 severity may be important in individuals with pre- 
existing medical conditions. 

The cyclooxygenase family has also been found to play an important 
role in COVID-19 [60]. The inducible COX-2 enzyme has a central role in 
viral infections and regulates the expression levels of many serum pro
teins, including proinflammatory cytokines that directly influence the 
physiological regulation [61]. There is evidence that COX-2 over
expression has been described in patients who have died of H5N1 
infection [62], suggesting that this enzyme is associated with poor 
clinical outcomes in viral infections. Moreover, the production of COX-2 
metabolites can lead to coagulopathy and hyperinflammation [63], 
common findings in patients with severe COVID-19. Recently, it was 
found that SARS-CoV-2 induced COX-2 upregulation in diverse human 
cell culture and mouse systems [64], which may be implicated in 
regulating lung inflammation and disease severity as observed in the 
present study. In addition, the upregulation of COX-2 could increase the 
mortality and morbidity rate in COVID-19 patients. The high levels of 
COX-2 cause a depletion in the endogenous antiviral compound arach
idonic acid, making individuals more susceptible to COVID-19 [65]. 

Finally, the hyperinflammation induced by SARS-CoV-2 infection 
can potentiate the generation of oxygen reactive species leading to 
mitochondrial damage, apoptosis, expression of inflammatory 

Fig. 2. RAGE (A) and HMGB1 (B) levels among COVID-19 patients admitted to the ICU (ICU), outpatients (OP), patients with COVID-19 history (HC), and healthy 
controls (HC). Representative blots and Ponceau S stain for RAGE and HMGB1 are shown in Fig. 2C and 2D, respectively. Statistically significant differences were 
determined by Kruskal-Wallis test followed by Dunn’s post hoc test for multiple comparisons. 
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cytokines, vascular endothelial changes, disruption of cellular repair 
mechanisms, and disease progression [66,67]. In addition, oxidative 
stress genes were found to be upregulated in the whole blood of COVID- 
19 patients [68]. Therefore, the imbalance in homeostasis redox con
tributes to the pathophysiology of COVID-19 [69] and is an important 
prognostic factor of the disease. 

Although the study was the first to assess all these biomarkers 
together as predictors of severity for COVID-19, it has some limitations 
which should be noted. First, we used a convenience sample which may 
increase the risk of selection bias. Second, due to the nature of the study, 
patients were not followed and outcomes such as death were not 
evaluated. 

5. Conclusion 

SARS-CoV-2 infection induces the upregulation of GFAP, RAGE, 
HMGB1, and COX-2 in patients with the most severe forms of COVID-19 
and can be associated with organ dysfunctions including neural struc
tures. The levels of these biomolecules can reflect inflammatory, 
oxidative, and neurological alterations in patients with SARS-CoV-2 
infection and guide future patient-targeted therapies in clinical practice. 
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