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In this paper local and global gradient estimates are obtained for positive solutions to the following nonlinear 
elliptic equation

Δ𝑓 𝑢+ 𝑝(𝑥)𝑢+ 𝑞(𝑥)𝑢𝛼 = 0,

on complete smooth metric measure spaces (𝑀𝑁, 𝑔, 𝑒−𝑓 𝑑𝑣) with ∞-Bakry-Émery Ricci tensor bounded from 
below, where 𝛼 is an arbitrary real constant, 𝑝(𝑥) and 𝑞(𝑥) are smooth functions. As an application, Liouville-
type theorems for various special cases of the equation are recovered. Furthermore, we discuss nonexistence of 
smooth solution to Yamabe type problem on (𝑀𝑁, 𝑔, 𝑒−𝑓 𝑑𝑣) with nonpositive weighted scalar curvature.
1. Introduction

1.1. Introduction

This paper is concerned with positive smooth solutions to the fol-
lowing nonlinear elliptic equation

Δ𝑓 𝑢+ 𝑝(𝑥)𝑢+ 𝑞(𝑥)𝑢𝛼 = 0, (1.1)

on a complete smooth metric measure spaces (𝑀𝑁, 𝑔, 𝑒−𝑓 𝑑𝑣), otherwise 
known as a weighted Riemmanian manifold. Here 𝛼 is an arbitrary real 
constant, 𝑝(𝑥) and 𝑞(𝑥) are smooth functions. If 𝑝(𝑥) and 𝑞(𝑥) are zeros, 
then (1.1) reduces to the 𝑓 -harmonic equation

Δ𝑓 𝑢 = 0, (1.2)

which is known not to admit any bounded solution different from 
constant on nonnegative Bakry-Émery Ricci tensor [1]. Suppose one 
chooses specific values for the functions 𝑝(𝑥) and 𝑞(𝑥) and constant 𝛼, 
(1.1) becomes Yamabe problem for 𝑓 being a constant [2] (see next 
section and [3] for further discussion). Another special case of (1.1)
when 𝑝(𝑥) ≡ 0 and 𝛼 restricted to 1 ≤ 𝛼 < (𝑁 + 2)∕(𝑁 − 2) was studied 
by Gidas and Spruck [4]. They proved that any nonnegative solution to 
Δ𝑓 𝑢 + 𝑞(𝑥)𝑢𝛼 = 0 for 1 ≤ 𝛼 < (𝑁 + 2)∕(𝑁 − 2) is identically zero. Li [5]
proved this result under mild assumption on 𝑞(𝑥) for 1 < 𝛼 <𝑁∕(𝑁 −2), 
𝑁 ≥ 4. Physical applications of (1.1) are found in the theory of stellar 
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structure in Astrophysics (𝑁 = 3) and Yang Mills’ problem for 𝑁 = 4
and 𝛼 = (𝑁 +2)∕(𝑁 −3) in Physics (see [4, 6]). See also [4, Appendix B]
for abstract examples.

This paper aims at presenting improved local and gradient estimates 
on positive solutions to (1.1), and applying the estimates so obtained to 
establish various Liouville type theorems and to discuss nonexistence of 
positive solution of a special case (Yamabe type problem) on complete 
smooth metric measure spaces with Bakry-Émery Ricci tensor bounded 
from below.

Recently, there have been many interesting results on gradient es-
timates and Liouville type theorems on either Riemannian manifolds 
or smooth metric measure spaces. The pioneering work on gradient 
estimates can be traced back to Li and Yau [7] where they derived 
gradient estimates on positive solutions to the heat equation on mani-
folds with Ricci tensor bounded from below. They built on [8] which 
first proved a gradient estimate for harmonic functions via the maxi-
mum principle. This estimate was applied to obtain a Liouville theorem. 
A Liouville theorem says that a bounded positive solution to the har-
monic equation is constant. Then, Hamilton [9] proved an elliptic type 
gradient estimate for the heat equation. But this Hamilton type of es-
timates is a global result which requires the heat equation defined on 
closed manifolds. Souplet and Zhang [10] later proved a localized ver-
sion of Hamilton type gradient estimate by combining Li-Yau’s Harnack 
inequality [7] and Hamilton’s gradient estimate [9]. For recent results 
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on smooth metric measure spaces see for examples [1, 11, 12, 13] and 
references therein (see also [21, 22] when 𝑓 is constant). In particular, 
Brighton [1] proved an elliptic gradient estimate for positive weighted-
harmonic functions by applying Yau’s idea to function 𝑢𝜖 (0 < 𝜖 < 1)
instead of log𝑢 used in [14], and hence obtained a Liouville theorem 
for positive bounded weighted harmonic functions with nonnegative 
∞-Bakry-Émery Ricci tensor. Inspired by the idea in [1] and [12], gra-
dient estimates without any restriction on |∇𝑓 | are proved in this paper.

1.2. Main result

Let (𝑀𝑁, 𝑔, 𝑒−𝑓 𝑑𝑣) be an 𝑁 -dimensional smooth metric measure 
space. Fix a point 𝑥0 and denote by 𝑟(𝑥) = 𝑑(𝑥, 𝑥0), a distance function 
from 𝑥0 to 𝑥 with respect to 𝑔. Denote by 𝐵(𝑥0, 𝑅) a ball of radius 𝑅 > 0
and centred at 𝑥0. Denote the gradient operator by ∇ and the norm with 
respect to 𝑔 by ‖ ⋅ ‖∞ = ‖ ⋅ ‖𝐿∞(𝐵(𝑥0 ,𝑅)) =∶ sup(𝐵(𝑥0 ,𝑅)) | ⋅ |. Our main result 
on the local gradient estimates is stated below.

Theorem 1.1. Let (𝑀𝑁, 𝑔, 𝑒−𝑓 𝑑𝑣) be an 𝑁 -dimensional complete smooth 
metric measure space with 𝑅𝑖𝑐𝑓 (𝐵(𝑥0, 2𝑅)) ≥ −(𝑁 − 1)𝐾 for some 𝐾 ≥ 0
and 𝑅 > 1. Suppose that 𝑢(𝑥) ≤ 𝐴 is a positive smooth solution to (1.1) in 
𝐵(𝑥0,2𝑅), 𝑥0 ∈𝑀 is fixed. Then the following inequality holds on 𝐵(𝑥0, 2𝑅)

|∇𝑢(𝑥)|2 ≤𝐴2

[
𝐶1

(
sup

𝐵(𝑥0 ,2𝑅)
{𝑢𝜀+𝛼−1}‖∇𝑞+‖∞ + sup

𝐵(𝑥0 ,2𝑅)
{𝑢𝜀}‖∇𝑝+‖∞)2

+𝐶2

(
[(𝜀+ 𝛼 − 1)𝑞]+ sup

𝐵(𝑥0 ,2𝑅)
{𝑢𝛼−1} + 𝜀𝑝+ + (𝑁 − 1)𝐾)

)
(1.3)

+𝐶3

(1 + |𝜇|
𝑅

)]
,

where 𝑝+ = max{𝑝(𝑥), 0}, 𝑞+ = max{𝑞(𝑥), 0}, 𝜇 ∶= max{𝑥|𝑑(𝑥,𝑥0)=1} Δ𝑓 𝑟(𝑥), 
𝑟(𝑥) is the distance from a fixed point 𝑥0 to point 𝑥 in 𝑀 , 𝜀 ∈ (0, 1) and 
𝐶1, 𝐶2, 𝐶3 are positive constants depending on 𝑁 .

Letting 𝑅 →∞, leads to the following global estimates on complete 
noncompact smooth metric measure spaces.

Corollary 1.2. Let (𝑀𝑁, 𝑔, 𝑒−𝑓 𝑑𝑣) be an 𝑁 -dimensional complete noncom-

pact smooth metric measure space with 𝑅𝑖𝑐𝑓 ≥ −(𝑁 − 1)𝐾 for some 𝐾 ≥ 0. 
Suppose that 𝑢(𝑥) ≤ 𝐴 is a positive smooth solution to (1.1). Then the fol-

lowing inequality holds

|∇𝑢(𝑥)|2 ≤𝐴2

[
𝐶1

(
sup
𝑀𝑁

{𝑢𝜀+𝛼−1}‖∇𝑞+‖∞ + sup
𝑀𝑁

{𝑢𝜀}‖∇𝑝+‖∞)2

+𝐶2

(
[(𝜀+ 𝛼 − 1)𝑞]+ sup

𝑀𝑁

{𝑢𝛼−1} + 𝜀𝑝+ + (𝑁 − 1)𝐾)
)]

,

(1.4)

where 𝑝+ = max{𝑝(𝑥), 0}, 𝑞+ = max{𝑞(𝑥), 0} 𝜀 ∈ (0, 1) and 𝐶1 and 𝐶2 are 
positive constants depending on 𝑁 .

In order to fix other notations appearing in the results, background 
information about smooth metric measure spaces and Yamabe type 
problem are discussed in Section 2. The proof of main results and the 
applications are given in Section 3 and 4, respectively.

2. Background

2.1. Smooth metric measure spaces

Let (𝑀𝑁, 𝑔) be an 𝑁 -dimensional complete manifold with the Rie-
mannian metric tensor 𝑔, 𝑑𝑣 be volume element and 𝑓 be a 𝐶∞ real-
valued function on 𝑀 . A smooth metric measure space is defined 
by the triple (𝑀𝑁, 𝑔, 𝑒−𝑓 𝑑𝑣), where 𝑒−𝑓 𝑑𝑣 is the weighted measure. 
The weighted Laplacian, Δ𝑓 ∶= Δ − ⟨∇𝑓, ∇⋅⟩, where Δ is the Laplace-
Beltrami operator, is defined on (𝑀𝑁, 𝑔, 𝑒−𝑓 𝑑𝑣). The 𝑚-Bakry-Émery 
tensor is defined by
2

𝑅𝑖𝑐𝑚
𝑓
∶=𝑅𝑖𝑐 +∇2𝑓 − 1

𝑚
𝑑𝑓 ⊗ 𝑑𝑓

for some constant 𝑚 > 0, where 𝑅𝑖𝑐 is the Ricci tensor of the manifold 
and ∇2 is the Hessian with respect to the metric 𝑔. When 𝑚 is infinite 
we have the ∞-Bakry-Émery tensor

𝑅𝑖𝑐𝑓 =𝑅𝑖𝑐 +∇2𝑓.

This tensor is related to the gradient Ricci soliton 𝑅𝑖𝑐𝑓 = 𝜆𝑔, where 𝜆 is 
a real constant. A gradient Ricci soliton is said to be shrinking, steady or 
expanding, if 𝜆 is positive, zero or negative, respectively. Ricci solitons 
play an imporatant role in the theory of singularities for the Ricci flow 
[15]. The weighted Laplacian and the Bakry-Émery tensor are related 
by Bochner formula

1
2
Δ𝑓 (|∇𝑢|2) = |∇2𝑢|2 + ⟨∇Δ𝑓 𝑢,∇𝑢⟩+𝑅𝑖𝑐𝑓 (∇𝑢,∇𝑢).

2.2. Yamabe type problem

Suppose that 𝑓 is a constant, the equation

Δ𝑢+ 𝑝(𝑥)𝑢+ 𝑞(𝑥)𝑢𝛼 = 0, 𝛼 > 1 (2.1)

is equivalent to Yamabe problem on noncompact Riemannian manifold 
[16] by conformal deformation of the scalar curvature. Clearly, setting 
𝑔 = 𝑢4∕𝑁−2𝑔, 𝑁 ≥ 3, 𝑢 > 0, then for (𝑥), the scalar curvature of 𝑔 and 
̃ ∈ 𝐶∞(𝑀), the scalar curvature of 𝑔, we have the relation

Δ𝑢− 𝑁 − 2
4(𝑁 − 1)

(𝑥)𝑢+ 𝑁 − 2
4(𝑁 − 1)

̃(𝑥)𝑢
𝑁+2
𝑁−2 = 0, (2.2)

which is of the form (2.1). Yamabe problem demands the existence of 
a positive everywhere defined solution of (2.2). In the case of compact 
𝑀𝑁 and constant , the existence of 𝑢 in (2.2) has been completely 
determined by Schoen [17]. Indeed, the existence and uniqueness of 
such solution depends on the geometry of the underlying manifold. For 
further discussions on existence, uniqueness and a priori estimates of 
(2.1) (resp. Yamabe-type equation) see [18].

Similarly, for nonconstant 𝑓 and a special 𝛼, (1.1) is related to the 
Euler-Lagrange equation for the weighted Yamabe quotient on compact 
smooth metric measure spaces

Δ𝑓 𝑢−
𝑚+𝑁 − 2

4(𝑚+𝑁 − 1)
𝑚

𝑓
𝑢− 𝑐1(Λ)𝑢

𝑚+𝑁
𝑚+𝑁−2 𝑒

𝑓

𝑚 + 𝑐2(Λ)𝑢
𝑚+𝑁+2
𝑚+𝑁−2 = 0, 𝑚 > 0,

(2.3)

where 𝑚
𝑓

is the weighted scalar curvature defined by

𝑚
𝑓
∶=+ 2Δ𝑓 − 𝑚+ 1

𝑚
|∇𝑓 |2

and

Λ(𝑔, 𝑒−𝑓 𝑑𝑣)

= inf
0≠𝑢∈𝐶∞(𝑀)

{(
∫ |∇𝑢|2 + 𝑚+𝑁−2

4(𝑚+𝑁−1)
𝑚
𝑓
𝑢2
)(

∫ |𝑢| 2(𝑚+𝑁−1)
𝑚+𝑁−2 𝑒

𝑓

𝑚

) 2𝑚
𝑛

(
∫ |𝑢| 2(𝑚+𝑁)

𝑚+𝑁−2
) 2𝑚+𝑁−2

𝑁

}

which is called the weighted Yamabe constant. Here, all integrals are 
with respect to the weighted measure. Thus, the weighted volume can 
be conformally deformed. In fact, setting

(𝑀,𝑔, 𝑒−𝑓 𝑑𝑣,𝑚) = (𝑀,𝑒
2𝜎

𝑚+𝑁−2 𝑔, 𝑒
(𝑚+𝑁)𝜎
𝑚+𝑁−2 𝑒−𝑓 𝑑𝑣)

for some 𝜎 ∈ 𝐶∞(𝑀), then the weighted Yamabe quotient is confor-
mally invariant. The situation where Λ = 0 implies 𝑐1(Λ) = 𝑐2(Λ) = 0 in 
(2.3) which is related to situation when 𝑞(𝑥) ≡ 0 in (1.1). Case [19] also 
shows that Yamabe-type problem on (𝑀, 𝑔, 𝑒−𝑓 𝑑𝑣) interpolates between 
Yamabe problem and the problem of finding minimizers for Perelman’s 
𝜈-entropy.
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3. Results

Suppose 𝑢 is a positive solution to (1.1) with 𝑢 ≤𝐴 for some positive 
constant 𝐴. Scaling 𝑢 → �̃� = 𝑢∕𝐴, then 0 < �̃� ≤ 1 and �̃� solves

Δ𝑓 �̃�+ 𝑝(𝑥)�̃�+ 𝑞(𝑥)�̃� = 0

with 𝑞 =𝐴𝛼−1𝑞. Owing to this, assume 0 < 𝑢 ≤ 1 without loss of general-
ity and let ℎ = 𝑢𝜀 for some constant 𝜀 ∈ (0, 1) to be determined.

3.1. Basic lemma

We now state and prove a basic lemma that will play fundamental 
role in the proof of the main results. This lemma can be viewed as an 
extension of [1].

Lemma 3.1. Let 𝑢(𝑥) ≤𝐴 be a positive smooth solution to (1.1) in 𝐵(𝑥0, 2𝑅)
with 𝑅𝑖𝑐𝑓 (𝐵(𝑥0, 2𝑅)) ≥ −(𝑁 − 1)𝐾 for some 𝐾 ≥ 0 and 𝑅 > 1. Denote 
�̃� = 𝑢∕𝐴 and ℎ = �̃�𝜀 for 𝜀 ∈ (0, 1). Then there exists a positive constant 𝛿
satisfying

2(𝜀− 1)
𝑁𝜀𝛿

+ 1
𝑁

≥ 0 (3.1)

such that the following inequality

1
2
Δ𝑓 (|∇ℎ|2) ≥ ( (𝜀− 1)2

𝑁𝜀2
− 𝜀− 1

𝜀
+ 2𝛿(𝜀− 1)

𝑁𝜀

) |∇ℎ|4
ℎ2

+ 𝜀− 1
𝜀

∇ℎ

ℎ
∇(|∇ℎ|2)

−
(
[(𝜀+ 𝛼 − 1)𝑞]+ℎ

𝛼−1
𝜀 + 𝜀𝑝+ + (𝑁 − 1)𝐾

)|∇ℎ|2 (3.2)

− 𝜀ℎ
(
ℎ

𝛼−1
𝜀 ⟨∇ℎ,∇𝑞⟩+ ⟨∇ℎ,∇𝑝⟩)

holds, where 𝑝+ = max{𝑝(𝑥), 0} and 𝑞+ = max{𝑞(𝑥), 0}.

Proof. Let ℎ = 𝑢𝜀, where 𝜀 ∈ (0, 1). Notice that tilde on 𝑢 is dropped 
for convinience sake. Direct computation gives 𝜀2 |∇𝑢|2

𝑢2
= |∇ℎ|2

ℎ2
. Apply-

ing the Bochner formula to ℎ and using the inequality |∇2ℎ| ≥ 1
𝑁
(Δℎ)2

(obtained by Cauchy-Schwarz inequality) yields

1
2
Δ𝑓 (|∇ℎ|2) ≥ 1

𝑁
(Δℎ)2 + ⟨∇Δ𝑓 ℎ,∇ℎ⟩+𝑅𝑖𝑐𝑓 (∇ℎ,∇ℎ). (3.3)

Now compute

Δ𝑓 ℎ = 𝜀(𝜀− 1)𝑢𝜀 |∇𝑢|2
𝑢2

+ 𝜀𝑢𝜀−1Δ𝑓 𝑢

= (𝜀− 1)
𝜀

|∇ℎ|2
ℎ

− 𝜀𝑞ℎ
1+ 𝛼−1

𝜀 − 𝜀𝑝ℎ,

(3.4)

where (1.1) was used to obtain the last equality.

⟨∇ℎ,∇(Δ𝑓 ℎ)⟩ = ⟨
∇ℎ,∇

( (𝜀− 1)
𝜀

|∇ℎ|2
ℎ

− 𝜀𝑞ℎ
1+ 𝛼−1

𝜀 − 𝜀𝑝ℎ
)⟩

= (𝜀− 1)
𝜀

∇ℎ

ℎ
∇(|∇ℎ|2) − (𝜀− 1)

𝜀

|∇ℎ|4
ℎ2

− 𝜀ℎ
1+ 𝛼−1

𝜀 ⟨∇ℎ,∇𝑞⟩
− (𝜀+ 𝛼 − 1)ℎ

𝛼−1
𝜀 𝑞|∇ℎ|2 − 𝜀ℎ⟨∇ℎ,∇𝑝⟩− 𝜀𝑝|∇ℎ|2.

(3.5)

Also

1
𝑁

(Δℎ)2 = 1
𝑁

(Δ𝑓 ℎ+ ⟨∇𝑓,∇ℎ⟩)2
= 1

𝑁

( (𝜀− 1)
𝜀

|∇ℎ|2
ℎ

− 𝜀𝑞ℎ
1+ 𝛼−1

𝜀 − 𝜀𝑝ℎ+ ⟨∇𝑓,∇ℎ⟩)2

= (𝜀− 1)2

𝑁𝜀2
|∇ℎ|4
ℎ2

(3.6)

+ 2(𝜀− 1)
𝑁𝜀

|∇ℎ|2
ℎ

(⟨∇𝑓,∇ℎ⟩− 𝜀𝑞ℎ
1+ 𝛼−1

𝜀 − 𝜀𝑝ℎ)

+ 1 (⟨∇𝑓,∇ℎ⟩− 𝜀𝑞ℎ
1+ 𝛼−1

𝜀 − 𝜀𝑝ℎ)2.

𝑁

3

Substituting (3.4)–(3.6) and the condition 𝑅𝑖𝑐𝑓 ≥ −(𝑁 − 1)𝐾, 𝐾 > 0 into 
(3.3) yields

1
2
Δ𝑓 (|∇ℎ|2) ≥ ( (𝜀− 1)2

𝑁𝜀2
− 𝜀− 1

𝜀

) |∇ℎ|4
ℎ2

+ 2(𝜀− 1)
𝑁𝜀

|∇ℎ|2
ℎ

(⟨∇𝑓,∇ℎ⟩
− 𝜀𝑞ℎ

1+ 𝛼−1
𝜀 − 𝜀𝑝ℎ) + 1

𝑁

(⟨∇𝑓,∇ℎ⟩− 𝜀𝑞ℎ
1+ 𝛼−1

𝜀 − 𝜀𝑝ℎ
)2

+ (𝜀− 1)
𝜀

∇ℎ

ℎ
∇(|∇ℎ|2) (3.7)

−
[
(𝜀+ 𝛼 − 1)𝑞ℎ

𝛼−1
𝜀 + 𝜀𝑝+ (𝑁 − 1)𝐾

]|∇ℎ|2
− 𝜀

[
ℎ
1+ 𝛼−1

𝜀 ⟨∇ℎ,∇𝑞⟩+ ℎ⟨∇ℎ,∇𝑝⟩].
There are two cases to examine here. First, for any fixed point 𝑥0, if 
there exists a positive constant 𝛿 such that ⟨∇𝑓, ∇ℎ⟩ − 𝜀𝑞ℎ

1+ 𝛼−1
𝜀 − 𝜀𝑝ℎ ≤

𝛿
|∇ℎ|2

ℎ
in 𝐵(𝑥, 2𝑅), 𝑅 > 1, then

2(𝜀− 1)
𝑁𝜀

|∇ℎ|2
ℎ

(⟨∇𝑓,∇ℎ⟩− 𝜀𝑞ℎ
1+ 𝛼−1

𝜀 − 𝜀𝑝ℎ
)
≥

2(𝜀− 1)
𝑁𝜀

|∇ℎ|2
ℎ

(
𝛿
|∇ℎ|2
ℎ

)
and (3.7) then implies

1
2
Δ𝑓 (|∇ℎ|2) ≥ ( (𝜀− 1)2

𝑁𝜀2
− 𝜀− 1

𝜀

) |∇ℎ|4
ℎ2

+ 2(𝜀− 1)
𝑁𝜀

|∇ℎ|2
ℎ

(
𝛿
|∇ℎ|2

ℎ

)
+ 1

𝑁
(⟨∇𝑓,∇ℎ⟩− 𝜀𝑞ℎ

1+ 𝛼−1
𝜀 − 𝜀𝑝ℎ)2 + (𝜀− 1)

𝜀

∇ℎ

ℎ
∇(|∇ℎ|2)

−
[
(𝜀+ 𝛼 − 1)𝑞ℎ

𝛼−1
𝜀 + 𝜀𝑝+ (𝑁 − 1)𝐾

]|∇ℎ|2
− 𝜀

[
ℎ
1+ 𝛼−1

𝜀 ⟨∇ℎ,∇𝑞⟩+ ℎ⟨∇ℎ,∇𝑝⟩].
Now suppose on the contrary that ⟨∇𝑓, ∇ℎ⟩ −𝜀𝑞ℎ

1+ 𝛼−1
𝜀 −𝜀𝑝ℎ ≥ 𝛿

|∇ℎ|2
ℎ

at the point 𝑥0. Then we have

2(𝜀− 1)
𝑁𝜀

|∇ℎ|2
ℎ

(⟨∇𝑓,∇ℎ⟩− 𝜀𝑞ℎ
1+ 𝛼−1

𝜀 − 𝜀𝑝ℎ
)

≥
2(𝜀− 1)
𝑁𝜀

|∇ℎ|2
ℎ

1
𝛿

(⟨∇𝑓,∇ℎ⟩− 𝜀𝑞ℎ
1+ 𝛼−1

𝜀 − 𝜀𝑝ℎ
)2

and then (3.7) implies

1
2
Δ𝑓 (|∇ℎ|2) ≥ ( (𝜀− 1)2

𝑁𝜀2
− 𝜀− 1

𝜀

) |∇ℎ|4
ℎ2

+
( 1
𝑁

+ 2(𝜀− 1)
𝑁𝜀𝛿

)
(⟨∇𝑓,∇ℎ⟩

− 𝜀𝑞ℎ
1+ 𝛼−1

𝜀 −𝜀𝑝ℎ)2+ (𝜀− 1)
𝜀

∇ℎ

ℎ
∇(|∇ℎ|2)−[(𝜀+ 𝛼 − 1)𝑞ℎ

𝛼−1
𝜀

+ 𝜀𝑝+ (𝑁 − 1)𝐾
]|∇ℎ|2 − 𝜀

[
ℎ
1+ 𝛼−1

𝜀 ⟨∇ℎ,∇𝑞⟩+ ℎ⟨∇ℎ,∇𝑝⟩]
≥
( (𝜀− 1)2

𝑁𝜀2
− 𝜀− 1

𝜀
+ 2𝛿(𝜀− 1)

𝑁𝜀

) |∇ℎ|4
ℎ2

+ (𝜀− 1)
𝜀

∇ℎ

ℎ
∇(|∇ℎ|2)

−
[
(𝜀+ 𝛼 − 1)𝑞ℎ

𝛼−1
𝜀 + 𝜀𝑝+ (𝑁 − 1)𝐾

]|∇ℎ|2
− 𝜀

[
ℎ
1+ 𝛼−1

𝜀 ⟨∇ℎ,∇𝑞⟩+ ℎ⟨∇ℎ,∇𝑝⟩]
since 1

𝑁
+ 2(𝜀− 1)

𝑁𝜀𝛿
≥ 0.

Therefore in the two cases (3.7) yields

1
2
Δ𝑓 (|∇ℎ|2) ≥ ( (𝜀− 1)2

𝑁𝜀2
− 𝜀− 1

𝜀
+ 2𝛿(𝜀− 1)

𝑁𝜀

) |∇ℎ|4
ℎ2

+ (𝜀− 1)
𝜀

∇ℎ

ℎ
∇(|∇ℎ|2)

−
[
[(𝜀+ 𝛼 − 1)𝑞]+ℎ

𝛼−1
𝜀 + 𝜀𝑝+ + (𝑁 − 1)𝑘

]|∇ℎ|2
− 𝜀

[
ℎ
1+ 𝛼−1

𝜀 ⟨∇ℎ,∇𝑞⟩+ ℎ⟨∇ℎ,∇𝑝⟩]
where 𝑝+ = max{𝑝(𝑥), 0}, and the estimates holds on all of 𝐵(𝑥0, 2𝑅).

This completes the proof. □
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3.2. Proof of Theorem 1.1

In order to prove Theorem 1.1, the maximum principle will be ap-
plied on (3.2) and bound will be obtained on |∇ℎ|. It is convinient to 

choose 𝛿 such that the coefficient of |∇ℎ|4
ℎ2

in (3.2) is positive, that is,

(𝜀− 1)2

𝑁𝜀2
− 𝜀− 1

𝜀
+ 2𝛿(𝜀− 1)

𝑁𝜀
> 0.

Recall that 𝜀 ∈ (0, 1) and 𝛿 > 0. In particular, choosing 𝜀 = 4
𝑁 + 4

and 

lettting 𝛿 → 𝑁

2
, then (3.1) holds and (3.2) becomes

1
2
Δ𝑓 (|∇ℎ|2) ≥ 𝑁

16
|∇ℎ|4
ℎ2

− 𝑁

4
∇ℎ

ℎ
∇(|∇ℎ|2)

− 𝜀ℎ
[
ℎ

𝛼−1
𝜀 ⟨∇ℎ,∇𝑞⟩+ ⟨∇ℎ,∇𝑝⟩] (3.8)

−
(
[(𝜀+ 𝛼 − 1)𝑞]+ sup

𝐵(𝑥,2𝑅)
{𝑢𝛼−1} + 𝜀𝑝+ + (𝑁 − 1)𝐾

)|∇ℎ|2.
Cut-off function. Define a 𝐶2 cut-off function 𝜓 on ℝ+ = [0, +∞) [7], 
(see also [1]) such that 𝜓(𝑡) = 1 for 𝑡 ∈ [0, 𝑅], 𝜓(𝑡) = 0 for 𝑡 ∈ [2𝑅, +∞)
and 𝜓(𝑡) ∈ [0, 1] satisfying

0 ≥ 𝜓 ′(𝑡)√
𝜓(𝑡)

≥ −𝐶

𝑅
and |𝜓 ′′(𝑡)| ≤ 𝐶

𝑅2

for some positive constant 𝐶 .
Denote by 𝑟(𝑥) ∶= 𝑑(𝑥, 𝑥0) the distance function. Let

𝜑 ∶= 𝜓(𝑟(𝑥)).

By the argument of Calabi-Yau [8] one can assume without loss of gen-
erality that 𝜑 is a smoothly supported function in 𝐵(𝑥0, 2𝑅). Hence, we 
have

|∇𝜑|2
𝜑

≤
𝐶

𝑅2 (3.9)

and Δ𝑓𝜑 = 𝜓 ′Δ𝑓 𝑟 + 𝜓 ′′|∇𝑟|2 in 𝐵(𝑥0, 2𝑅). By the weighted Laplacian 
comparison theorem [20] Δ𝑓 𝑟(𝑥) ≤ 𝜇 + (𝑁 − 1)𝐾(2𝑅 − 1), where 𝜇 ∶=
max𝑥|𝑑(𝑥,𝑥0)=1 Δ𝑓 𝑟(𝑥). Hence at 𝑥, we have

Δ𝑓𝜑 ≥ − 𝐶

𝑅2 − 𝐶[𝜇 + (𝑁 − 1)𝐾(2𝑅− 1)]
𝑅

, (3.10)

where 𝐶 is a positive constant.
We begin the proof of Theorem 1.1. Set 𝐺 = 𝜑|∇ℎ|2. Suppose 𝐺

achieves its maximum at the point 𝑥1 ∈ 𝐵(𝑥0, 2𝑅) and assume 𝐺(𝑥1) > 0, 
otherwise the proof will be trivial. Then at 𝑥1, it holds that ∇𝐺 = 0
which implies

∇(|∇ℎ|2) = − |∇ℎ|2
𝜑

∇𝜑 (3.11)

and

Δ𝑓𝐺 ≤ 0. (3.12)

Now, by application of (3.8), (3.11) and (3.12)

0 ≥Δ𝑓𝐺

= 𝜑Δ𝑓 (|∇ℎ|2) + |∇ℎ|2Δ𝑓𝜑+ 2∇𝜑∇(|∇ℎ|2)
= 𝜑Δ𝑓 (|∇ℎ|2) + Δ𝑓𝜑

𝜑
𝐺 − 2 |∇𝜑|2

𝜑2 𝐺

≥ 2𝜑

[
𝑁

16
|∇ℎ|4
ℎ2

− 𝑁

4
∇ℎ

ℎ
∇(|∇ℎ|2) − 4

𝑁 + 4

[
ℎ
1+ 𝛼−1

𝜀 ⟨∇ℎ,∇𝑞⟩+ ℎ⟨∇ℎ,∇𝑝⟩]

−
(
[(𝜀+ 𝛼 − 1)𝑞]+ sup

𝐵(𝑥 ,2𝑅)
{𝑢𝛼−1} + 𝜀𝑝+ + (𝑁 − 1)𝐾

)|∇ℎ|2]

0

4

+
Δ𝑓𝜑

𝜑
𝐺 − 2 |∇𝜑|2

𝜑2 𝐺

= 𝑁

8
𝐺2

𝜑ℎ2
+ 𝑁

2
∇ℎ

ℎ
∇𝜑

𝐺

𝜑
− 8

𝑁 + 4

[
ℎ
1+ 𝛼−1

𝜀 ⟨∇ℎ,∇𝑞⟩+ ℎ⟨∇ℎ,∇𝑝⟩]𝜑
− 2

(
[(𝜀+ 𝛼 − 1)𝑞]+ sup

𝐵(𝑥0 ,2𝑅)
{𝑢𝛼−1} + 𝜀𝑝+ + (𝑁 − 1)𝐾

)
𝐺

+
Δ𝑓𝜑

𝜑
𝐺 − 2 |∇𝜑|2

𝜑2 𝐺.

Multiplying both sides by 𝜑
𝐺

, we obtain

𝑁

8
𝐺

ℎ2
≤ −𝑁

2
∇ℎ

ℎ
∇𝜑

+ 2
(
[(𝜀+ 𝛼 − 1)𝑞]+ sup

𝐵(𝑥0 ,2𝑅)
{𝑢𝛼−1} + 𝜀𝑝+ + (𝑁 − 1)𝐾

)
𝜑 (3.13)

+ 8
𝑁 + 4

[
ℎ
1+ 𝛼−1

𝜀 ⟨∇ℎ,∇𝑞⟩+ ℎ⟨∇ℎ,∇𝑝⟩]𝜑2

𝐺
−Δ𝑓𝜑+ 2 |∇𝜑|2

𝜑
.

There is need to control the first and third terms on the right hand side 
of (3.13). Note by the Cauchy-Schwarz inequality with 𝛽 ∈ (0, 1)

−𝑁

2
∇ℎ

ℎ
∇𝜑 ≤

𝑁

2
|∇ℎ|
ℎ

|∇𝜑|
≤

𝑁

4𝛽
|∇𝜑|2

𝜑
+ 𝑁𝛽

4
𝜑
|∇ℎ|2
ℎ2

= 𝑁

4𝛽
|∇𝜑|2
𝜑

+ 𝑁𝛽

4ℎ2
𝐺

and by elementary inequality

8
𝑁 + 4

[
ℎ
1+ 𝛼−1

𝜀 ⟨∇ℎ,∇𝑞⟩+ ℎ⟨∇ℎ,∇𝑝⟩]𝜑2

𝐺

≤
8

𝑁 + 4

[
ℎ
1+ 𝛼−1

𝜀 |∇𝑞|+ ℎ|∇𝑝|]|∇ℎ|𝜑2

𝐺

≤
8

𝑁 + 4

[
ℎ
1+ 𝛼−1

𝜀 ‖∇𝑞+‖∞ + ℎ‖∇𝑝+‖∞]2|∇ℎ|2 𝜑2

𝐺

≤
8

𝑁 + 4

[
sup

𝐵(𝑥0 ,2𝑅)
{𝑢𝜀+𝛼−1}‖∇𝑞+‖∞ + sup

𝐵(𝑥0 ,2𝑅)
{𝑢𝜀}‖∇𝑝+‖∞]2

𝜑,

where ‖ ⋅ ‖∞ = ‖ ⋅ ‖𝐿∞(𝐵(𝑥0 ,𝑅)) =∶ sup(𝐵(𝑥0 ,𝑅)) | ⋅ | is the norm with respect 
to 𝑔. Substituting the last two inequalities into (3.13) yields( (1 − 2𝛽)𝑁

8

)
𝐺

ℎ2
≤ 2

(
[(𝜀+ 𝛼 − 1)𝑞]+ sup

𝐵(𝑥0 ,2𝑅)
{𝑢𝛼−1} + 𝜀𝑝+ + (𝑁 − 1)𝐾

)
𝜑

+ 8
𝑁 + 4

[
sup

𝐵(𝑥0 ,2𝑅)
{𝑢𝜀+𝛼−1}‖∇𝑞+‖∞ + sup

𝐵(𝑥0 ,2𝑅)
{𝑢𝜀}‖∇𝑝+‖∞]2

𝜑 (3.14)

−Δ𝑓𝜑+
(𝑁 + 8𝛽

4𝛽

) |∇𝜑|2
𝜑

.

In particular, choosing 𝛽 = 1
4 in (3.14) and using the estimates (3.9) and 

(3.10) we obtain

𝑁

16
𝐺

ℎ2
≤ 2

(
[(𝜀+ 𝛼 − 1)𝑞]+ sup

𝐵(𝑥0 ,2𝑅)
{𝑢𝛼−1} + 𝜀𝑝+ + (𝑁 − 1)𝐾

)
𝜑

+ 8
𝑁 + 4

[
sup

𝐵(𝑥0 ,2𝑅)
{𝑢𝜀+𝛼−1}‖∇𝑞+‖∞+ sup

𝐵(𝑥0 ,2𝑅)
{𝑢𝜀}‖∇𝑝+‖∞]2

𝜑 (3.15)

+ 𝐶[𝜇 + (𝑁 − 1)𝐾(2𝑅− 1)]
𝑅

+ 𝐶

𝑅2 ,

where 𝐶 is a positive constant depending on 𝑁 . Hence, for 𝑥 ∈
𝐵(𝑥0, 𝑅), 𝑅 ≥ 1 it follows from (3.14) that

𝑁

16
𝐺(𝑥) ≤ 𝑁

16
𝐺(𝑥1)

≤ ℎ2(𝑥1)

[
𝐶4

(
[(𝜀+ 𝛼 − 1)𝑞]+ sup

𝐵(𝑥0 ,2𝑅)
{𝑢𝛼−1}

+ 𝜀𝑝+ + (𝑁 − 1)𝐾
)

+𝐶5

[
sup

𝐵(𝑥0 ,2𝑅)
{𝑢𝜀+𝛼−1}‖∇𝑞+‖∞ + sup

𝐵(𝑥0 ,2𝑅)
{𝑢𝜀}‖∇𝑝+‖∞]2

+𝐶6

(|𝜇|+ 1
𝑅

)]
𝜑.

(3.16)
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Using the definition of ℎ, i.e., ℎ = 𝑢𝜀, 𝑢 ≤𝐴 and 𝐺 = 𝜑|∇ℎ|2, we find that 

𝐺 = 𝜑𝜀2ℎ2
|∇𝑢|2
𝑢2

, 𝑁
16

𝐺 = 𝑐(𝑁)𝜑ℎ2 |∇𝑢|2
𝑢2

since 𝜀 is a positive real number, 
and

|∇𝑢(𝑥)|2 ≤ 𝐶(𝑁)𝐴2

[
𝐶4

(
[(𝜀+ 𝛼 − 1)𝑞]+ sup

𝐵(𝑥0 ,2𝑅)
{𝑢𝛼−1} + 𝜀𝑝+ + (𝑁 − 1)𝐾

)
+𝐶5

[
sup

𝐵(𝑥0 ,2𝑅)
{𝑢𝜀+𝛼−1}‖∇𝑞+‖∞ + sup

𝐵(𝑥0 ,2𝑅)
{𝑢𝜀}‖∇𝑝+‖∞]2

+𝐶6

(|𝜇|+ 1
𝑅

)]
,

where 𝑐(𝑁), 𝐶(𝑁) are constants depending on 𝑁 . This finishes the proof 
of Theorem 1.1. □

Remark 3.2. Suppose 𝑝(𝑥) ≡ 0 ≡ 𝑞(𝑥) in (1.1), clearly, the estimate in 
(1.3) of Theorem 1.1 becomes

|∇𝑢| ≤𝐴

√
𝑐(𝑁,𝜇) + 𝑐(𝑁)𝑅𝐾

𝑅

which is the Brighotn [1] gradient estimate on the positive 𝑓 -harmonic 
function in geodesic ball 𝐵(𝑥, 𝑅) of (𝑀, 𝑔, 𝑒−𝑓 𝑑𝑣) with 𝑅𝑖𝑐𝑓 ≥ (𝑁 − 1)𝐾 , 
𝐾 ≥ 0. If in addition to 𝑝 = 0 = 𝑞, 𝑓 is a constant function, then (1.3)
reduces to

|∇𝑢| ≤ 𝐶(𝑁)𝐴
( 1 +𝑅

√
𝐾

𝑅

)
which is equivalent to the classical Yau [14] gradient estimate on the 
positive harmonic function in geodesic ball 𝐵(𝑥, 𝑅) of Riemannian man-
ifolds with 𝑅𝑖𝑐 ≥ (𝑁 − 1)𝐾 , 𝐾 ≥ 0.

3.3. Proof of Corollary 1.2

Letting 𝑅 →∞, leads to the global estimates (1.4) on complete non-
compact smooth metric measure spaces. This completes the proof of 
Corollary 1.2. □

4. Discussion

4.1. Liouville type theorem

Consider (1.1) and suppose 𝑞(𝑥) ≡ 0. If 𝑝(𝑥) ≢ 0 with 𝑝+ = max{𝑝(𝑥), 0}
> 0 being a constant, then by Corollary 1.2

|∇𝑢|2 ≤ 𝐶7𝐴
2(𝑝+ +𝐾), (4.1)

where 𝐶7 is a positive constant depending only on 𝑁 . On the other 
hand, if 𝑝+ = 0 (including the case 𝑝 ≤−𝐾, 𝐾 ≥ 0), then |∇𝑢| ≤ 𝐶7𝐴

√
𝐾 . 

Thus, the condition 𝐾 = 0 is required to obtain |∇𝑢| ≤ 0 whenever 𝑢 is 
a bounded positive solution, (and the solution 𝑢 would be a constant). 
Hence the following Liouville type theorem can be obtained immedi-
ately from Corollary 1.2.

Proposition 4.1. Let (𝑀𝑁, 𝑔, 𝑒−𝑓 𝑑𝑣) be an 𝑁 -dimensional complete non-

compact smooth metric measure space with 𝑅𝑖𝑐𝑓 ≥ −(𝑁 − 1)𝐾, 𝐾 ≥ 0. Sup-

pose that 𝑢 is a bounded positive solution to (1.1) with 𝑞(𝑥) ≡ 0 and 𝑝 < 0 is 
a constant. Then 𝑢 ≡ 1 is a constant.

On the other hand, supposing 𝑝+ = max{𝑝(𝑥), 0} = 0 when 𝑞(𝑥) ≡ 0, 
we obtain the following

Proposition 4.2. Let (𝑀𝑁, 𝑔, 𝑒−𝑓 𝑑𝑣) be an 𝑁 -dimensional complete non-

compact smooth metric measure space with 𝑅𝑖𝑐𝑓 ≥ −(𝑁 − 1)𝐾, 𝐾 ≥ 0. Sup-

pose that 𝑢 is a bounded positive solution to

Δ𝑓 𝑢 = 0,
5

then

|∇𝑢| ≤ 𝐶8𝐴
√

𝐾, (4.2)

where 𝐶8 is a positive constant depending only on 𝑁 .

In particular, if 𝑅𝑖𝑐𝑓 ≥ 0, then any bounded positive solution to (4.2)
must be a constant. Combining Propositions 4.1 and 4.2 with 𝑅𝑖𝑐𝑓 ≥ 0, 
we obtain the following.

Corollary 4.3. Let (𝑀𝑁, 𝑔, 𝑒−𝑓 𝑑𝑣) be an 𝑁 -dimensional complete noncom-

pact smooth metric measure space with 𝑅𝑖𝑐𝑓 ≥ 0. If 𝑢 is a bounded positive 
solution to (1.1) with 𝑞(𝑥) ≡ 0 and 𝑝(𝑥) ≤ 0 is a constant, then 𝑢 is a con-

stant.

Remark 4.4. Suppose 𝑝(𝑥) ≡ 0 and 𝑞(𝑥) ≥ 0 with 𝛼 < 1. There does not 
exist any positive solution to

Δ𝑓 𝑢+ 𝑞(𝑥)𝑢𝛼 = 0, 𝛼 < 1 and 𝑞 ≥ 0.

The last claim was recently proved in [11] using a different approach.

4.2. Nonexistence of Yamabe minimizer

First, we remark that Theorem 1.1 (resp. Corollary 1.2) still holds on 
the condition that 𝑅𝑖𝑐𝑚

𝑓
≥ −(𝑚 +𝑁 − 1)𝐾, 𝐾 ≥ 0, though the proof may 

require little modification but without further assumption.
Now consider (1.1) again with 𝑞(𝑥) ≡ 0 and 𝑝(𝑥) ≤ 0. Indeed, choos-

ing

𝑝(𝑥) = − 𝑚+𝑁 − 2
4(𝑚+𝑁 − 1)

𝑚
𝑓
(𝑥)

then (1.1) reads

Δ𝑓 𝑢(𝑥) −
𝑚+𝑁 − 2

4(𝑚+𝑁 − 1)
𝑚

𝑓
𝑢 = 0 (4.3)

which is exactly (2.3) for Λ = 0 (zero weighted Yamabe constant). Sup-
pose 𝑅𝑚

𝑓
(𝑥) (weighted scalar curvature) is a nonpositive constant, one 

can compare (4.3) to the case 𝑝(𝑥) is a nonnegative constant, 𝛼 = 𝑚+𝑁+2
𝑚+𝑁−2

and 𝑞(𝑥) ≡ 0, in which case the equation Δ𝑓 𝑢 + 𝑝(𝑥)𝑢 = 0 does not ad-
mit any nonconstant positive solution by Proposition 4.1. By this we 
obtain the following result (which has also been proved in [11] using 
parabolic gradient estimates).

Theorem 4.5. Let (𝑀𝑁, 𝑔, 𝑒−𝑓 𝑑𝑣) be an 𝑁 -dimensional (𝑁 ≥ 3) complete 
noncompact smooth metric measure space with 𝑅𝑖𝑐𝑚

𝑓
≥ 0. Suppose 𝑚

𝑓
≤ 0 is 

a constant, then there does not exist a positive volume normalized minimizer 
𝑢 such that the weighted Yamabe constant, Λ is zero.

Proof. It suffices to check the nonexistence of positive smooth solutions 
to (4.3) since Λ = 0 results to the equation. Note that the assumption of 
the theorem that 𝑚

𝑓
≤ 0 implies that

− 𝑚+𝑁 − 2
4(𝑚+𝑁 − 1)

𝑚
𝑓
≥ 0

and by the preceeding explanation, the conclusion that there does not 
exist a positive solution to the equation follows. □
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