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Abstract: One way cancer cells can escape from targeted agents is through their ability to evade drug
effects by rapidly rewiring signaling networks. Many protein classes, such as kinases and metabolic
enzymes, are regulated by ATP binding and hydrolysis. We hypothesized that a system-level
profiling of drug-induced alterations in ATP-binding proteomes could offer novel insights into
adaptive responses. Here, we mapped global ATP-binding proteomes perturbed by two clinical
MEK inhibitors, AZD6244 and MEK162, in KRAS mutant lung cancer cells as a model system
harnessing a desthiobiotin-ATP probe coupled with LC-MS/MS. We observed strikingly unique
ATP-binding proteome responses to MEK inhibition, which revealed heterogeneous drug-induced
pathway signatures in each cell line. We also identified diverse kinome responses, indicating each cell
adapts to MEK inhibition in unique ways. Despite the heterogeneity of kinome responses, decreased
probe labeling of mitotic kinases and an increase of kinases linked to autophagy were identified to be
common responses. Taken together, our study revealed a diversity of adaptive ATP-binding proteome
and kinome responses to MEK inhibition in KRAS mutant lung cancer cells, and our study further
demonstrated the utility of our approach to identify potential candidates of targetable ATP-binding
enzymes involved in adaptive resistance and to develop rational drug combinations.

Keywords: adaptive resistance; desthiobiotin-ATP probe; KRAS mutant lung cancer; LC-MS/MS;
MEK inhibitor

1. Introduction

A cancer cell’s ability to rapidly adapt to targeted reagents is a major hurdle to the success of
targeted therapy for cancer treatment. Examples include the compensatory activation of PI3K/Akt
following mTOR inhibition driven by upstream receptor tyrosine kinase activation [1–4] and feedback
activation of B- and C-RAF upon MEK inhibition, especially in the context of RAS-driven cancers [5,6].
This adaptive resistance is complicated by the diversity of kinases and enzymes expressed in cancer
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cells functioning in interconnected networks; thus, systematically examining how cancer cells respond
to drugs could offer novel insights into adaptive resistance mechanisms and point toward effective
drug combinations [7,8].

Mass spectrometry-based quantitative proteomics has been employed to assess altered
signaling networks after drug treatment at a system-wide level. Gary Johnson and his colleagues
developed a chemical proteomics method employing multiplexed kinase inhibitor beads followed
by mass spectrometry analysis, allowing a system-wide measurement of drug-induced kinase
activity/expression. This platform was employed to assess kinome adaptations to kinase inhibitors
in multiple cancer models, including triple-negative breast cancer treated with MEK inhibitor
selumetinib [9] and HER2-positive breast cancer treated with HER2 inhibitor lapatinib [10]. These
studies highlighted drug-induced dynamic kinome reprogramming involving reactivation of
co-expressed receptor tyrosine kinases in response to kinase inhibitors. The multiplexed kinase
inhibitor bead approach also revealed differential kinome expression/activity between parental and
leukemia cells with acquired drug resistance to BCR-Abl inhibitor imatinib [11].

As an alternative approach that has shown utility in charting rapid dynamic responses,
profiling drug-induced global phosphoproteome changes has identified key adaptive changes
linked to drug resistance. A tyrosine phosphorylation profiling in DDR2 mutant squamous lung
cancer cells treated with its tyrosine kinase inhibitor dasatinib revealed key compensatory receptor
tyrosine kinase activations linked to intrinsic drug resistance [12]. This approach also revealed
differential drug-induced tyrosine phosphoproteome responses between naïve and drug-resistant
EGFR mutant lung cancer cells to EGFR tyrosine kinase inhibitor [13]. Global phosphoproteome
(phospho-Ser/Thr/Tyr) profiling showed that ablation of TBK1 expression in KRAS mutant lung
cancers leads to compensatory activation of a panel of receptor tyrosine kinases including EGFR and
MET [14]. One limitation of phosphoproteomic approaches is the requirement of large amounts of
protein lysates (usually ~30–50 mg) and/or peptide fractionation (usually 12 fractions per sample),
which restricts the number of samples or conditions to be analyzed in a practical and reasonably
economical mass spectrometry experiments. Finally, important information on adaptive responses
driven by other ATP-binding enzymes could be missed by focusing solely on phosphoproteomics.

We hypothesized that we could employ another approach to study adaptive resistance and kinase
rewiring using a commercially available desthiobiotin-ATP probe (ActivX, Thermo Scientific), which
covalently labels conserved lysine residues in or near the ATP-binding pocket of enzymes, including
kinases [15]. Peptides containing the labeled lysine residues are then enriched by streptavidin beads,
identified and quantitated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This
approach is an alternative way to overcome the aforementioned disadvantages since it requires
relatively small amount of samples (1 mg) and requires no fractionation for LC-MS/MS analysis. It
allowed us to test how multiple KRAS mutant lung cancer cell lines differentially respond to MEK
inhibition and reveal heterogeneous ATP-binding proteome responses from each individual cell line.

Here, we profiled ATP-binding proteome responses to two clinical MEK inhibitors, AZD6244
and MEK162, in the context of KRAS mutant lung cancer. KRAS mutations occur in nearly 30%
of non-small cell lung cancers (NSCLC), yet therapeutic targets for these cancers have not been
realized. MAPK signaling has been known to be essential for KRAS-induced lung tumorigenesis [16],
and pharmacological inhibition of this pathway (e.g., MEK inhibitor) has been attempted to treat
KRAS-driven lung cancers. However, significant clinical responses are still lacking, in part due to
the cancer cells’ ability to re-activate ERK via feedback activation of RAF [5,6,17,18]. Recent studies
indicated that mutational status of tumor suppressors, p53 or LKB1, in KRAS mutant lung cancer could
modulate drug responses to MEK inhibitor AZD6244 [19] and immune checkpoint inhibitors [20]. This
raises the possibility that heterogeneous adaptive responses could exist in KRAS mutant lung cancer
depending on the status of co-mutated tumor suppressors, further complicating the development
of a rational co-targeting strategy. For this study, we employed multiple KRAS mutant lung cancer
cell lines harboring diverse p53 and LKB1 co-mutations and differential histology (adenocarcinoma
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and squamous cell carcinoma) to address heterogeneous adaptive responses. Using these two MEK
inhibitors allows for filtering and focus on “on target” effects and not just idiosyncratic drug targets.

2. Results and Discussion

To address diverse adaptive responses to MEK inhibition in the context of KRAS mutant lung
cancer, we employed five KRAS mutant lung cancer cell lines with differential LKB1/p53 mutation
status and histology; four lung adenocarcinoma cell lines including A427, A549 (p53 wild type/LKB1
mutant), Calu-1, and Calu-6 (p53 mutant/LKB1 wild type); and a lung squamous cell carcinoma
cell line, H157 (p53 mutant/LKB1 mutant). We then assessed how MEK inhibitors remodel their
ATP-binding proteomes. Cells were treated with 1 µM of MEK inhibitors (AZD6244 or MEK162) or
vehicle control (DMSO), and then ATP-binding proteins were labeled with the desthiobiotin-ATP
probe and trypsin digested. We found 1 µM to be a clinically relevant [17] and a 24-h time point was
chosen based on a previous study on kinome-level response to a MEK inhibitor [9]. The probe-labeled
peptides were enriched by streptavidin beads, followed by LC-MS/MS analysis. The workflow of our
study is illustrated in Figure 1.
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Figure 1. The experimental workflow of this study. Five KRAS mutant NSCLC cell lines harboring
differential p53 and LKB1 mutation status are treated with DMSO (vehicle control) or MEK inhibitors
(AZD6244 or MEK162). ATP binding proteomes are enriched by the desthiobiotin-ATP probe, followed
by identification and quantitation using LC-MS/MS. The raw MS data are processed by MaxQuant
software (Version 1.2.2.5) [21].
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After filtering out low-confidence peptides, we identified 5800 peptides that were associated with
1925 protein groups (Table S1). Principal component analysis (PCA) shows clustering based on cell
lines and not for treatment type, suggesting that, despite shared KRAS mutant status, the ATP-binding
proteomes and responses to MEKis are cell type specific with the exception of similarity between
Calu-1 and H157 in the first two principal components (Figure 2A). Interestingly, the X and Y axes
of the PCA plot, corresponding to the first two principal components of the data, are not associated
with drug effect on cell viability, which showed a similar reduction across the cell lines (50%–60%
reduction at 1 µM; data not shown) nor with co-mutating tumor suppressor (p53 and LKB1) status.
This suggests that these are not major factors dictating the behavior of the ATP-binding proteome.
However, given the small number of cell lines employed in this study, larger studies with more power
are necessary to investigate this further. From these 1925 protein groups, we were able to identify
174 protein kinases or 225 kinases in total (including nine lipid kinases and 42 other generic/small
molecule kinases). These results are comparable to previously-reported identifications using this
technology (188 protein kinases [22], 136 protein kinases [23], and 41 protein kinases [24]). Although
kinases were a primary focus, we were able to identify hundreds of other proteins in a variety of
different classes (Figure 2B). We were also able to detect some proteins that have not been reported
to bind ATP. These proteins likely received an ATP-probe by being adjacent to a substrate of, or in
a complex with, an ATP-binding protein or by promiscuous binding of the ATP-probe during the
labeling step of the experimental workflow.
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Figure 2. ATP-binding proteomes in KRAS mutant lung cancer cells. (A) Principal component analysis
(PCA) showing the distinct signature of ATP-binding proteomes on individual cell lines; (B) functional
annotation of identified proteins using GeneGO. The “Binding Protein” category includes proteins
such as ATP-binding proteins, protein complex subunits, and proteins involved in protein-protein
interactions; (C) scatterplot showing a high correlation of the effect of two MEK inhibitors; and
(D) unique GeneGO pathway enrichment from altered proteins on individual cell lines. A majority of
enriched pathways are observed only in one cell line.
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Next, we set out to examine how MEK inhibitors remodel ATP-binding proteomes in each
individual cell line. We first averaged the log2 fold-changes of drug/control across all cell lines. This
allowed us to observe if there were any differences between the effects of the two drugs. Figure 2C
shows a strong, positive correlation between the two inhibitors, suggesting that these drugs are
behaving in a similar manner. Next, we defined altered peptides as those whose labeling levels
(calculated as log2(drug/control)) were changed by at least one standard deviation away from the
average by both MEK inhibitors (Table S2). In order to gain a comprehensive view of the altered
ATP-binding proteome, individual proteins corresponding to these altered peptides were subjected to
GeneGO MetaCore pathway enrichment analysis. We observed strikingly diverse enriched pathways;
most of the enriched pathways were observed in only one cell line, which highlights a heterogeneous
response to MEK inhibition (Figure 2D and Table S3). Representative pathways enriched from each
cell line are shown in Table 1. Despite the heterogeneity, cytoskeleton remodeling pathways were
highly enriched across all cell lines. We observed enrichment of glycolysis/gluconeogenesis pathways
in A427, A549, and Calu-1 cells, suggesting MEK inhibition leads to altered glucose metabolism in
these cells. Previous studies indicated that pharmacological inhibition of BRAF or MEK suppresses
glycolysis in the context of melanoma cells harboring activating mutation of BRAF [25,26], warranting
future studies to examine whether MEK inhibition leads to metabolic perturbation and, if so, to
determine its clinical implication on lung cancer.

Table 1. Top five pathways enriched by GeneGO pathway analysis of altered ATP binding proteins on
individual cell lines.

A427 p Value

LRRK2 in neurons in Parkinson‘s disease 4.62 ˆ 10´11

Development_Slit-Robo signaling 3.63 ˆ 10´10

Development_Regulation of cytoskeleton proteins 2.76 ˆ 10´9

Cytoskeleton remodeling_Regulation of actin cytoskeleton by Rho GTPases 1.53 ˆ 10´8

Regulation of CFTR activity (normal and CF) 7.02 ˆ 10´8

A549 p Value

LRRK2 in neurons in Parkinson‘s disease 1.54 ˆ 10´13

Cytoskeleton remodeling_Cytoskeleton remodeling 2.38 ˆ 10´10

Glycolysis and gluconeogenesis (short map) 1.29 ˆ 10´9

Cytoskeleton remodeling_Hyaluronic acid/ CD44 signaling pathways 4.43 ˆ 10´8

Cytoskeleton remodeling_TGF, WNT and cytoskeletal remodeling 6.59 ˆ 10´8

Calu-1 p Value

Glycolysis and gluconeogenesis (short map) 7.76 ˆ 10´7

Regulation of degradation of deltaF508-CFTR in CF 2.04 ˆ 10´6

Transcription_Role of Akt in hypoxia induced HIF1 activation 3.03 ˆ 10´6

LRRK2 and immune function in Parkinson's disease 1.88 ˆ 10´5

Glycolysis and gluconeogenesis p.3 2.96 ˆ 10´5

Calu-6 p Value

Cytoskeleton remodeling_Cytoskeleton remodeling 4.86 ˆ 10´8

CFTR folding and maturation (normal and CF) 5.09 ˆ 10´8

Cell adhesion_PLAU signaling 1.11 ˆ 10´7

Development_VEGF signaling via VEGFR2—generic cascades 5.96 ˆ 10´7

Development_EGFR signaling pathway 1.3 ˆ 10´6

H157 p Value

LRRK2 in neurons in Parkinson‘s disease 2.21 ˆ 10´13

Neurophysiological process_Receptor-mediated axon growth repulsion 6.45 ˆ 10´13

Cytoskeleton remodeling_Cytoskeleton remodeling 3.35 ˆ 10´11

Development_Slit-Robo signaling 6.54 ˆ 10´11

Cytoskeleton remodeling_Regulation of actin cytoskeleton by Rho GTPases 1.14 ˆ 10´10
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Next, we focused on specific kinome responses to MEK inhibitors in each cell line given the
importance of kinase signaling in regulating cell growth and survival [27]. In total, 225 kinases, which
were quantified from the five cell lines, showed quite similar overall expression patterns between cell
lines (Figure 3a and Table S4); however, each cell line showed unique drug-induced altered kinase
list (Figure 3b and Table S5). This observation prompted us to hypothesize that each cell line could
show a distinct kinome response to MEK inhibition, and the trend of changes in kinases is illustrated
in kinome trees (Figure 4). Despite this heterogeneity, we observed a number of peptides that were
consistently altered by both MEK inhibitors in more than two cell lines, which suggests common
adaptive responses could exist (Table 2).

Given the importance of tyrosine kinases in cell growth and survival, we first focused on altered
tyrosine kinases (TK group) in each cell line. Despite the well-known role of drug-induced activation
of receptor tyrosine kinases in drug resistance, we could not observe significantly-altered receptor
tyrosine kinases from our results. However, we found that the non-receptor tyrosine kinase JAK1
is upregulated in A549 and Calu-1. It has been reported that MEK inhibitors induce the JAK-STAT
pathway promoting cancer cell invasiveness in melanoma [28], suggesting that MEK inhibitors could
induce a similar phenotype in KRAS mutant lung cancer. We also observed downregulation of focal
adhesion kinase FAK1 in Calu-1 and Calu-6, suggesting that MEK inhibition could lead to altered
integrin signaling and cell motility. Second, MEK inhibitors upregulated stress-activated protein
kinase (SAPK) signaling, including MKK6 (A427, A549, Calu-6) and MKK3 (Calu-1), both of which are
upstream of p38 MAPK. Third, MEK inhibitors downregulated mitotic kinases PLK1 and its upstream
Aurora A kinase (AURKA). Notably, this effect was observed in most of the cell lines, suggesting
potential crosstalk between MAPK signaling and cell cycle kinases in the context of KRAS mutant
lung cancer. Several preclinical studies have already indicated KRAS mutant cancers are specifically
vulnerable to inhibition of mitotic kinases [14,29,30]. However, significant clinical responses of mitotic
kinase inhibitors are still lacking in lung cancer [31,32]. It is, thus, possible that combined inhibition of
MAPK and mitotic kinases could be synergistic in the context of KRAS mutant lung cancer. Finally,
MEK inhibitors upregulated autophagy kinases ULK1 (A549 and Calu-1), ULK3 (A427), and AMPK
(A427 and Calu-1). Autophagy is a self-digestion process that is generally activated by nutrient
deprivation, but it is also known to be induced by therapeutic stresses in cancer cells, contributing to
drug resistance [33,34]. These observations are consistent with previous studies indicating RAF and
MEK inhibitors could induce cytoprotective autophagy, leading to drug resistance in the context of
BRAF mutant melanoma [35,36] and KRAS mutant lung cancer [37]. Our results reveal kinases that
are potentially responsible for autophagy induction in KRAS mutant lung cancer cells treated with
MEK inhibitors, further offering potential rational drug combinations.

The desthiobiotin-ATP probe employed in this study was originally developed for drug target
profiling to assess the specificity of kinase inhibitors [15,22], but we employed it here to assess global
ATP-binding proteome/kinome response to clinical MEK inhibitors in the biological context of various
KRAS mutant lung cancer cell lines. Gygi and his colleagues reported that desthiobiotin-ATP probe
did not specifically enrich active forms of kinases [38], thus, the changes are likely to be associated
with total protein level, rather than activity, at least in the context of kinases. The importance of
drug-induced transcriptome and kinome reprograming and its implication in drug resistance is
increasingly being recognized [9,10]. In light of these studies, the value added from our study
is heterogeneity of drug-induced kinome and ATP binding protein expressions in KRAS mutant
lung cancer. Our study also uncovered novel adaptive responses, suggesting that MEK inhibition
could lead to metabolic alteration, abnormal mitosis, and induction of cytoprotective autophagy.
Our results could be integrated with phosphoproteomics datasets to address how the drug-induced
kinome changes lead to modulation of the phosphoproteome. Further, synthetic lethal kinome RNAi
screening [39–42] or pharmacologic vulnerability screens [43] could be combined to assess translational
potential of our results.
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Table 2. Altered kinase peptides by both MEK inhibitors in more than two cell lines.

Gene Symbol Position Cell Line Direction of Change

ABL2 446 A427, Calu-1 Increase
AURKA 258 Calu-6, Calu-1, H157 Decrease
CHUK 146 Calu-6, H157 Decrease
CMPK1 16 Calu-6, H157 Decrease

CSNK2A2 159 A427, H157 Increase
JAK1 718 A549, Calu-1 Increase

LATS2 793 A549, A427, Calu-1 Increase
LATS2 697 A549, A427 Increase

MAP2K2 108 A549, Calu-6 Increase
MAP2K6 181 Calu-6, A427 Increase
MAST3 492 A427, H157 Increase
NADK2 76 Calu-6, A427, Calu-1 Increase
NEK2 143 Calu-6, H157 Decrease
NEK3 131 Calu-6, H157 Decrease
PGK1 184 A549, A427 Increase
PGK1 91 A427, Calu-1 Increase
PKM 322 A427, H157 Increase
PKM 66 A549, A427 Increase
PLK1 178 A549, Calu-6, Calu-1 Decrease
PLK1 82 A549, H157 Decrease

PRKAA1 40 A427, Calu-1 Increase
PRPF4B 727 A549, Calu-1 Increase
ROCK2 1065 A427, Calu-1 Increase
STK38 118 A427, Calu-1, H157 Increase

STK38L 119 A427, Calu-1 Increase
TK1 32 Calu-6, Calu-1 Decrease

TLK1 485 Calu-6, Calu-1 Increase
ULK1 140 A549, Calu-1 Increase

3. Materials and Methods

3.1. Cell Lines and Drugs

Cells were maintained in RPMI 1640 medium supplemented with 10% FBS. Cells were confirmed
to be free of mycoplasma using PlasmoTest (Invivogen, San Diego, CA, USA). AZD6244 and MEK162
were purchased from ChemiTek (Indianapolis, IN, USA). Drugs were reconstituted with DMSO at
50 mM concentration, and aliquots were stored at ´80 ˝C.

3.2. Drug Treatment and ATP Probe Labeling

Cells at 80% confluence were treated with DMSO (vehicle control) or 1 µM MEK inhibitors
(AZD6244 or MEK162) for 24 h; cell pellets were then harvested in ice-cold PBS and stored at
´80 ˝C until probe labeling. Cell lysates were prepared and labeled according to the manufacturer’s
recommendations for the Pierce Kinase Enrichment Kits and ActivX Probes (Thermo Scientific,
Rockford, IL, USA)). Briefly, cell pellets were re-suspended in 600 µL of Pierce IP lysis buffer and
sonicated. The lysates were cleared by centrifugation at 16,000 g for 10 min at 4 ˝C and desalted by
Zeba Spin Desalting Columns (Thermo Scientific, Rockford, IL, USA). The concentration of protein
was measured using a Bradford assay, and a total of 1 mg was used for ATP probe labeling. MnCl2
was added to the lysate to a final concentration of 20 mM for 10 min, and then the desthiobiotin-ATP
probe was added at a final concentration of 5 mM for 15 min. All reactions were performed at
room temperature.
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3.3. MS Sample Preparation and LC-MS/MS Analysis

The probe-labeled lysates were denatured in 5 M urea and 5 mM DDT at 65 ˝C for 30 min and
then reduced in 40 mM iodoacetamide at room temperature for 30 min. The lysates were desalted
by Zeba Spin Desalting Columns and then digested with 20 µg/mL of trypsin for 2 h at 37 ˝C.
Desthiobiotinylated peptides were captured by 50 µL slurry of high-capacity streptavidin beads for
1 h. The beads were washed with lysis buffer, PBS buffer, and LC-MS grade water in sequence with
four washes for each buffer, and then the peptides were eluted by 50% acetonitrile in 0.1% formic acid
(TFA) water. The peptides were lyophilized in a vacuum concentrator and re-suspended in 20 µL of
injection buffer containing 2% acetonitrile and 0.1% TFA. The LC-MS/MS analysis was performed as
previously described [45].

3.4. Data Analyses

The peptides identified in the mass spectrometry data were analyzed and quantified
using MaxQuant Version 1.2.2.5 (http://www.maxquant.org) [21]. For the search parameters,
desthiobiotin-ATP labeling was selected, enzyme specificity was set to fully tryptic cleavage, allowing
a 10 ppm mass error in the main search, a maximum number of three modifications per peptide, and
four maximum missed cleavages. Fragment ion tolerance was set to 0.6 Da. Protein and peptide false
discovery rates were set to 0.1 and 0.05, respectively, and the minimum peptide length was set to six
amino acids. MS/MS data were searched against the UniProt human database combined with common
contaminants and concatenated with the reversed versions of all sequences using the Andromeda
search engine integrated into MaxQuant. The protein kinases were annotated using GeneGO (Boston,
MA, USA) and intensity of each peptide corresponding to protein kinases were used to calculate the
inhibition of each drug on the relevant peptide compared with DMSO control group.

Peptide site intensities were extracted from MaxQuant output and input into the Libaffy software
package [46]. Libaffy features access to iterative rank-order normalization (IRON), which we have
previously used in proteomics applications [47,48]. Peptide site intensities were normalized using
IRON before being input into R/RStudio with corresponding metadata [49,50]. Peptides were filtered
to remove posterior error probability >0.1, reverse sequences, non-human peptides, and for peptides
that were identified but had no corresponding intensities. Intensities were then log2-transformed.
Concordance of log2 ratios between control and treatment pairs was measured using Pearson’s
correlation (herein referred to as R). GeneGO MetaCore was used to annotate individual proteins from
the identified protein groups [51] and used for pathway searches on all proteins in identified protein
groups. A protein group was included in the pathway search if there was at least one standard deviation
change in the log2 ratios of both treatments. Inconsistent log2 ratios (i.e., the log2 ratio indicates an
increase from AZD6244 but a decrease from MEK162) were not included in the pathway analysis.

4. Conclusions

Our results demonstrate the utility of the desthiobiotin-ATP probe coupled with LC-MS/MS in
assessing adaptive kinome/ATP-binding proteome responses to cancer drugs. This approach could
allow mass spectrometry analysis of multiple samples or conditions (e.g., time points) since it does not
require a large amount of total protein from each sample and peptide fractionation is unnecessary prior
to LC-MS/MS analysis; this approach could be an alternative to kinase inhibitor bead-based kinome
profiling and phosphoproteomics. These approaches are complementary and could be combined to
identify novel adaptive resistance mechanisms.

Supplementary Materials: The following are available online at www.mdpi.com/2227-7382/4/2/16/s1: Table S1.
Full list of ATP-binding proteins identified and quantitated on individual cell lines. Table S2. Full list of altered
ATP-binding proteins on individual cell lines. Table S3. Full list of enriched pathways from altered ATP-binding
proteins on individual cell lines. Table S4. Full list of kinases identified and quantitated on individual cell lines.
Table S5. Full list of altered kinases on individual cell lines.
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