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The repeated and improper use of antibiotics had led to an increased number of multiresistant bacteria. Therefore, new lead struc-

tures are needed. Here, the synthesis and an expanded structure—activity relationship of the simple and antistaphylococcal amide

nematophin from Xenorhabdus nematophila and synthetic derivatives are described. Moreover, the synthesis of intrinsic fluores-

cent derivatives, incorporating azaindole moieties was achieved for the first time.

Introduction

Microorganisms present a rich source of bioactive natural prod-
ucts of pharmacological importance against an emerging
number of multiresistant bacteria [1]. Such examples are

Xenorhabdus sp., Gram-negative entomopathogenic bacteria

which live in symbiosis with soil-living nematodes of the
genera Steinernema [2,3]. During a complex life cycle the
nematode—bacteria pair infects and kills insect larvae, whereby
Xenorhabdus produce a broad range of natural products with
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antimicrobial properties [4-8]. As the Steinernema—Xeno-
rhabdus complex is not pathogenic against humans, they are

widely used as biocontrol agents in agriculture [9].

Natural products produced by bacteria play an important role in
the bacteria/nematode/insect life cycle and most natural prod-
ucts are non-ribosomal peptides (NRP), e.g., rhabdopeptides
[10,11] and polyketide-NRP hybrids, like xenocoumacins
[12,13]. The quite simple amide nematophin (1) is another well-
known member of natural products common in all Xenorhabdus
nematophila strains and was first described by Li et al. in 1997
for their antimicrobial properties [14]. Simply, 1 is the conden-
sation product of 3-methyl-2-oxopentanoic acid and tryptamine
and showed good activities against different Gram-positive
pathogens like Staphylococcus aureus, including methicillin-
resistant S. aureus (MRSA) comparable with activities of
vancomycin. Recently, the biosynthesis of 1 was elucidated by
our group as well as the 2-phenylethylamine derivative 2 with
an a-keto amide moiety, which could be identified upon hetero-
logous expression of the appropriate gene cluster in E. coli [15].
Moreover, elongated nematophin derivatives, namely neval-
tophins from Xenorhabdus PB62.4, were described incorporat-
ing an additional valine. As 1 and nevaltophines act as pro-
phenoloxidase activators, it is suggested that they have a specif-
ic role in the bacteria/nematode/insect symbiosis.

Little or nothing is known about the mode of action of this
simple amide against S. aureus. Structure—bioactivity studies
revealed that the a-keto moiety and the amide moiety itself are
required for bioactivity [16]. These findings suggest a specific
interaction of this electrophilic moiety with a nucleophile. Such
an interaction was previously reported for the macrocyclic
peptide cyclotheonamide A, isolated from marine sponge
Theonella sp. Cyclotheonamide A is described as a potent in-
hibitor of various proteases, in particular trypsin and thrombin
[17-19]. Hereby, the a-keto amide covalently binds to the serine
oxygen in the active site under formation of a stable tetrahedral
hemiketal. Furthermore, substitution of the indole hydrogen by
alkyl, aryl or benzyl improves the in vitro antistaphylococcal
activity. In contrast, the incorporation of smaller heterocycles
like pyridine and imidazole as well as isosteric benzimidazole
instead of the indole moieties lead to a loss of antibacterial ac-
tivity. Kennedy et al. could synthesize a 2-phenyl derivative
that showed nanomolar activity against S. aureus [20]. To the
detriment of this compound class, all derivatives lose their anti-
bacterial activity in the presence of serum in vitro in serial broth
and agar dilution method [16,20]. Even with the use of charged
groups as modifiers, serum-protein binding could not be
avoided. However, we were interested in expanding the afore-
mentioned structure—activity studies regarding the substitution

of the indole moiety by different aromatic systems as well as
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substitution of side chains in the a-keto carboxylic acids to
generate more derivatives of this fascinating small and bioac-

tive amide.

Results and Discussion

We first synthesized 1 and 1-methylnematophin (3) as stan-
dards to confirm preliminary results. We then initiated the syn-
thesis of derivatives 2, and 4-12. Briefly, the appropriate a-keto
carboxylic acid was coupled to the respective amine. Amide
bond formation was achieved using 1-ethyl-3-(3-dimethyl-
aminopropyl)carbodiimide hydrochloride (EDC-HCI),
1-hydroxybenzotriazole (HOBt) and N,N-diisopropylethyl-
amine (DIPEA) in DMF under microwave irradiation
(Scheme 1). Racemic 1 was synthesized using tryptamine and
(rac)-3-methyl-2-oxopentanoic acid. Similarly, compounds 2—7
were synthesized using different amines including 2-phenyl-
ethylamine (for 2), 1-methyltryptamine (for 3), 2-(2-
naphthyl)ethylamine hydrochloride (for 4), 2-(1-naphthyl)ethyl-
amine hydrochloride (for §5), 2-(1H-inden-3-yl)ethylamine
hydrobromide (for 6) [21], and 2-(1-benzofuran-3-yl)ethyl-
amine (for 7), respectively. Compounds 8-12 were synthesized
by coupling tryptamine with different a-keto carboxylic acids,
including 3-furylglyoxylic acid (for 8), 3-indoleglyoxylic acid
(for 9), phenylglyoxylic acid (for 10), and isomeric
3-methylpent-2-enoic acid (for 11 and 12) [22], respectively.
Compounds 11 and 12 were separated during the isolation
process and initially constructed to enable target identification.
Compounds 11 and 12 might act as Michael acceptor (a,p-
unsaturated carbonyl) and attach irreversibly and covalently to a
potential target [23]. After purification and characterization, the
above mentioned compounds were tested against different path-
ogenic strains, i.e., methicillin-susceptible S. aureus (MSSA),
methicillin-resistant S. aureus (MRSA), Enterococcus faecalis,
and Micrococcus luteus. The yields and bioactivities are sum-
marized in Table 1 (and Table S1, Supporting Information
File 1).

O ) O H
2 I
RAHW/OH + HZN/\/R R1M\H/N\/\R2
O (0]

Scheme 1: General procedure for the synthesis of nematophin and
related derivatives. i) 1.5 equiv a-keto carboxylic acid, 1.0 equiv amine,
1.5 equiv EDC-HCI, 1.5 equiv HOB, 2.0 equiv DIPEA in DMF

(c 0.1 M), 25 W, 75 °C, 20 min.

As previously described, the minimum inhibitory concentration
(MIC) of 1 improves by alkylation of the indole moiety as seen
for 3 [16] even 1 and 3 show a good activity against MRSA. Al-
though for all other tested compounds no better activity than

that of the original natural product 1 was observed, 6 showed an
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Table 1: Summary of synthesized nematophin derivatives (1-12) and their bioactivity (MIC in ug/mL) against S. aureus (MSSA and MRSA).
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Table 1: Summary of synthesized nematophin derivatives (1-12) and their bioactivity (MIC in ug/mL) against S. aureus (MSSA and MRSA).
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activity comparable to 1 against MRSA. Since only a slight ac-
tivity could be observed for some compounds against addition-
ally tested bacteria, i.e., M. luteus ATCC 9431 and E. faecalis
ATCC 29212, a staphylococcal-specific target is suggested. All
derivatives with a-keto-B-methylvaleric moiety (1-7) were
active against S. aureus. Substitution of the side chain in the
a-keto amide significantly affects the bioactivity, as seen for
compounds 8, 9 and 10. Furthermore, attempts to identify a
possible target by the incorporation of an o,-unsaturated car-
bonyl moiety, as it should bind irreversible to a potential target,
instead of the a-keto amide in 11 and 12 are stalled as it led to a

complete loss of bioactivity.

To the best of our knowledge, no one has ever tried to incorpo-
rate azaindole moieties in small natural products and tried to use
them for fluorescence imaging. This approach may circumvent
the above-mentioned impasse and should allow at least localiza-
tion studies in S. aureus cells. Azaindoles are isosteric to indole,
whereas one of the endocyclic methines is substituted with
nitrogen, and thus leads to an increased and red-shifted fluores-
cence [24-26]. Budisa and co-workers have already used
azatryptophans to study proteins with intrinsic green and blue
fluorescence [27,28]. The azaindole moiety allows a linker-less

incorporation of a fluorescent label with minimal disturbance.

Therefore, four fluorescent derivatives of nematophin were de-
signed and their synthesis initiated. The syntheses of the appro-
priate azatryptamine derivatives (17, 18, 25, and 26) were
achieved from the non-expensive and commercially available 4-

and 7-azaindole (13 and 20), respectively. First, 13 and 20 were

converted in a Friedel-Crafts acylation with chloroacetyl chlo-
ride (CICH,COCI) and aluminium chloride (AlCl3) in DCM to
give compounds 14 and 21. Subsequent reduction was achieved
with triethylsilane (Et3SiH) in TFA to give 15 and 22. For the
synthesis of the primary amine, halides 15 and 22 were con-
verted in a Gabriel synthesis with potassium phthalimide in
DMF to the appropriate phthalimides 16 and 23 [29]. These
intermediary compounds 16 and 23 also allowed an N-methyla-
tion of the azaindole moiety with sodium hydride (NaH) and
methyl iodide (Mel) to yield 17 and 24. By ethanolic hydrazi-
nolysis and microwave irradiation the phthalimides (16, 17, 23,
and 24) were deprotected yielding the desired primary amines
in good yields (18, 19, 25, and 26) (Scheme 2 and Scheme 3).
With all building blocks available, the synthesis of the appro-
priate fluorescent derivatives was performed as before, using
(rac)-3-methyl-2-oxopentanoic acid. Yields after coupling and

bioactivities are summarized in Table 2.

Whereas the biological data, for example against S. aureus or
MRSA shows a decreased activity for all azaindole derivatives
(compare 1 with 27 or 28) as observed for isosteric benzimida-
zoles [20], an increased activity for all methylated derivatives
(compare pairs of 1/3, 27/28, and 29/30) could be observed for
at least MSSA. This observation may correlate to the molecular
polarity, and thus hydrophilicity of the cyclic moiety, whereas
almost all hydrophobic moicties showed good antistaphylo-
coccal activity as seen for naphthyl (4 and 5) and indene (6).
However, the increase of hydrophobicity influences the passive
membrane diffusion and therefore might influence how the

compounds get to their actual target [30]. Moreover, a specific
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Scheme 2: Synthesis of azatryptamines (4-azatryptamine (4ATRA) and 1-methyl-4-azatryptamine (1M4ATRA)). i) 5.0 equiv AICl3, 5.0 equiv chloro-
acetyl chloride in DCM, overnight, rt 67%; ii) 7.0 equiv EtzSiH in TFA, overnight, rt, 93%; iii) 1.1 equiv potassium phthalimide, in DMF, 100 °C, 21%;
iv) 1.2 equiv NaH, 1.0 equiv Mel in DMF, overnight, rt, 62%; v) 5.0 equiv NyH4-H»0 in EtOH, 90 °C, 2 h, 25 W, 99% to quant.

O
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Scheme 3: Synthesis of azatryptamines (7-azatryptamine (7ATRA) and 1-methyl-7-azatryptamine (1M7ATRA)). i) 5.0 equiv AICl3, 5.0 equiv
CICH,COCI in DCM, overnight, rt 32%; ii) 7.0 equiv Et3SiH in TFA, overnight, rt, 93%,; iii) 1.1 equiv potassium phthalimide, in DMF, 100 °C, 56%;
iv) 1.2 equiv NaH, 1.0 equiv Mel in DMF, overnight, rt, 57%; v) 5.0 equiv NoH4-H20 in EtOH, 2 h, 90 °C, 25 W, 92% to quant.

minimal size of the cyclic moiety must be fulfilled as, e.g., 2
with a phenyl moiety is less active in vitro.

Conclusion
Despite their lower bioactivities, the azaindole derivatives are

currently under investigation upon their use for fluorescence

imaging. Furthermore, derivatives 3 and 6 will be further
studied for identification of their actual target in S. aureus. This
could be a serine protease that can also be addressed in the
future by more stable compounds. Moreover, it might be
possible to use nematophin and its derivatives for topical treat-

ment of S. aureus infections.
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Table 2: Summary of synthesized nematophin derivatives (27-30) and their bioactivity (MIC in ug/mL) against S. aureus (MSSA and MRSA).
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