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1  | INTRODUC TION

The vast networks of interconnected blood vessels found in tissues 
throughout the body play significant roles in oxygen transport, nutri-
ent delivery, and inflammation. The microvasculature is a key effector 

system in healthy and pathological conditions: serving primary roles 
in maintaining tissue homeostasis1 as well as the pathogenesis of 
disease.2 The morphological structure of a microvessel network is 
closely intertwined with its biological functions, and quantitative 
changes in structure provide evidence of an altered physiological or 
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Abstract
Alterations	 in	 vascular	 networks,	 including	 angiogenesis	 and	 capillary	 regression,	
play key roles in disease, wound healing, and development. The spatial structures of 
blood vessels can be captured through imaging, but effective characterization of net-
work architecture requires both metrics for quantification and software to carry out 
the	analysis	in	a	high-throughput	and	unbiased	fashion.	We	present	Rapid	Editable	
Analysis	of	Vessel	Elements	Routine	(REAVER),	an	open-source	tool	that	research-
ers can use to analyze high-resolution 2D fluorescent images of blood vessel net-
works, and assess its performance compared to alternative image analysis programs. 
Using a dataset of manually analyzed images from a variety of murine tissues as a 
ground-truth,	REAVER	exhibited	high	accuracy	and	precision	for	all	vessel	architec-
ture metrics quantified, including vessel length density, vessel area fraction, mean 
vessel diameter, and branchpoint count, along with the highest pixel-by-pixel accu-
racy	for	the	segmentation	of	the	blood	vessel	network.	In	instances	where	REAVER's	
automated segmentation is inaccurate, we show that combining manual curation with 
automated	analysis	 improves	the	accuracy	of	vessel	architecture	metrics.	REAVER	
can be used to quantify differences in blood vessel architectures, making it useful in 
experiments designed to evaluate the effects of different external perturbations (eg, 
drugs	or	disease	states).
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pathological	state.	Examples	include	vessel	diameter	as	an	indicator	
of vasodilation, vasoconstriction, or arteriogenesis,2 as well as vas-
cular length density as an indicator of altered levels of tissue oxygen-
ation3 or tissue regeneration.4 Since the structural architecture of 
microvessel networks is closely intertwined with function, changes 
in microvessel architecture can, therefore, be used to assess cellular 
and tissue level responses to disease and treatments. Confocal im-
aging of intact microvascular networks labeled with fluorescent tags 
yields images with high signal to noise5 and serves as a gold standard 
method for visualizing the structure of microvascular networks.6

Several image-processing programs have been previously de-
veloped to quantify fluorescent images of microvessel architecture 
in	 an	 automated	 manner,	 including	 Angioquant,7	 Angiotool,8 and 
RAVE.9 While these programs have been used in various studies, 
they are estimated to have a low degree of adoption by the research 
community relative to the multitude of studies that have quantified 
microvascular architecture using a manual approach.2 Furthermore, 
the publications that introduce these tools for automation lack a 
common method for evaluating performance and provide non-
standard forms of metrics that make comparison between them 
difficult.2 For image segmentation, manual analysis through visual 
inspection remains the gold standard technique,10-12 defined as 
the method accepted to yield results closest to the true segmenta-
tion. Using manual analysis as an approximation of ground-truth13 
can serve as a basis to compare performance between automated 

analysis methods by classifying disagreement from ground-truth as 
error, as done previously in other applications.14

In this paper, we establish and validate a new open source tool, 
named	REAVER,	for	quantifying	various	aspects	of	vessel	architecture	
in	fluorescent	images	of	microvascular	networks	(Figure	1A)	that	uses	
simple image processing algorithms to automatically segment and 
quantify vascular networks, while offering the option for manual user 
curation	(Figure	1B).	We	use	a	benchmark	dataset	of	fluorescently	la-
beled images from a variety of tissues that exhibit a broad range of 
vascular	architectures	as	a	means	of	assessing	our	program's	general	
ability to automatically analyze vessel structure and minimize possi-
bility of bias resulting from examining any single tissue. The error of 
REAVER's	output	to	ground-truth	for	various	output	metrics,	includ-
ing vessel length density, vessel area fraction, vessel tortuosity, and 
branchpoint count, is compared to the other vascular image analysis 
programs listed above. The accuracy of the output metrics, defined 
as the closeness of a measured value to ground-truth,15 is measured 
based on absolute error.16-18 Precision, related to the random errors 
caused by statistical variability, is measured by comparing the vari-
ance	of	 error	between	different	programs.	REAVER's	 effectiveness	
is highlighted by its greater accuracy and precision compared to all 
other programs. Given the ubiquity of high-resolution fluorescent mi-
croscopy and the established need for automated, rigorous, and un-
biased methods to quantify vessel architectural features, we present 
REAVER	as	an	image	analysis	tool	to	further	microvascular	research.

F I G U R E  1  REAVER	is	an	image	analysis	program	for	quantification	of	vascular	networks	in	fluorescent	images.	A,	Screenshot	of	REAVER	
graphical user interface. B, Flow chart of data processing pipeline
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2  | MATERIAL S AND METHODS

2.1 | Code and data availability

Rapid	Editable	Analysis	of	Vessel	Elements	Routine	source	code	 is	
available under a BSD 3.0 open source license at: https://github.
com/uva-peirc	e-cottl	er-lab/public_REAVER.	It	was	written	MATLAB	
2018a and requires the image processing toolbox to run. Benchmark 
image dataset and annotations are publicly available and linked from 
the repository main page.

2.2 | Murine retinal harvest

All	procedures	were	approved	by	the	Institutional	Animal	Care	and	
Use	Committee	at	 the	University	of	Virginia	and	completed	 in	ac-
cordance with our approved protocol under these guidelines and 
regulations.	We	used	C57Bl6/J	mice	from	The	Jackson	Laboratory	
(JAX	 stock	 #000664).	Mice	were	 sacrificed	 via	 CO2	 asphyxiation	
with cervical dislocation for secondary sacrifice, eyes enucleated, 
and	incubated	in	4%	PFA	for	10	minutes.	A	single	mouse	was	used	
for	the	36-image	dataset	across	tissues	(Figures	3	and	4,	Figure	S1)	
and	for	the	retinal	location	dataset	(Figure	S3)	to	examine	vascular	
heterogeneity within a single biological sample.

2.3 | Immunohistochemistry and confocal 
imaging of retinas

Retinas	were	labeled	with	IB4	Lectin	Alexa	Fluor	647	(ThermoFisher	
Scientific	I32450)	and	imaged	at	using	a	20x	objective	(530	um	field	
of	 view)	 and	 a	 60×	 objective	 (212	μm	 field	 of	 view)	with	 a	Nikon	
TE-2000E	point	scanning	confocal	microscope.	A	total	of	36	2D	im-
ages were obtained from z-stacks through maximum intensity pro-
jection from six different tissues and used as a benchmark dataset 
for segmenting vessels and quantifying metrics of vessel architec-
ture. To establish ground-truth, all images were manually analyzed 
in ImageJ.19

2.4 | REAVER algorithm

Rapid	Editable	Analysis	of	Vessel	Elements	Routine's	algorithm	was	
implemented	in	MATLAB	and	designed	to	process	the	image	in	two	
separate	stages:	a)	segmentation	based	on	intensity	over	local	back-
ground	and	b)	skeletonization	and	refinement.	Segmented	vascula-
ture is identified through a combination of filtering, thresholding, 
and binary morphological operations. The image is first blurred with 
a light blurring averaging filter with an 8-pixel neighborhood, and 
then,	an	image	of	the	background	(low	frequency	features)	is	calcu-
lated with a larger user-defined heavier averaging filter (default: 128 
pixels	 in	 length,	yielding	40	µm	for	20×	images	and	27	µm	for	the	
60×	images).	To	create	a	background-subtracted	image,	the	heavily	

blurred background image is subtracted from the lightly blurred 
image. The background-subtracted image is thresholded by a user-
defined	scalar	 (default:	0.045)	 to	generate	an	 initial	 segmentation.	
Next, the segmentation border is smoothed and extraneous pix-
els are removed with an 8-neighborhood convolution filter that is 
thresholded	such	that	only	pixels	with	at	least	4	neighbors	are	kept.	
Leveraging	 the	 domain-specific	 knowledge	 that	 vessel	 networks	
are comprised of large connected components, those with area 
less than a user-defined value are removed (default: 1600 pixels, 
yielding	155	µm2	 for	20×	and	69	µm2	 for	60×).	To	further	smooth	
segmentation borders, the complement of the segmented image is 
convolved	with	an	11-square	averaging	filter	(length	of	3.4	µm2 for 
20×	and	2.3	µm2	for	60×),	and	values	are	thresholded	above	0.5.	To	
fill in holes within segmented vasculature, connected components 
of the complemented segmentation with less than 800 pixels (area 
of	77	µm2	for	20×,	34	µm2	for	60×)	are	set	to	true.	The	images	are	
then thinned to compensate for a net dilation of segmentation from 
earlier processing steps. Finally, connected components of size less 
than	a	user-set	value	(default:	1600	pixels,	yielding	155	µm2	for	20×	
and	69	µm2	 for	60×)	are	 removed	again	 to	generate	 the	 final	 seg-
mented image.

To generate the vessel centerline, the segmented image border is 
further smoothed with eight iterative applications of a 3-pixel square 
true convolution kernel thresholded such that pixels with at least 
4	neighbors	are	set	to	true.	To	fillsegmentation	based	on	 intensity	
over local in small holes and further clean the segmentation edge, 
the	MATLAB	binary	morphological	operations	“bridge”	and	“fill”	are	
applied in that order four times, along with an application of a 3-pixel 
square	majority	filter	where	every	pixel	needs	5	or	more	true	pixels	
in the square to pass. Connected components in the complement of 
the	segmentation	with	pixel	area	less	than	80	pixels	(area	of	7.7	µm2 
for	20×	and	3.4	µm2	for	60×)	are	set	to	true	in	order	to	fill	in	holes	
within segmented vessels. The initial vessel centerline is identified 
by	 applying	 the	 binary	morphological	 “thin”	 an	 infinite	 number	 of	
times to the segmentation with replication padding applied; other-
wise, thinned centerlines would not extend to the end of the image.

To filter out centerlines for segments that are too thin, a 
Euclidean	distance	transform	is	calculated	from	the	complement	of	
the segmented image and sampled at the pixel locations of the ves-
sel centerline, resulting in a thickness centerline image where the 
vessel centerline contains values for the radius of the vessel in that 
region. The thickness centerline is divided into individual vessel seg-
ments via its branchpoints, the average radius calculated for each, 
and segments that fall below the user-defined thickness threshold 
were	removed	(default:	3	pixels,	yielding	0.9	µm	for	20×	and	0.6	µm	
for	 60×).	 The	 refined	 vessel	 centerline	 was	 further	 cleaned	 with	
MATLAB’s	“spur”	and	“clean”	morphological	operations,	along	with	a	
final morphological thinning. Branchpoints and endpoints are identi-
fied	with	MATLAB's	built	in	morphological	operations,	ignoring	fea-
tures located at the image border because edge effects cause false 
positives.

We note that while this algorithm was tested with a benchmark 
image dataset that included a practical range of resolutions with the 

https://github.com/uva-peirce-cottler-lab/public_REAVER
https://github.com/uva-peirce-cottler-lab/public_REAVER
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F I G U R E  2  Manual	segmentation	and	analysis	can	be	used	as	ground-truth	in	comparing	quantification	pipelines.	Representative	image	
processed	with	A,	manual	analysis,	B,	AngioQuant,	C,	AngioTool,	D,	RAVE,	and	E,	REAVER	with	input	(green),	segmentation	(yellow),	
centerline	(blue),	and	branchpoints	(red)	of	vascular	network	(scale	bar	50	um)

(A)

(B)

(C)

(D)

(E)



     |  5 of 14CORLISS et aL.

F I G U R E  3  REAVER	demonstrates	higher	accuracy	and	precision	across	metrics	compared	to	alternative	blood	vessel	image	analysis	
programs.	To	evaluate	accuracy,	absolute	error	of	A,	vessel	length	density	(mm/mm2),	C,	vessel	area	fraction,	E,	vessel	diameter	(µm),	and	G,	
branchpoint count compared to manual results (two-tailed paired t tests with Bonferroni correction, 6 comparisons, α	=	0.05,	N	=	36	images).	
For	analysis	of	precision,	the	absolute	value	of	residual	error	to	group's	median	error	for	B,	vessel	length	density	(mm/mm2),	D,	vessel	area	
fraction,	F,	vessel	diameter	(µm),	and	H,	branchpoint	count	(two-tailed	paired	t	tests	with	Bonferroni	correction,	6	comparisons,	α	=	0.05,	
N	=	36	images).	For	the	annotations	above	each	plot,	significant	pairwise	comparisons	between	groups	with	Bonferroni	adjusted	p-values	
(letters).	Groups	are	annotated	when	there	is	no	evidence	of	nonzero	bias	with	error,	as	determined	by	the	origin	falling	within	the	bounds	of	
the	95%	confidence	interval	of	the	mean	with	Bonferroni	adjustment	of	4	comparisons	(pound	sign).	Vessel	metric	diagrams	were	modified	
from Ref. 2
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default image processing set of parameters, the parameters are reso-
lution-dependent to some degree. We argue that the resolution range 
we	used,	 images	acquired	at	20×	and	60×	magnification,	 represents	
the most relevant range of modalities for probing complete micro-
vascular	structures.	Lower	magnification	below	20×	lacked	sufficient	
resolution to discern the structure of the smallest vessels of the micro-
vascular	network,	while	higher	magnification	over	60×	sampled	such	
small areas of vasculature that estimates of various metrics of vascular 
structure would be unreliable. Using resolutions far outside this range 
would require changing the default image processing parameters.

2.5 | Manual analysis of benchmark dataset

To make the time demands for establishing ground-truth manage-
able, a mixed-manual analysis approach was used to analyze the 
benchmark dataset, where a simple set of ImageJ macros provided 
an initial guess for thresholding and segmenting blood vessels, and 
then, the user manually used the paintbrush to draw in changes re-
quired. The initial automated guess was used to save time, but there 
is a possibility that it biased the ground-truth data to unfairly favor 
REAVER's	 results.	 To	 check	 whether	 bias	 in	 ground-truth	 could	

alter statistical outcomes, a completely manual segmentation was 
compared to the mixed-manual method in a subset of images from 
the benchmark dataset (N = 6 images, one from each tissue type, 
Figure	S5A-D).	The	completely	manual	analysis	was	conducted	by	a	
different user with no cross-training between them to represent the 
worst-case estimation of disagreement between the two methods. 
The disagreement of four output metrics (vessel length density, 
vessel	 area	 fraction,	 vessel	 diameter,	 and	 branchpoints)	 was	 ex-
amined	via	Bland-Altman	plots,	and	all	metrics	had	no	evidence	of	
bias (N = 6 images, P-values	displayed	in	each	chart,	Figure	S5E-H,	
no multiple comparisons correction applied for conservative inter-
pretation).	The	width	of	the	confidence	intervals	of	the	mean	was	
calculated based on the 6 sample images (normality approximation, 
Figure	S5,	ObsW	CI95).	Since	the	confidence	interval	is	based	on	the	
standard	error	(and	decreases	by	1/√n),	the	confidence	intervals	for	
the entire benchmark dataset is estimated based on increasing the 
sample size from 6 to 36 images with sample standard deviation 
fixed	(Figure	S5,	EstW	CI95).	We	found	these	estimated	confidence	
intervals were minor in size compaired to the effect sizes observed 
with the mean absolute error of the automated segmentation be-
tween	the	programs	tested	(Figure	S5,	columns	labeled	AngioQuant	
-	REAVER).

F I G U R E  4  REAVER	exhibits	higher	sensitivity	and	specificity	with	vessel	segmentation,	along	with	lower	execution	time	compared	
to	alternatives.	Using	the	test	dataset	of	images	with	manual	analysis	as	ground-truth,	the	A,	accuracy,	B,	sensitivity,	and	C,	specificity	of	
the segmentation for each program, along with D, execution time for each image (two-tailed paired t tests, with Bonferroni correction; 
6 comparisons, α	=	0.05,	N	=	36	images).	For	the	annotations	above	each	plot,	significant	pairwise	comparisons	between	groups	with	
Bonferroni	adjusted	p-values	below	significance	level	(letters)
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The mixed manual analysis used for ground-truth for the bench-
mark dataset was acquired through manual curation of an initial au-
tomated threshold using macros in ImageJ to provide an initial guess 
of	what	structures	in	the	image	were	considered	vessels.	Each	image	
was loaded into ImageJ and an initial segmentation was calculated as 
a basis for manual curation. The image was segmented using a macro 
that removed high frequency features, applied local thresholding 
using the Phansalkar method,20 decreased noise with the despeckle 
function, removed binary objects of pixel area less than 100 pixels, 
morphologically	opened	the	image	(erosion	followed	by	dilation),	ap-
plied a median filter on the adjacent four pixel neighborhood, and 
finally enhanced the brightness of the image for visibility.

Following this initial segmentation, trained editors used the 
paintbrush tool to correct errors in the segmentation. The total time 
to	correct	the	segmentation	was	recorded.	After	the	segmentation	
was adjusted to satisfaction, another ImageJ macro was run to gener-
ate a preliminary skeleton of the image. This script applied a median 
filter	of	radius	9	and	the	ImageJ	Skeletonize	operation.	Once	again,	
the curator used the paintbrush tool to correct the automatically 
generated skeleton. Special care was taken to ensure the skeleton 
had a width of only one pixel. The total time to correct the skeleton 
was recorded. The segmentation was run through the same analysis 
code that the other automated methods were analyzed with. The cu-
rator then tagged each branchpoint in the skeleton and recorded the 

total count and locations. These data were used as ground-truth to 
compare the automated analysis of several vessel architecture image 
processing pipelines.

2.6 | Image quantification of benchmark dataset

Each	software	package	provided	different	collections	of	metrics	cal-
culated in different ways. To fairly evaluate program performance in 
an unbiased fashion, a collection of four metrics was selected that 
could be calculated from the output data supplied by each program: 
specifically, the segmented vasculature image and the vessel center-
line image. These output images were collected from each program 
and then analyzed with the same code to quantify the vessel length 
density, vessel area fraction, mean vessel diameter, and number of 
branchpoints. If these output images were not available in the pro-
gram, we either inserted code to export them to disk, or captured 
them from the program graphical display. Some of the programs had 
adjustable settings that altered the image analysis process: Default 
image processing settings were used for all programs as a test of 
general performance with quantifying vascular architecture from 
fluorescently labeled images.

AngioTool	is	an	open-source	package	written	in	JAVA.	We	could	
not successfully recompile the program to access and export the 

F I G U R E  5   Curation of automatic 
image segmentation can enhance 
accuracy of output metrics. Comparison 
of	error	with	A,	vessel	length	density	
(mm/mm2),	C,	vessel	area	fraction,	E,	
vessel	diameter	(µm),	and	D,	branchpoint	
count from automated analysis using 
default parameters before and after 
manual curation of image segmentation. 
Comparison	of	error	with	E,	vessel	length	
density, F, vessel area fraction, G, vessel 
diameter, and H, branchpoint count 
from automated analysis using degraded 
parameters before and after manual 
curation of image segmentation (for each 
of the two datasets, two-tailed paired 
t	tests	with	Bonferroni	correction,	4	
comparisons, α	=	0.05,	N	=	36	images)
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output images directly and therefore had to use indirect means to 
obtain	output	 images.	An	 image	was	 imported	and	processed	with	
default	settings	(vessel	diameter:	20,	vessel	intensity:	[15,	255],	no	re-
moval	of	small	particles,	and	no	filling	of	holes).	Images	of	the	segmen-
tation and centerline were derived by adjusting the display settings of 
the postprocessed image and exported using the built-in Windows 
Print Screen function to capture images without distortion or com-
pression.	AngioQuant	is	written	in	MATLAB,	and	the	source	code	was	
modified to output the segmented image and vessel centerline. Input 
images	were	inverted	prior	to	importation	to	AngioQuant	and	the	de-
fault batch image processing parameters (kernel size: 1, edge tubules 
were	not	removed,	and	prune	size:	10).	All	other	numeric	values	were	
the	default	values	for	the	program.	RAVE	was	written	 in	MATLAB,	
and the source code was modified to directly export the generated 
segmentation	and	skeleton	for	quantification.	Each	 image	was	pro-
cessed individually with default settings.

Rapid	Editable	Analysis	of	Vessel	Elements	Routine	was	written	
in	MATLAB	and	outputs	the	segmentation	vessel	centerline	images	
in datafiles that are stored in the same directory as the analyzed 
images.	 All	 images	 were	 processed	 in	 batch	 mode	 with	 the	 de-
fault	values	(Averaging	Filter	Size:	128,	Grey	to	Binary	Threshold:	
0.045	Minimum	Connected	Component	Area:	1600,	Wire	Dilation	
Threshold:	0,	and	Vessel	Thickness	Threshold:	3).	Once	all	images	
were	processed	and	the	associated	mat	files	created	by	REAVER,	
the output images were extracted from these datafiles.

Once all 36 composite images containing the segmented image 
and the image centerline for each program were generated, a 
MATLAB	script	was	used	to	calculate	the	values	for	the	metrics	from	
the composites. The vessel area fraction was calculated as the frac-
tion	of	true	pixels	in	the	segmentation	image.	Vessel	length	density	
was calculated first by obtaining vessel pixel length through sum-
ming up all pixels in the vessel centerline images, converting this to 
millimeter units using the image resolution, and then dividing this 
by the image field of view in units of mm2. To calculate mean vessel 
diameter,	a	Euclidean	distance	transform	of	the	segmentation	chan-
nel	was	calculated	where	each	pixel's	value	was	equal	to	its	distance	
from the nearest false or un-segmented pixel. Then, the skeleton 
channel was used as a mask to sample the distance values corre-
sponding to the vessel centerlines to obtain the radius of vessel seg-
ments. These values were multiplied by two and subtracted by 1 to 
get diameter values and were converted to micrometer lengths using 
the	image	resolution.	The	MATLAB	binary	branchpoints	morpholog-
ical operation was used to find the branchpoints, and the number of 
branchpoints was calculated.

For analyzing the performance of the segmentation, true posi-
tives	(TP)	values	for	the	image	segmentation	were	calculated	by	tak-
ing the sum of the number of pixels that the program marked as true 
in the automated segmentation as well as the manual segmentation. 
Additionally,	true	negatives	(TN),	false	positives	(FP),	and	false	nega-
tives	(FN)	were	calculated	and	used	to	measure	segmentation	accu-
racy,	 sensitivity,	 and	 specificity	 (see	Methods:	Program	Evaluation	
Metrics).

2.7 | Image processing execution time

The processing times for the manual data were recorded using a 
stopwatch while the curator was editing the segmentation and skel-
eton	images	in	ImageJ.	The	processing	times	for	AngioQuant,	RAVE,	
and	REAVER	were	all	collected	by	adding	tic/toc	statements	that	log	
execution	 time	 into	 their	MATLAB	codes	 immediately	before	pro-
cessing began and immediately after processing finished. This gener-
ated measurements for each program which were recorded.

Since	 AngioTool	 was	 provided	 as	 an	 executable	 file	 and	 the	
source code could not be successfully compiled without editing the 
code for dependency issues, reorganizing the file structure, and 
downloading external required libraries, the processing times were 
collected differently than the other three programs. The third-party 
application	“Auto	Screen	Capture”	(https://sourc	eforge.net/p/autos	
creen	/wiki/Home/)	 was	 used	 to	 capture	 images	 of	 the	 AngioTool	
application's	progress	bar	approximately	every	15ms	starting	from	
before the start of processing to after it finished. The screenshots 
were automatically named as the exact time they were taken at the 
resolution of 1 ms The collection of screenshots was inspected to 
identify the start time for processing based on the mean time of the 
final screenshot before the progress bar changed and the one imme-
diately after. The end time for processing was determined by tak-
ing the mean time between the final image before the progress bar 
completed and the image immediately after. The difference between 
these two mean times was taken to get a total processing time. The 
total measurement error from collecting processing times in this way 
works	out	to	be	<3%	of	the	total	processing	time.

All	 processing	 times	were	 gathered	on	 a	 computer	with	32GB	
of	 DDR4-2666	 RAM	 with	 CAS	 Latency	 of	 15,	 an	 Intel	 i7-8700K	
3.7	GHz	6-Core	Processor,	and	a	GeForce	GTX	1080	graphics	card	
with	 8GB	 of	 VRAM.	No	 overclocking,	 parallel	 processing	 or	 GPU	
processing was used.

2.8 | REAVER curation analysis

Rapid	 Editable	 Analysis	 of	 Vessel	 Elements	 Routine's	 code	 was	
modified to include a timer object which triggered every 20 sec-
onds to save data to disk in the same manner as when manually 
specified.	This	timer	started	as	soon	as	the	curator	used	REAVER's	
automatic segmentation and finished when the curator saved the 
curation	 results.	 After	 the	 automatic	 segmentation	 finished,	 the	

TA B L E  1  Metric	classes

Metric class Metric names

Vessel	structure Vessel	length	density,	vessel	area	
fraction, branchpoint count, vessel 
radius

Program evaluation Ai,j, Pi,j,       ,       ,       ,        , S
A, SN, SC

A
B,D

i,r
A
F,D

i,r
A
B,S

i,r
A
F,S

i,r

https://sourceforge.net/p/autoscreen/wiki/Home/
https://sourceforge.net/p/autoscreen/wiki/Home/
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curator	manually	edited	the	segmentation	using	REAVER's	GUI	and	
periodically updated the wire frame button. The accuracy of met-
rics from the precuration output was compared to postcuration 
output with output from the manual analysis serving as ground-
truth. This process was initially conducted with default parameter 
values	for	REAVER’s	image	processing,	but	this	yielded	error	with	
very small effect size across metrics, making it difficult to test for 
the potential benefits of manually curating automated results.

To test whether image curation could help with lower quality 
image analysis results, this process was repeated with extreme shifts 
in default parameters, leading to a highly suboptimal set of parame-
ters that artificially created a lower quality segmentation with larger 
effect	size	for	error	to	ground-truth	(Averaging	Filter	Size:	64,	Grey	
to	Binary	Threshold:	0.07).	Additionally,	within	the	image	segmenta-
tion algorithm, reducing the extent of background subtraction, and 
the smoothing filter was changed to a minimum of 6 neighbors in-
stead	a	minimum	of	4	to	yield	a	true	pixel.

2.9 | Program evaluation metrics

The accuracy of the vessel structure metrics, defined as the close-
ness of a measured value to a ground-truth,15 was examined with 
absolute error16-18	(Figure	3A,C,E,G).	Let	Yi,j be the value of a given 
vessel structure metric (vessel length density, vessel area fraction, 
branchpoint	 count,	 and	vessel	diameter)	 from	 the	 ith image and jth 
program, and Gi,j be the corresponding ground-truth value derived 
from manual analysis. We define error, Ei,j, as the difference between 
a measurement and its corresponding ground-truth and assess ac-
curacy with the absolute error, Ai,j:

Measurements	with	low	absolute	error	are	considered	highly	ac-
curate. We define precision21 Pi,j of the jth program for ith image to be

where 
∼

Ej is the median of Eij across images, with i = 1,…, 36 images, 
using the variable transform from the Brown-Forsythe test of vari-
ance21	(Figure	3B,D,F,H).

Additionally,	we	proposed	metrics	that	quantify	the	agreement	
between	each	program's	vessel	segmentation	and	the	ground-truth	
(ie,	manual	 segmentation)	 across	 the	entire	 image	 including	evalu-
ating accuracy (SA),	 specificity	 (SC)	 and	 sensitivity	 (SN)	 (Figure	4A-
C).	The	definitions	of	these	metrics	depend	on	four	quantities:	true	
positives	(TP),	defined	as	the	number	of	pixels	correctly	classified	as	
vasculature (using the pixel classification result by the manual seg-
mentation	as	 the	 truth),	 true	negatives	 (TN),	 the	number	of	pixels	
correctly	classified	as	background,	false	positives	(FP),	the	number	
of	pixels	 falsely	 identified	as	vasculature,	and	false	negatives	 (FN),	
the number of pixels falsely identified as background. The metrics 
are22:

For evaluating the effectiveness of manual user curation of au-
tomated segmentation, we compared the accuracy before and after 
user curation of automatically processed images for each vessel 
structure metric (vessel length density, vessel area fraction, branch-
point	count,	and	vessel	diameter)	with	REAVER	 (Figure	5A-D).	Let	
Y
B,D

i,r
 denote the value of a given vessel structure metric before any 

user curation (superscript B)	using	default	image	processing	param-
eters (superscript D)	for	the	ith	image	from	REAVER	(with	r denoting 
REAVER),	and	Gi,r be the corresponding ground-truth value (as de-
fined	previously).	The	absolute	error	AB,D

i,r
 used to evaluate accuracy 

would be defined as

Let	YF,D
i,r

 denote the value of a given vessel structure metric fol-
lowing user curation (superscript F)	using	default	image	processing	
parameters (superscript D)	from	REAVER.	The	absolute	error	AF,D

i,r 
is

Error	was	also	examined	before	and	after	user	curation	with	a	
different set of internal image processing parameters set to substan-
dard	values	(Figure	5E-H).	Let	YB,S

i,r
 denote the value of a given vessel 

structure metric before any user curation (superscript B)	using	sub-
standard internal image processing parameters (superscript S)	from	
REAVER	(program	index	j set to r,	the	index	for	REAVER).	The	abso-
lute error AB,S

i,r
 is

(1)Eij=Yi,j−Gi,j

(2)Ai,j=
|
|
|
Ei,j

|
|
|

(3)Pi,j=
|
|
|
Ei,j−

̃Ej
|
|
|
,

(4)S
A
=

TP+TN

TP+TN+FP+FN

(5)S
N
=

TP

TP+FP

(6)S
c
=

TN

TN+FP

(7)A
B,D

i,r
=
|
|
|
Y
B,D

i,r
−Gi,r

|
|
|

(8)A
F,D

i,r
=
|
|
|
Y
F,D

i,r
−Gi,r

|
|
|

(9)A
B,S

i,r
=
|
|
|
Y
B,S

i,r
−Gi,r

|
|
|

TA B L E  2  Metrics	for	examining	user	curation

Parameter set

Default Substandard

User curation

Before Y
B,D

i,r
Y
B,S

i,r

Following Y
F,D

i,r
Y
F,S

i,r
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Let	YF,S
i,r

 denote the value of a given vessel structure metric follow-
ing user curation (superscript F)	using	default	image	processing	param-
eters (superscript S)	from	REAVER	and	not	any	other	program	(with	j 
set to r,	the	program	index	for	REAVER),	The	absolute	error	AF,S

i,r
 is

2.10 | Summary of metric classes

Metrics	used	in	this	study	are	split	into	two	main	classes	(Table	1).	
Vessel	 structure	 metrics	 are	 the	 measures	 that	 describe	 archi-
tectural features of a vessel network and used for biological 
research. Program evaluation metrics are measures of error cal-
culated from vessel structure metrics or derived from differences 
between	each	program's	 image	segmentation	and	corresponding	
manually segmented image. Program evaluation metrics are spe-
cifically used to compare error between programs and determine 
performance. To clarify the notation used for examining error be-
fore and after manual user curation, conventions are illustrated 
in Table 2.

2.11 | Statistical analysis

To probe how the programs performed relative to one another, we 
compared the distributions of absolute error Ai,j and precision Pi,j for all 
pairs of programs via two-sided paired t tests with Bonferroni adjusted 
p values23	(Figure	3).	A	program	was	identified	as	the	best	if	its	mean	
was	lowest	(or	highest	depending	on	the	metric)	and	was	significantly	
different from all other programs. For cases where the program with 
the best mean was not significantly different from all other programs, 
no conclusions were made. For choosing the best program, programs 
with vessel structure metrics exhibiting lower mean absolute error, 
standard	deviation	of	error	(Figure	3),	and	execution	time	(Figure	4D)	
were preferable, while programs with higher segmentation accuracy, 
specificity,	and	sensitivity	(Figure	4A-C)	were	considered	better.

In addition to testing on accuracy and specificity, we tested 
whether each program had zero bias or equivalently, whether the 
mean	error	terms	equals	zero	via	a	two-tailed	t	test	(Figure	3A,C,E,G,	
Bonferroni	adjustment	applied	for	4	comparisons,	one	for	each	pro-
gram).	For	illustrative	purposes,	the	accuracy	data	from	Figure	3	was	
also	visualized	as	a	series	of	Bland-Altman	plots24	(Figure	S4),	where	
the	difference	between	a	program's	output	metric	and	ground-truth	
was	plotted	against	their	mean	value	for	each	image	(meaning	Yi,j-Gi,j 
was plotted against (Yi,j + Gi,j)/2).	This	analysis	offers	an	illustration	of	
a method commonly used in science to compare measurement meth-
ods and highlights the difficulty in interpreting results from several 
measurement methods, each with a collection of output variables.

The accuracy of vessel structure metrics was compared before 
and after user curation using multiple comparisons with Bonferroni-
adjusted	 p-values.	 Since	 REAVER's	 automated	 results	 were	 ex-
tremely	 accurate	 (Figure	 3)	 compared	 to	 the	 other	 programs,	 and	
consequently, the potential effect size for improvement from user 

curation was small, the analysis was conducted with default inter-
nal	 image	processing	parameters	with	REAVER	and	 then	 repeated	
with a separate set of substandard parameters: comparing AB,D

i,r to 
AF,D

i,r	 (Figure	 5A-D)	 and	 then	 separately	 comparing	A
B,S

i,r to AF,S
i,r 

(Figure	5E-H).
All	of	the	test	statistics	examined	may	not	follow	a	normal	dis-

tribution. Nevertheless, the sample size of 36 images ensures the 
robustness of the paired t test to the violation of the normality as-
sumptions because of the central limit theorem.25

Images of vessel architecture in the retina were analyzed across 
distinct spatial locations with regards to radius and depth from the 
optic	nerve	(Figure	S3)	and	processed	with	default	REAVER	param-
eters.	 Each	 of	 the	 vessel	 structure	metrics	 (vessel	 length	 density,	
vessel area fraction, branchpoint count, vessel radius, and others 
developed previously2)	 were	 compared	 at	 the	 six	 locations	 in	 the	
tissue (inner radial region, superficial depth; inner radial region, in-
termediate depth; inner radial region, deep depth; outer radial re-
gion, superficial depth; outer radial region, intermediate depth; outer 
radial	region,	deep	depth)	with	pairwise	two-sample	t tests using a 
Bonferroni	correction	as	stated	in	Equation	11	(15	comparisons	be-
tween	6	locations).	A	principle	components	analysis	was	conducted	
to visualize the qualitative separation of groups over dimensions that 
maximize separation.26

3  | RESULTS

Rapid	Editable	Analysis	of	Vessel	Elements	Routine	was	developed	
to analyze and quantify fluorescent images of vessel architecture 
using basic image-processing techniques, including adaptive thresh-
olding	and	various	filters	for	segmentation	refinement	(Figure	S1A-G,	
see	Methods:	REAVER	Algorithm).	A	dataset	of	images	was	acquired	
from	multiple	mouse	tissues	(Figure	S2A-F)	and	analyzed	both	manu-
ally	 and	 in	 an	 automated	 fashion	 using	 the	 REAVER,	 Angioquant,7 
Angiotool,8	and	RAVE9	software	packages	(Figure	2A-E).	The	meas-
urements quantified from the manual segmentation, along with the 
segmentation	 itself,	were	used	as	ground-truth	data.	Any	disagree-
ment between the automated techniques to the ground-truth was 
classified as error, allowing for comparison of performance between 
programs.

3.1 | REAVER demonstrates higher accuracy and 
precision across metrics

When the accuracy of vessel length density measurements was 
examined across the different automated image analysis tools 
(Figure	3A),	REAVER	had	the	 lowest	mean	absolute	error	 that	was	
different	from	all	other	programs	(76.5%	reduction	with	P	=	6.57e-3	
compared	to	AngioTool,	the	next	lowest	program,	two-tailed	paired	t	
tests	with	Bonferroni	adjustment).	All	programs	except	AngioQuant	
had evidence of a nonzero bias revealed through individual two-
tailed t tests for a mean of zero (P	<	.05).	When	the	precision	of	vessel	

(10)A
F,S

i,r
=
|
|
|
Y
F,S

i,r
−Gi,r

|
|
|
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length	density	measurements	was	examined,	REAVER	had	the	low-
est	random	error	that	was	different	from	all	other	programs	(84.6%	
reduction with P	=	1.61e-3	from	AngioTool,	the	next	lowest	program,	
two-tailed paired t	tests	with	Bonferroni	adjustment)	(Figure	3B).

Rapid	 Editable	 Analysis	 of	 Vessel	 Elements	 Routine	 also	 had	
the highest accuracy in quantifying vessel area fraction and the 
lowest mean absolute error that was significantly different from all 
the	other	programs	(75.8%	reduction	of	the	error	with	P = 6.16e-8 
from	AngioTool,	next	lowest	program,	two-tailed	paired	t tests with 
Bonferroni	adjustment)	 (Figure	3C).	All	programs	except	REAVER	
had a nonzero bias, revealed through the associated two-sided t 
tests for a mean of zero (P	 <	 .05).	When	 the	 precision	 of	 vessel	
area	 fraction	 was	 examined,	 REAVER	 and	 RAVE	 had	 the	 lowest	
random	error	that	was	different	from	all	other	programs	(53.3%	re-
duction with P	=	8.62e-3	from	AngioTool,	the	next	lowest	program	
after	RAVE,	two-tailed	paired	t	tests	with	Bonferroni	adjustment)	
(Figure	3D).

Rapid	 Editable	 Analysis	 of	 Vessel	 Elements	 Routine	 had	 the	
lowest absolute error in vessel diameter that was different from all 
other	programs	(83.9%	reduction	with	P	=	8.29e-7	from	AngioTool,	
the next lowest program, two-tailed paired t tests with Bonferroni 
adjustment)	 (Figure	 3E).	 All	 programs,	 including	 REAVER,	 exhib-
ited evidence of nonzero bias revealed through two-tailed t tests 
of mean zero (P	<	.05)	for	each	individual	program.	In	terms	of	the	
precision	 of	 the	 vessel	 diameter	measurement,	 REAVER	 had	 the	
lowest random error that was different from all other programs 
(72.3%	reduction	from	AngioQuant,	the	next	lowest	program,	with	
P	=	1.66e-3,	two-tailed	paired	t	tests	with	Bonferroni	adjustment)	
(Figure	3F).

In terms of the accuracy of the branchpoint density measure-
ment,	REAVER	had	the	lowest	mean	absolute	error	that	was	differ-
ent	from	all	other	programs	(94.6%	reduction	with	P	=	4.43e-5	from	
AngioTool,	the	next	 lowest	program,	two-tailed	paired	t	tests	with	
Bonferroni	 adjustment)	 (Figure	 3G).	 All	 programs	 except	 REAVER	
had a nonzero bias, revealed through individual two-tailed t tests 
for a mean of zero (P	<	.05).	REAVER	had	the	lowest	random	error	
that	was	 different	 from	 all	 other	 programs	 (93.2%	 reduction	with	
P	=	4.70e-5	from	AngioTool,	the	next	lowest	program	by	means,	two-
tailed paired t	tests	with	Bonferroni	adjustment)	(Figure	3H).

3.2 | REAVER exhibits higher segmentation 
accuracy and sensitivity with faster execution time

The error in the automated vessel segmentation was examined across 
all images in the benchmark dataset relative to the segmentation from 
manual analysis.27	REAVER	had	the	highest	mean	accuracy	that	was	dif-
ferent	from	all	other	programs	(6.4%	increase	from	AngioTool,	the	next	
highest program, P = 1.73e-7, two-tailed paired t tests with Bonferroni 
adjustment)	(Figure	4A).	In	terms	of	sensitivity,	REAVER	had	the	high-
est	mean	sensitivity	that	was	different	from	all	other	programs	(34.1%	
increase	from	AngioTool,	the	next	highest	program,	with	P	=	1.00e-15,	
two-tailed	paired	 t	 tests	with	Bonferroni	adjustment)	 (Figure	4B).	 In	

terms	of	specificity,	RAVE	and	AngioQuant	had	higher	mean	specific-
ity	than	the	other	two	programs	(0.4%	increase	from	AngioTool,	 the	
next highest group, with P	 =	4.39e-2,	 two-tailed	paired	 t tests with 
Bonferroni	 adjustment)	 (Figure	 4C).	With	 regard	 to	 execution	 time,	
REAVER	had	the	fastest	mean	execution	time	that	was	different	from	
all	other	programs	(36.4%	reduction	from	AngioTool,	the	next	lowest	
program, with P = 1.8e-16, two-tailed paired t tests with Bonferroni 
adjustment)	(Figure	4D).	All	automated	program	execution	times	were	
<1%	of	the	time	required	for	manual	analysis	(3089	±	1355	seconds	per	
image,	not	displayed	due	to	orders	of	magnitude	difference),	highlight-
ing a major benefit of automated techniques.

3.3 | Blinded manual segmentation curation can 
improve accuracy of metrics

The errors for each of the output metrics relative to the manual 
analysis	were	compared	for:	(a)	metrics	obtained	by	REAVER	using	
purely	automated	analysis,	and	(b)	metrics	obtained	by	using	a	com-
bination of automation paired with manual curation of the image 
segmentation. Using the same images and internal image process-
ing	parameters	(as	used	in	Figure	2),	the	absolute	error	across	all	
images were compared before and after manual curation where 
the user was blinded to the group each image belonged to. The ab-
solute	error	for	vessel	length	density	was	reduced	45%	(P	=	6.4E-
5,	paired	two-tailed	t	test	with	Bonferroni	adjustment,	Figure	5A),	
while there was no change to the vessel area fraction error (P = 1, 
paired two-tailed t	 test	with	 Bonferroni	 adjustment,	 Figure	 5B).	
Absolute	error	in	vessel	diameter	measurements	had	a	decreasing	
trend,	with	a	25.0%	reduction	 in	absolute	error	 (P = .188, paired 
two-tailed t	test	with	Bonferroni	adjustment,	Figure	5C),	and	ab-
solute error in branchpoint density measurements experienced a 
similar	 decreasing	 trend	 with	 17.7%	 reduction	 in	 absolute	 error	
(P = .112, paired two-tailed t test with Bonferroni adjustment, 
Figure	5D).

Since	REAVER	demonstrated	 superior	 performance	with	 this	
image dataset compared to the other programs, the error for many 
of the metrics was small, consequently lowering the potential ef-
fect size that manual curation may provide. To test whether man-
ual curation is useful for lower quality results that could benefit 
more	from	manual	curation,	REAVER's	 internal	 image	processing	
parameters were intentionally set to extreme values to produce 
a heavily flawed segmentation. Using the same dataset of images, 
user curation increased the accuracy for all of the metrics: the 
absolute	 error	 for	 vessel	 length	 density	 was	 reduced	 by	 75.9%	
(P	=	1.64e-11,	paired	two-tailed	t test with Bonferroni adjustment, 
Figure	 5E),	 the	 vessel	 area	 fraction	 absolute	 error	 was	 reduced	
57.5%	 (P	 =	 9.99e-6,	 paired	 two-tailed	 t test with Bonferroni ad-
justment,	Figure	5F),	vessel	diameter	absolute	error	was	reduced	
44.5%	 (P	=	4.79e-3,	paired	 two-tailed	 t	 test	with	Bonferroni	ad-
justment,	Figure	5G)	and	branchpoints	absolute	error	was	reduced	
by	 73.2%	 (P = 1.36e-6, paired two-tailed t test with Bonferroni 
adjustment,	Figure	5H).
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3.4 | REAVER reveals differences in microvascular 
architectures across spatial locations in murine retina

An	 effective	 microvascular	 image	 analysis	 program	 can	 separate	
between groups of images with known differences in microvascu-
lar architecture. The blood vessels of the murine retina are a well 
characterized microvascular network that exhibits extensive het-
erogeneity of vessel architecture depending location in the tissue,2 
both with radial distance from optic disk and with each of the three 
discrete layers of vasculature beds: the deep plexus, intermediate 
plexus, and superficial capillary plexus.28 With a dataset of images 
separated by two radial distances from the center of the retina, at 
each	of	the	three	vascular	layers	(Figure	S3A,B),	REAVER	could	dis-
cern unique vessel architectural features across the metrics quan-
tified	 (Figure	S3D-L).	These	metrics	were	able	 to	achieve	a	partial	
linear separation between retina locations with the first two compo-
nents	of	a	principle	components	analysis	(Figure	S3C).

4  | DISCUSSION

We	present	a	novel	software	package,	REAVER,	for	quantifying	met-
rics that have been classically used to characterize microvascular 
network	 architectures.	 REAVER	was	 the	 top	 performer	 compared	
to the other programs that were evaluated in terms of accuracy and 
precision across all four metrics of vessel architecture examined from 
the benchmark image dataset. We believe this is explained by the 
fact that previous programs were originally developed when basic 
image processing algorithms were computationally expensive,8,9 or 
for other image modalities (such as vascular images from transmis-
sion light microscopy7).	To	minimize	the	possibility	of	biased	testing,	
where the program we developed had an unfair advantage with our 
dataset,	REAVER	was	developed	using	a	separate	dataset	of	images	
with a different labeling technique from the dataset used to design 
the program.29 To further minimize this bias, the benchmark data-
set used in this study was specially designed to include a variety of 
mouse tissues with very diverse structural features, so efficacy was 
examined across tissues instead of focusing on a single tissue type.

Rapid	 Editable	 Analysis	 of	 Vessel	 Elements	 Routine	may	 have	
outperformed the other programs because of its higher degree of 
accuracy with automated image segmentation, yielding a segmented 
structure	closer	to	truth	than	the	other	programs.	REAVER's	higher	
sensitivity in segmentation demonstrated with this dataset high-
lights its improved ability to correctly discern foreground pixels of 
vessel architecture, while its lower performance in specificity sug-
gests that other programs are better at correctly discerning back-
ground nonvessel pixels. Taken together, we interpret these results 
as	REAVER	discerning	more	vessel	structures	than	other	programs	
at the cost of generating more false positives. For this particular ap-
plication, we argue that segmentation accuracy is the most import-
ant metric since vessel architecture metrics can be altered equally by 
false positives as well as false negatives for which pixels form blood 
vessels in the image segmentation. Indeed, higher sensitivity can 

simply be accomplished with over-segmenting the vessel architec-
ture, while higher specificity can be attained by under-segmenting 
the	 image.	Although	REAVER	had	the	fastest	execution	time	com-
pared to other programs, we argue that all programs demonstrated 
acceptable execution times given the low cost of computational pro-
cessing power.30,31

Performance of image analysis programs can be examined with 
the	Bland-Altman	analysis	(Figure	S4A-P),	a	technique	that	compares	
two measurement methods based on paired measurements32,33 and 
establishes agreement if the range of the agreement interval (en-
compassed	by	 the	 inner	95%	span	of	 the	distribution	of	 error	be-
tween	the	two	techniques)	has	an	acceptable	magnitude	based	on	
application-specific limits defined by the researcher.24 This anal-
ysis is often used to compare a new measurement method with a 
previously developed gold standard in order to test whether the 
new	technique	can	be	used	in	place	of	the	previous	one.	Although	
some	studies	assert	Bland-Altman	is	the	only	correct	technique	to	
compare methods of measurement,34 we highlight that it does not 
provide a means to compare performance of multiple measurement 
methods	 to	 ground-truth.	 The	 16	 Bland-Altman	 plots	 generated	
across	the	4	programs	and	4	metrics	tested	yields	little	insight	into	
how well these measurement techniques performed relative to one 
another. Furthermore, it is frequently left up to the user to define 
the acceptable range for the agreement interval: in the absence of 
standardized approaches, this process can be influenced by perspec-
tive, opinion, and bias.

While automated results have the benefit of minimizing human 
interaction time required for processing images and maintaining 
an unbiased analysis of data, there are instances where image seg-
mentation may perform poorly and a higher degree of accuracy is 
needed. To accomplish this, we propose that manual curation of seg-
mentations derived from automated analysis, with the user blinded 
to group assignment, would reduce error of output metrics. While 
manual curation of images using default image processing param-
eters	for	REAVER	showed	little	improvement	in	accuracy	across	all	
metrics, the potential effect size for improvement was small due to 
REAVER’s	 high	 level	 of	 accuracy	 and	precision.	 To	probe	whether	
manual curation can enhance quality of results, the same images 
were processed using extreme values for image processing parame-
ters that led to a poor segmentation. For this case, manual curation 
reduced	 mean	 absolute	 error	 approximately	 60%	 across	 metrics,	
demonstrating the utility of hybrid approaches of data analysis 
where automated and manual techniques can be combined to en-
hance data quality. Our results indicate there are cases where man-
ual curation can range from adding little benefit in enhancing data 
quality to profoundly improving the accuracy and precision of re-
sults. Using a pilot study of a small dataset of images comparing both 
automated results and automation with curation to ground-truth will 
reveal to a researcher if curation is worth the time investment for a 
particular application. Furthermore, manual curation of automated 
segmentation represents a promising technique for efficiently gen-
erating ground-truth analysis of images that requires much less time 
than purely manual techniques. It is important to note that we only 
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investigate	each	program's	ability	to	automatically	segment	the	vas-
culature: many of them include several manually adjustable image 
processing settings (although none offer the option for direct man-
ual	 curation),	 and	 there	 is	 a	 possibility	 that	 one	 of	 the	 other	 pro-
grams	would	perform	better	than	REAVER	with	optimal	parameters.	
Testing performance with manual adjustments would be a complex 
undertaking reserved for future research, requiring not only a fair 
method for identifying optimal parameters for each image and pro-
gram under realistic use cases, but also evaluating how effective a 
user can be at identifying the optimal parameters and obtaining the 
optimal segmentation.

While our comparison of the precision and accuracy of four dif-
ferent automated image analysis programs was achieved by perform-
ing a separate comparison for each metric, in the future, it would 
be beneficial to compare program performance across all metrics 
simultaneously. This could require a method of weighting based on a 
metric's	ability	to	discern	alterations	in	a	relevant	biological	dataset,	
while accounting for covariance and dependence between metrics 
(such as vessel length density being closely correlated with vessel 
area fraction for vessel networks with nearly uniform vessel diam-
eters).	 The	 evaluation	 of	 trueness	 or	 bias,	 defined	 as	 the	 average	
distance between an output metric across images and ground-truth 
values,15 is not included in this study because no method exists to 
statistically compare trueness between study groups since distribu-
tions must be compared to each other and their distance to zero bi-
directionally at the same time. The development of such a technique 
would be required for discerning differences in trueness and lead 
to a more complete characterization of error and performance of 
the programs examined. Furthermore, our representation of ground-
truth could be improved by having multiple users manually analyze 
the images to generate a gold standard from the consensus, as done 
previously with image object classification.35

In	summary,	we	introduce	REAVER,	a	new	software	tool	for	ana-
lyzing architectural features in two-dimensional images of microvas-
cular networks, that exhibited the highest accuracy and precision for 
all	 structural	metrics	quantified	 in	our	study.	We	present	REAVER	
as an image analysis tool to analyze high resolution fluorescence im-
ages of blood vessel networks that can be used to further microvas-
cular research.

5  | PERSPEC TIVES

Microvascular	research	often	requires	characterizing	changes	in	the	
structure of blood vessel networks, yet there is a lack of software 
programs to carry out these analyses. We present an open source 
software	package,	REAVER,	to	analyze	and	quantify	various	aspects	
of images fluorescent high-resolution images of blood vessel net-
works.	 REAVER	 is	 shown	 to	 outperform	other	 vessel	 architecture	
image analysis programs with a benchmark dataset of manually ana-
lyzed images, suggesting it as a useful tool to further microvascular 
research.
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