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Abstract

The neurophysiological mechanisms underlying the integration of perception and

action are an important topic in cognitive neuroscience. Yet, connections between

neurophysiology and cognitive theoretical frameworks have rarely been established.

The theory of event coding (TEC) details how perceptions and actions are associated

(bound) in a common representational domain (the “event file”), but the neurophysio-

logical mechanisms underlying these processes are hardly understood. We used com-

plementary neurophysiological methods to examine the neurophysiology of event

file processing (i.e., event-related potentials [ERPs], temporal EEG signal decomposi-

tion, EEG source localization, time-frequency decomposition, EEG network analysis).

We show that the P3 ERP component and activity modulations in inferior parietal

regions (BA40) reflect event file binding processes. The relevance of this parietal

region is corroborated by source localization of temporally decomposed EEG data.

We also show that temporal EEG signal decomposition reveals a pattern of results

suggesting that event file processes can be dissociated from pure stimulus and

response-related processes in the EEG signal. Importantly, it is also documented that

event file binding processes are reflected by modulations in the network architecture

of theta frequency band activity. That is, when stimulus–response bindings in event

files hamper response selection this was associated with a less efficient theta net-

work organization. A more efficient organization was evident when stimulus–

response binding in event files facilitated response selection. Small-world network

measures seem to reflect event file processing. The results show how cognitive-

theoretical assumptions of TEC can directly be mapped to the neurophysiology of

response selection.
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1 | INTRODUCTION

A major topic in contemporary cognitive neuroscience research is the

analysis of action control and response selection processes. From a

cognitive theoretical point of view, many different frameworks have

been proposed to explain action selection processes. One important

framework is the “theory of event coding (TEC)” (Hommel, 2009;

Hommel, Müsseler, Aschersleben, & Prinz, 2001), which explains how

perceptions and actions (responses) are represented and how percep-

tions translate into appropriate responses. A central aspect in this

“common coding” framework (Hommel et al., 2001) is that perceived

external events (i.e., stimuli) and motor responses (actions) are repre-

sented by their features within a common format—the so-called event

file (Hommel, 2009). Stimuli are coded by features, such as their

shape, color, or spatial position. Likewise, actions/responses are rep-

resented by features detailing the precise response, for example,

which finger from which hand has to be activated. Stimulus features

are stored in a so-called “object file,” while features detailing the

response are stored in a so-called “action file.” The above-mentioned

event file comprises the object file and the action file and establishes

associations (bindings) between each stimulus feature and each

response feature (Hommel, 1998). Thus, an event file resembles a net-

work of stimulus and response feature bindings (Hommel, 2011). A

consequence of these network characteristics is that the entire event

file can be (re-)activated once a single feature of a stimulus, or a

response, is (re-)encountered (Hommel, 2011) and hence triggers the

associated/bound response, or reevokes the respective stimulus fea-

tures (Hommel, 2005). This “modus operandi” of event files has conse-

quences for the efficacy of response selection and execution.

Whenever identical or similar stimuli require different responses, pre-

viously established bindings in an event file cause problems because

these preestablished stimulus–response bindings and expectancies on

stimulus–response associations are only partially fulfilled (Colzato,

Warrens, & Hommel, 2006; Hommel, 2004). As a consequence, the

event file has to be reconfigured, which slows down responses and

increases error rates. This is referred to as partial repetition costs

(Colzato, Warrens, & Hommel, 2006; Hommel, 2004). On the con-

trary, whenever identical or similar stimuli require the same responses,

preestablished bindings in an event file facilitate responding. This is

referred to as partial repetition benefit (Colzato, Warrens, & Hommel,

2006; Hommel, 2004). However, the neurophysiological mechanisms

underlying event file dynamics are unclear. Generally, direct links

between neurophysiology and cognitive theoretical frameworks have

rarely been established.

Several lines of evidence suggest that event coding or related

processes depend on activity in various brain areas encompassing

inferior parietal areas, supplementary motor areas, the dorsolateral

prefrontal cortex, and the hippocampus (Chmielewski & Beste, 2019a;

Chmielewski & Beste, 2019b; Chmielewski & Beste, 2019c; Elsner

et al., 2002; Kühn, Keizer, Colzato, Rombouts, & Hommel, 2011;

Opitz, Beste, & Stock, 2020; Petruo et al., 2018; Petruo, Stock, Mün-

chau, & Beste, 2016; Zmigrod, Colzato, & Hommel, 2014). It thus

seems that event file binding processes are associated with the

integration of information across distant brain regions. From a bio-

physical point of view, and according to the “temporal binding hypoth-

esis” (Crick & Koch, 2003; Varela, 1995; von der Malsburg, 1994),

information processing between distant neural assemblies strongly

depends on the strength of a coherent organization of activity

through synchronous neural oscillations (Buzsáki, 2006; Buzsáki &

Draguhn, 2004). More specifically, particularly low-frequency, high-

amplitude oscillations are suitable to integrate information across spa-

tial distances (Buzsáki & Draguhn, 2004). This is also one reason why

theta oscillations have repeatedly been shown to underlie response

selection and cognitive control processes (Cavanagh & Frank, 2014;

Cohen, 2014). Moreover, theta oscillations were consistently shown

in tasks that involve creating and keeping mental representation

online, such as the retention of information in working memory, and

reorientation or allocation of attention to sensory stimuli (Gevins,

Smith, McEvoy, & Yu, 1997; Hsieh, Ekstrom, & Ranganath, 2011;

Jensen & Tesche, 2002; Onton, Delorme, & Makeig, 2005;

Raghavachari et al., 2001; Tóth et al., 2014). Since event codes

depend on keeping information online (Colzato, Raffone, & Hommel,

2006; Hommel, 2009; Hommel et al., 2001), theta oscillations poten-

tially play an important role in event file coding. This also seems to be

the case from a network perspective, as a previous study showed that

functional connectivity in the theta band promotes the acquisition of

frequency-based stimulus–response associations (Tóth et al., 2017).

Furthermore, stimulus–response integration has been implicated in

another long-range frequency band. Namely, alpha frequency oscilla-

tions seem to be related to action planning of motor sequences

(Bassett et al., 2011; Clarke, Roberts, & Ranganath, 2018; Crivelli-

Decker, Hsieh, Clarke, & Ranganath, 2018; Fell & Axmacher, 2011;

Pollok, Latz, Krause, Butz, & Schnitzler, 2014), but not to stimulus-

oriented statistical learning (Tóth et al., 2017). Overall, theta and alpha

oscillations have a key role for associative memory formation (Clarke

et al., 2018; Crivelli-Decker et al., 2018), in which theta is predomi-

nantly implicated in the formation of stimulus–response associations

(Tóth et al., 2017). Therefore, it may be hypothesized that particularly

theta band activity reflects binding processes during event coding.

Yet, it is important to consider that TEC states that the processing

and activation of an event file have to be understood in terms of net-

work dynamics and that an event file, in fact, resembles a network

(Hommel, 2011). This network aspect is not well captured by analyz-

ing power of theta frequency oscillations. It thus seems more suitable

to analyze theta band activity from a network perspective to under-

stand event file binding processes. From such a network perspective,

several lines of evidence suggest that the small-world metric

(Achard & Bullmore, 2007; Bassett & Bullmore, 2006; Bullmore &

Sporns, 2009) is a suitable measure to describe EEG network activity

(Beste et al., 2019; Vecchio et al., 2018). Small-world networks are

thought to enable the efficient separation and functional integration

of information (Achard & Bullmore, 2007; Bassett & Bullmore, 2006).

Networks with a high level of separation process the information in

highly specialized nodes, which are sparsely connected to each other

(Achard & Bullmore, 2007; Bassett & Bullmore, 2006). This regular,

modular network architecture would be too rigid to dynamically
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create, retrieve, unbind, and rebind stimulus–response associations. In

contrast, networks with a high level of functional integration shift to

randomness, as nodes from faraway parts of the network need to be

connected to integrate different information (Achard & Bullmore,

2007; Bassett & Bullmore, 2006). An ideal information processing

would require a small-world-like network, which represents the bal-

ance between separation (regularity) and integration (randomness)

(Achard & Bullmore, 2007; Bassett & Bullmore, 2006). It is possible,

that event file coding relies on a small-world-like network; however,

further processes of unbinding and reconfiguration would require

more integration, and therefore, it may shift the network to random-

ness. Since these aspects are important for event file processing

(Hommel, 2009), the small-world metric may be of particular rele-

vance in the context of the analysis of neurophysiological processes

underlying event file processing. This is all the more the case because

it has recently been shown that response selection and control pro-

cesses affect the organization of theta band activity from the perspec-

tive of small-world networks (Bensmann, Zink, Mückschel, Beste, &

Stock, 2019; Beste et al., 2019). We hypothesize that the organization

(architecture) of the network is modulated during event file

processing. Telesford, Joyce, Hayasaka, Burdette, and Laurienti (2011)

proposed a metric in which small-world values (ω) are restricted to the

interval −1 to 1 regardless of network size. If ω is close to 0, a net-

work organization is considered small-world and very efficient. Posi-

tive ω values represent random properties in network organization,

negative values indicate that a network has more regular properties in

network organization. Both, a more random and a more regular orga-

nization reflect a less efficient network organization (Telesford et al.,

2011). Previous studies showed that more demanding task conditions

shift the network to a more random structure (Beste et al., 2019;

Wolff, Zink, Stock, & Beste, 2017). That is, for complex processes, lon-

ger path lengths are needed to transmit information across the

processing nodes. We hypothesize that the network architecture

becomes less efficient when there are partial repetition costs and the

network architecture is more small-world like when there are partial

repetition benefits. Taken together, it is likely that particularly net-

work measures of theta band activity reflect event file coding

processes.

Another crucial aspect to consider in the context of event file

coding is that the EEG signal is composed of different subelements

from different sources (Huster, Plis, & Calhoun, 2015; Nunez et al.,

1997; Stock, Gohil, Huster, & Beste, 2017). This is particularly the

case for event-related potential (ERP) data. In fact, it has been

suggested that ERP correlates of response selection (e.g., N2 and P3)

reflect a mixture of different codes related to perceptual processing

(“stimulus codes”) and response selection (“response selection codes”)

(Chmielewski, Mückschel, Ziemssen, & Beste, 2017; Folstein & Van

Petten, 2008; Mückschel, Chmielewski, Ziemssen, & Beste, 2017;

Mückschel, Dippel, & Beste, 2017) posing the problem that ERPs may

not precisely capture dynamics occurring in event files. From a TEC

perspective, though it is important to disentangle binding processes

occurring in an event file from stimulus- or response-related pro-

cesses in the object or action file. Therefore, it may be relevant to

isolate (decompose) different components in the ERP signal

(Mückschel, Chmielewski, et al., 2017; Mückschel, Dippel, & Beste,

2017; Opitz et al., 2020) to adequately investigate event coding pro-

cesses. In the TEC context, this decomposition should ideally yield

three “clusters” of EEG activity capturing dynamics related to the

object, the action file, and the event file. Notably, Ouyang, Herzmann,

Zhou, and Sommer (2011); Ouyang, Sommer, and Zhou (2015) pro-

posed a temporal signal decomposition method that decomposes EEG

into three clusters of dissociable functional relevance: The S-cluster

refers to stimulus-related processes (like perception and attention),

the R-cluster refers to response-related processes (including motor

preparation/execution) and the C-cluster refers to intermediate pro-

cesses linking S and R (Ouyang et al., 2011; Ouyang et al., 2015;

Ouyang, Hildebrandt, Sommer, & Zhou, 2017). Though this temporal

decomposition method (i.e., residue iteration decomposition [RIDE])

was originally developed to account for intraindividual variability in

EEG data (Ouyang et al., 2011; Ouyang et al., 2015; Ouyang et al.,

2017), it has already been shown that it can also be used to dissociate

different coding levels in a theoretically meaningful way in EEG data

(Mückschel, Chmielewski, et al., 2017; Mückschel, Dippel, & Beste,

2017). Obviously, such clustering reveals striking similarities with the

“file structure” proposed by TEC, that is, the S-cluster may reflect

object file related processes, the R-cluster action file related processes

and the C-cluster event file related processes. Several lines of evi-

dence suggest that particularly the C-cluster may reflect stimulus–

response translation processes (Ouyang et al., 2017; Verleger,

Metzner, Ouyang, Śmigasiewicz, & Zhou, 2014; Wolff, Mückschel, &

Beste, 2017). Just recently, a study analyzed how distractors and

interfering information is processes and how different forms of dis-

tracting information affect each other (Opitz et al., 2020). This study

was also motivated by the TEC-framework and reported that dis-

tractor bindings also occur in the C-cluster, as opposed to S- and R-

cluster, and undecomposed EEG (Opitz et al., 2020).

Therefore, we hypothesize that event file binding effects are

especially reflected by the C-cluster. In contrast, the S-cluster and the

R-cluster should not reflect event file binding effects. If this is the

case, and because standard ERP-components reflect a combination of

all three clusters (Ouyang et al., 2011; Ouyang et al., 2015; Ouyang

et al., 2017), it is reasonable to hypothesize that event file binding

effects are stronger when being analyzed at the C-cluster level, com-

pared to nondecomposed ERPs. Regarding standard ERPs, it is most

likely that event file binding processes are reflected by the P3 ERP

component. The reason is that especially the P3 ERP-component has

been suggested to reflect processes mediating between stimulus eval-

uation and responding (Falkenstein, Hohnsbein, & Hoormann, 1994;

Mückschel, Stock, & Beste, 2014; Twomey, Murphy, Kelly, & O'Con-

nell, 2015; Verleger, Ja�skowski, & Wascher, 2005), that is, processes

central for event file binding according to TEC. Specifically, the P3

reflects the amount of reactivation needed for the established S–R

links (Verleger, Hamann, Asanowicz, & Śmigasiewicz, 2015; Verleger,

Siller, Ouyang, & Śmigasiewicz, 2017). Moreover, the C-cluster has

been suggested to reflect processes captured by the P3 (Ouyang

et al., 2017). Since modulations in the P3 and the C-cluster have been
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shown to be associated with activity modulations in inferior parietal

areas (Mückschel et al., 2014; Verleger, Heide, Butt, & Kömpf, 1994;

Wolff, Mückschel, & Beste, 2017; Wolff, Mückschel, Ziemssen, &

Beste, 2018), we hypothesize that activity in these regions is also

modulated during event file binding.

2 | METHODS

2.1 | Participants

A sample of N = 28 (9 males and 18 females, Mage = 23.4,

SDage = 3.3 years) healthy young adults participated in the study.

Comparable sample sizes have been used in other EEG studies using

the TEC framework (i.e., N = 27 in Opitz et al., 2020) and which also

used nearly identical experimental paradigms (N = 23 in each group of

a between-subject design on event file coding reported by Petruo

et al., 2016). All participants had normal or corrected-to-normal vision.

They did not report any history of psychiatric or neurological disor-

ders or taking centrally acting medication. All participants were under-

graduate or graduate students and received financial reimbursement

for their participation. All participants gave written informed consent

prior to their study participation. The study was carried out in accor-

dance with the declaration of Helsinki. The study was approved by

the ethics committee of the TU Dresden. We performed a sensitivity

analysis in G × Power (Faul, Erdfelder, Lang, & Buchner, 2007), in

which a sample size of N = 28 with a power of .95 resulted a required

effect size of f = .28. As f = .28 is equivalent to ηp
2 = .08, we consider

effects reliable if they are larger than ηp
2 = .08. As can be seen in the

Section 3, significant effects at the behavioral and neurophysiological

level are stronger than this threshold and, therefore, reflect reliable

effects.

2.2 | Task

Event file coding was examined by using an event file coding paradigm

(Hommel, 1998) or also known as an S–R task (Colzato, Warrens, &

Hommel, 2006). The event file or task is depicted in Figure 1.

Participants were seated in front of a 17-in. CRT screen, at a dis-

tance of 60 cm. During the trials, participants saw three vertically

aligned boxes in the middle of a screen. Each box had a size of

2.4 × 0.9 cm2. In the middle box, participants saw a left- or right-

pointing arrowhead, which represented the response cue. It was

followed by a vertical and a horizontal line presented in vertically

aligned boxes similar to the response cues. The lines could be red or

green and could be placed in the top box or in the bottom one. These

lines served as Stimulus 1 (S1) and Stimulus 2 (S2). Importantly, S1

varied randomly in orientation (vertical or horizontal), location (top or

bottom), and color (red or green). Similarly, S2 consisted of the same

randomly varied features as S1. Thus, in some trials, none of these

features were shared between S1 and S2 (no feature overlap condi-

tion), other trials presented identical S1 and S2 (full feature overlap

condition), and the remaining trials shared one or two features from

the available three between the stimuli (partial feature overlap condi-

tions: one feature and two feature overlap). Two responses (R1 and

R2) had to be executed per trial by pressing the left or right control

key of a computer keyboard with the corresponding index finger.

Thus, two consecutive responses could require the same button press

(response repetition), or two different ones (response alternation).

Participants were informed that there would be no systematic rela-

tionship between S1 and R1, or between S1 and S2. Thus, the task

was designed to study automatic binding effects, that is, interactions

between repetitions of stimulus features (stimulus feature overlap)

and responses. The timing of the experiment was the following: in

every trial, first the cue appeared on the screen for 1,500 ms. Partici-

pants were instructed not to react immediately to the cue, but rather

withhold their response until the presentation of S1. After the

response cue, a blank screen was displayed for 1,000 ms. It was

followed by S1 shown for 500 ms. After the appearance of S1, partici-

pants were expected to carry out R1 (right keypress when the cue

was pointing to the right and vice versa). Importantly, R1 was carried

out simultaneously to but independently of the orientation, color, or

location of S1. This notwithstanding, the close proximity of S1 and R1

causes S1 to become related to R1 (automatic binding). A blank screen

for 2,000 ms followed the presentation of S1. Next, S2 was presented

for 2,000 ms or until a response was given. R2 required a response to

the shape of S2 (vertical vs. horizontal). Participants were instructed

to press the left key when a horizontal and the right key when a verti-

cal line was shown. If the R1 was incorrect, the trial was repeated

once. The whole session comprised 384 trials, which exceeded to the

maximum of 395 due to the repetition of erroneous R1s. The number

of trials was determined as a factorial combination of S2 features,

such as shape (2) × color (2) × location (2), the repetition versus alter-

nation of shape (2) × the repetition versus alternation of color

(2) × the repetition versus alternation of location (2) × and response

(2), × each combination repeated three times (Colzato, Warrens, &

Hommel, 2006). During intertrial intervals, which were jittered

between 1,500 and 2,000 ms a fixation cross was presented in the

middle of the screen. Importantly, unlike in the “voluntary” version of

the task (Colzato, Warrens, & Hommel, 2006; Petruo et al., 2016), par-

ticipants were not tested on their knowledge of the S1. Therefore,

F IGURE 1 Schematic illustration of the paradigm. The figure
represents the order of the stimuli during the trial. The timing of the
stimuli is described in the text
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“automatic event file binding” was tested (Hommel, 1998;

Hommel, 2005).

2.3 | EEG recording analysis

The EEG was recorded from 60 Ag/AgCl electrodes (EasyCap, Ger-

many) in equidistant positions using a QuickAmp amplifier and the

Brain Vision Recorder 1.2 software (Brain Products, Germany). The

remaining EOG channels were disabled for the recording. The ground

and reference (Fpz) electrodes were placed at coordinates θ = 58,

φ = 78 and θ = 90, φ = 90, respectively. The sampling rate was

500 Hz. All electrode impedances were kept below 5 kΩ. Data

preprocessing was performed by using Brain Vision Analyzer (Brain

Products) and involved the following steps: First, the data were down-

sampled to 256 Hz and band-pass filtered (IIR filter: 0.5–20 Hz, an

order of 8). The downsampled data were rereferenced to an average

reference. Then, a manual inspection of the data was carried out to

remove technical artifacts. Remaining artifacts with periodical effects

such as blinks, eye movements, and pulse artifacts were removed by

an independent component analysis (Infomax algorithm). Components

(7.57 ± 2.27) have been removed if they showed identifiable spectrum

and topography, such as vertical and horizontal eye movements, car-

diovascular artifacts, or muscular activity. The preprocessed data were

segmented by using epochs locked on the S2 (−1,000 to 1,000 ms).

While event file binding originally occurs after the establishment of

the S1-R1 link, the binding has been traditionally studied in terms of

the retrieval, unbinding, and reconfiguration, which is necessitated by

the S2-R2 (Hommel, 1998; Hommel, 2004; Kühn et al., 2011). Only

trials with correct R1 and R2 responses were included in the segmen-

tation. Separate segments were created for all combinations of fea-

ture overlap levels (no, one feature overlap, two features overlap, and

full overlap between S1 and S2 stimulus features) and responses (rep-

etition vs. switch).

On the segmented data, an automated artifact rejection proce-

dure was applied in the time window of 1,000 ms before and after the

S2. This process discarded all segments with amplitudes higher than

150 μV, or lower than −150 μV, or activities lower than 0.5 μV over a

time interval of at least 100 ms. To obtain reference-free neurophysi-

ological data, a current source density (CSD) transformation was

applied (Kayser & Tenke, 2015; Perrin, Pernier, Bertrand, & Echallier,

1989). This transformation uses the potential difference between one

electrode and the total potential of all surrounding electrodes. Thus,

the CSD transformation also serves as a spatial filter highlighting scalp

topography, which helps to identify electrodes that best reflect activ-

ity related to experimental conditions (Nunez, Pilgreen, Westdorp,

Law, & Nelson, 1991; Tenke & Kayser, 2012). A baseline correction

was applied to a time interval of −200 to 0 ms prior to the S2 stimulus

onset. Next, averages were computed separately for each condition

and participant. Based on the a priori hypotheses, especially the P3

ERP component is of interest. To analyze the stimulus-locked P3, we

selected the electrode Cz, based on the scalp topography. After the

electrode selection, we determined the time window of the P3

component by visual inspection: 400–700 ms after the S2 presenta-

tion. Within this time interval, the mean amplitude was quantified and

extracted at the single-subject level. This choice of electrodes and

time window was validated using the statistical method proposed by

Mückschel et al., 2014: the amplitude in above-mentioned time win-

dow was extracted for all 60 electrodes. Each electrode was subse-

quently compared to the average of all other electrodes using

Bonferroni correction for multiple comparisons (critical threshold

p = .0008). Only electrodes that showed significantly larger mean

amplitudes (i.e., negative for N-potentials and positive for the P-

potentials) than the remaining electrodes were selected.” This proce-

dure confirmed the choice of electrode Cz.

2.4 | Residue iteration decomposition

RIDE postulates that different components with variable inter-

component delays can be differentiated within ERPs (Ouyang et al.,

2015). Based on this assumption, RIDE decomposes single-trial ERPs

into different components with static or variable latencies. According

to the timing and variability of these components, they can be linked

to different stages of information processing. RIDE uses an iterative

temporal decomposition, which has been used with robust results

before (Mückschel, Chmielewski, et al., 2017; Ouyang et al., 2015).

Decomposition is employed for each electrode separately; therefore,

it is sensitive to the channel-specific latency variability information

(Ouyang et al., 2015). Since RIDE performs the decomposition

irrespective of the scalp distributions (Ouyang et al., 2015), the CSD

reference does not influence the results. In the current study, RIDE

decomposition was performed according to established procedures

(Chmielewski et al., 2017; Ouyang et al., 2011; Verleger et al., 2014)

using the RIDE toolbox (for a manual, see http://cns.hkbu.edu.hk/

RIDE.htm) in MATLAB (MathWorks, Inc., Natick, MA). We used

latency information relative to the stimulus and response onsets to

derive the S (“stimulus”) and R (“response”) clusters. The C (“central”)

cluster's latency information is estimated in every single-trial and iter-

atively improved. RIDE requires predefined time windows to extract

the waveforms for each cluster (Ouyang et al., 2015; Ouyang,

Schacht, Zhou, & Sommer, 2013). RIDE requires predefined time win-

dows to extract the waveform of each RIDE component. Each of

these time windows should cover the range within each component is

expected to occur (Ouyang et al., 2013; Ouyang et al., 2015). That is,

the R-cluster should occur around the response; the S-cluster should

cover the stimulus presentation and the subsequent processes from

P1 to N2; and finally, the C-cluster should cover the time windows of

P2, N2, and P3. We applied the following intervals: for the S-cluster,

200 ms prior to S2 and to 700 ms after the S2 presentation; for the

R-cluster, 300 ms before and after the R2; for the C-cluster,

150–800 ms after the S2 stimulus. Using the provided markers, RIDE

uses an iterative decomposition with an L1-norm minimization, which

creates median waveforms. For the estimation of the S-cluster, RIDE

subtracts C and R from each trial and aligns the residual of all trials to

the latency information of S. The result is the median waveform for all
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time points in the S-cluster interval. The same procedure is followed

to derive clusters C and R. The whole process is iterated to improve

the estimation of the components until they converge. Further details

of the RIDE method can be found in Ouyang et al. (2015, 2011). After

obtaining the RIDE clusters, we used the same mean amplitude

extraction method as described above for the standard ERPs. As the

current study's focus is on the P3 component, we present the ana-

lyses related to the C-cluster, where P3 was the most visible (see

Figure 3). The validation procedure, as also performed for the ERP

data, confirmed the site of the chosen electrode and time window.

2.5 | Source localization

Source localization was used to examine the source of the interaction

“feature overlap × response” for the ERP data and the RIDE-

decomposed data. For that, the standard low-resolution brain electro-

magnetic tomography (sLORETA) algorithm was used (Pascual-Marqui,

2002). It requires standard electrode coordinates according to the

10/10 or 10/20 system as input. The method uses a three-shell spheri-

cal head model and the covariance matrix was calculated using the sin-

gle subject's baseline. Within this head model, the intracerebral volume

is partitioned into 6,239 voxels using a spatial resolution of 5 mm and

the standardized current density is calculated for every voxel, using an

MNI152 head model template. The algorithm provides a single linear

solution for the inverse problem without localization bias (Marco-

Pallarés, Grau, & Ruffini, 2005; Pascual-Marqui, 2002; Sekihara,

Sahani, & Nagarajan, 2005). The validity of sLORETA results has been

shown in combined fMRI/EEG and TMS/EEG studies (Dippel & Beste,

2015; Sekihara et al., 2005). For the sLORETA contrasts, we performed

a comparison against zero. To calculate the statistics on the sLORETA

sources (contrasts), we utilized voxel-wise randomization tests with

2,500 permutations and statistical nonparametric mapping procedures

(SnPM). Locations of voxels that were significantly different (p < .05)

are shown in the MNI-brain www.unizh.ch/keyinst/NewLORETA/

sLORETA/sLORETA.htm. Activations shown in the brain represent crit-

ical t values corrected for multiple comparisons.

2.6 | Small-world network analysis

The analysis of the small-world network architecture was performed

similarly to previous studies (Bensmann et al., 2019; Beste et al., 2019;

Wolff, Zink, et al., 2017). In the preprocessed, segmented data, the

entire spectral content (i.e., the power spectrum) in a frequency range

of interests (i.e., theta at 4–8 Hz and alpha at 8–12 Hz) was analyzed.

The imaginary part of the coherence spectrum was calculated for all

possible EEG electrode pairs in the theta and alpha frequency bands

(Nolte et al., 2004). Then, the binary adjacency network matrices (based

on all electrodes) were calculated. If the coherence between two elec-

trodes was “strong,” an unweighted and undirected connection was

defined represented by 1. If the coherence between two electrodes

was “weak,” this was represented by 0. To define which coherence is

“strong” or “weak,” only the highest 15 or 10% strongest connections

were included in the analysis, referred to as 85 and 90% threshold con-

ditions, respectively. This approach has been used previously in the

context of response selection and inhibitory control (Bensmann et al.,

2019; Beste et al., 2019) and is a compromise to cope with two prob-

lems: On the one hand, it ensures that only electrodes with high coher-

ence are defined as being “connected” and included in the analysis. On

the other hand, it also ensures that enough connections are left to form

an electrode network (Wolff, Zink, et al., 2017; Zink, Stock, Colzato, &

Beste, 2018). While there are several ways to determine the threshold,

for instance, based on some statistical parameterization and previous

observation in the literature, all of them remain arbitrary (Langer,

Pedroni, & Jäncke, 2013). Then, a binary 60 × 60 adjacency network

matrix (based on the 60 EEG electrodes) was calculated. In this matrix,

1 represents an unweighted and undirected connection between any

pair of electrodes and 0 represents no connection. We used the Watts

and Strogatz method to study small-world networks (Watts & Strogatz,

1998). As done in previous studies, this method was applied to each

single subject (Beste et al., 2019; Wolff, Zink, et al., 2017; Zink et al.,

2018): Using this method, one starts from a one-dimensional network,

where each node in the network (in the current study, the EEG elec-

trode) is only connected to its k nearest neighbors on either side, rep-

resenting a “regular” network with randomness = 0, a ring lattice with

N nodes of mean degree 2k is created. Next, more connections

(“edges”) are randomly chosen to another random node with increasing

randomness ( > 0). When = 0, no edges are rewired and the model

returns a ring lattice. In contrast, when = 1, all of the edges are

rewired and the ring lattice is transformed into a random network con-

taining N nodes and mean node degree of 2k. A network has small-

world network properties when it has properties of lattice networks

showing clustered interconnectivity (i.e., high clustering coefficient, “C”)

and properties of random networks showing short geodetic distance

(i.e., a short average path length, “L”). Regular networks have a high C

and a high L. Random networks have a low C and a low L. Therefore,

neither regular nor random networks alone can explain a small-world

network architecture (Watts & Strogatz, 1998). For every single subject,

the average number of edges from one node to all other nodes (degree,

2k), average shortest path length (geodetic distance, Lreal) and average

clustering coefficient (Creal) were calculated. For each individual,

completely random ( = 0) and completely regular ( = 1), Watts–

Strogatz models were created and Lrand and Crand and Clatt were also

computed. We analyzed all small-world values (ω) according to Tel-

esford et al. (2011), who proposed a quantitative categorical definition

of a small-world network in line with the definitions of the original

Watts–Strogatz model. The parameter ω is calculated by:

ω=
Lrand
L

−
C

Clatt

In the formula, “rand” refers to a random network and “latt” to a

lattice network, which is constructed on the basis of the measured

data. Small-world values of ω are restricted to the interval −1 to

1 regardless of network size. If ω is close to 0, it is considered as small
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world. Positive ω values represent more random properties, negative

values indicate that a network has more regular or lattice-like proper-

ties. Both, a more random and a more regular organization reflect a

less efficient network organization (Telesford et al., 2011).

2.7 | Statistics

Statistical analyses were performed by using JASP 0.11.1 (Love et al.,

2019). Mean accuracy (percentage of correct responses) and medians

of RT data (for correct responses) were calculated for each participant

and each condition. To examine event file coding, accuracy and RT

data were analyzed in two-way repeated measures analysis of vari-

ance (ANOVA) with feature overlap (no, one feature overlap, two fea-

tures overlap, and full overlap between S1 and S2 stimulus features)

and response (repetition vs. switch) as within-subject factors. This

approach is identical to previous studies examining binding effects in

the event coding framework (Beste et al., 2016; Petruo et al., 2016).

The average number of trials (together with the minimum and maxi-

mum numbers, respectively) considered for statistical analyses were

the following: no feature overlap repetition M = 22, (14–26); no fea-

ture overlap alternation M = 23, (12–26); one feature overlap repeti-

tion M = 68, (44–74); one feature overlap alternation M = 69, (48–72);

two features overlap repetition M = 68, (45–72); two features overlap

alternation M = 68, (47–72); full overlap repetition M = 23, (19–24);

full overlap alternation M = 23, (15–29). After inspecting the behav-

ioral results (see Section 3.1), it was revealed that the difference

between the no feature overlap and the full feature overlap condi-

tions shows the strongest binding effect at the level of accuracy and

the reaction times. As the goal of the study was to provide in-depth

analyses of event file coding and binding at the neurophysiological

level, and we did not formulate hypotheses on the partial overlap con-

ditions, we included no feature overlap and full feature overlap condi-

tions, but not the partial feature overlap conditions in the

neurophysiological analyses. Thus, the mean amplitude and small-

world value data were analyzed in two-way repeated measures

ANOVA with feature overlap (full vs. no feature overlap) and response

(repetition vs. switch) as within-subject factors. The average number

of trials (together with the minimum and maximum numbers, respec-

tively) considered for statistical analysis of the ERPs was the follow-

ing: no feature overlap repetition M = 15.4, (7–22); no feature overlap

alternation M = 18, (10–23); full overlap repetition M = 17, (11–23);

full overlap alternation M = 14, (7–23). While these trial numbers

might be considered low for conventional ERP analysis, they are in

line with previous ERP results of event file coding (Petruo et al.,

2016). Most important, since RIDE uses L1-norm-based method and

has implemented several routines to decrease across-trial intra-

individual variability in the data (see above), it leads to higher consis-

tency of neurophysiological processes within subjects (i.e., across

trials) than the more common L2-norm-based procedures, which is

the classical ERP averaging approach (Ouyang et al., 2013; Ouyang

et al., 2015). Therefore, lower trial numbers allow to obtain reliable

effects. Finally, a limited amount of practice in the task is required to

avoid the confound of possible learning effects in event file coding

(Colzato, Raffone, & Hommel, 2006; Eberhardt, Esser, & Haider, 2017;

Hommel & Colzato, 2009). Here, we report η2 effect size for ANOVA

main effects and interactions, and confidence interval of 90% for the

effect sizes (Steiger, 2004). Moreover, the Bayes factor as BF10 is

reported to quantify the evidence for the alternative hypothesis. The

default JASP prior for fixed effects was used (r scale prior width = 0.5).

All post hoc tests were Bonferroni corrected.

3 | RESULTS

3.1 | Behavioral data

The behavioral data are shown in Figure 2.

The feature overlap by response ANOVA on the accuracy data

showed that the main effect of feature overlap was significant (F

(3,81) = 3.16, p = .029, ηp
2 = .105, 90% CI [.006; .192], BF10 = 1.75).

Participants were more accurate in the no feature overlap than the full

feature overlap condition (89.21% ± 1.09 vs. 86.16% ± 1.54,

p = .040); furthermore, to a lesser degree, participants were more

accurate in the one feature overlap (88.61% ± 1.32, p = .037) and the

two features overlap conditions (88.14% ± 1.50, p = .039) than in the

full feature overlap condition. All other pairwise comparisons were

not significant (p > .05). In contrast, the main effect of response was

not significant (F(1,27) = 0.16, p = .693, ηp
2 = .006, 90% CI [.000;

.117], BF10 = 0.16). Importantly, the feature overlap by response

interaction was significant (F(3,81) = 56.25, p < .001, ηp
2 = .676, 90%

CI [.566; .732], BF10 = 8.21). When responses had to be repeated,

accuracy increased from the no feature overlap (81.82% ± 1.96) to

the two features overlap (90.64% ± 1.34, p < .001) and the full feature

overlap (95.29% ± 1.14, p < .001) conditions. In contrast, accuracy

decreased from the no feature overlap (96.61% ± .83) to the one fea-

ture overlap (91.89% ± 1.16, p = .004), to the two features overlap

(85.64% ± 1.96, p < .001), and the full feature overlap conditions

(78.64% ± 1.34, p < .001) when response had to be alternated. Addi-

tionally, with response alternation, the full feature overlap condition

showed lower accuracy than the one feature (p < .001) and two fea-

tures overlap conditions (p < .001), respectively. All other pairwise

comparisons were not significant (p > .05).

The feature overlap by response ANOVA on the RT data showed

that the main effect of feature overlap was significant (F(3,81) = 4.61,

p = .005, ηp
2 = .146, 90% CI [.028; .241], BF10 = 4.47). Participants

were faster at the null feature overlap (441 ms ± 11) than at one fea-

ture overlap (452 ms ± 10, p = .021) or at the two features overlap con-

ditions (456 ms ± 10, p = .003). In contrast, the main effect of response

was not significant (F(1,27) = 0.07, p = .795, ηp
2 = .003, 90% CI [.000;

.091], BF10 = 0.15). The feature overlap by response interaction was

significant (F(3,81) = 29.15, p < .001, ηp
2 = .519, 90% CI [.376; .599],

BF10 = 2.91). The average RT decreased from the one feature overlap

to the full feature overlap condition when response had to be repeated

(458 ms ± 11 vs. 439 ms ± 11, p = .006). In contrast, responses became

slower from the no feature overlap (425 ms ± 12) to the one feature
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overlap (447 ms ± 10, p = .001), the two features overlap (460 ms ± 11,

p < .001), and the full feature overlap conditions (470 ms ± 14,

p < .001) when response had to be alternated.

In sum, the behavioral data showed a robust interaction between

feature overlap and response type. Specifically, the accuracy analysis

revealed a binding effect. A larger feature overlap between S1 and S2

facilitated a higher accuracy if the response had to be repeated, and a

lower accuracy if the response had to be alternated. The latter repre-

sents partial repetition costs. As the differences were largest for the

contrasts between no feature overlap and full feature overlap in

response repetition conditions and in response alternation conditions,

these two levels of the feature overlap condition can be used as reli-

able indices for the binding effect.

3.2 | Neurophysiology

To examine neurophysiological correlates of the binding effect

observed at the behavioral level, we analyzed the conditions no fea-

ture overlap and full feature overlap. This was done because these

conditions maximize the assessable binding effect and maximize

power/reliability in the neurophysiological data analysis.

3.2.1 | Time domain analyses

Grand-average ERP waveforms in the P3 time window split by feature

overlap and response type are presented in Figure 3.

The feature overlap by response ANOVA on the mean amplitude

of P3 showed that the main effect of feature overlap (F(1,27) = 2.76,

p = .108, ηp
2 = .093, 90% CI [.000; .277], BF10 = 0.46), and the main

effect of response were not significant (F(1,27) = 3.40, p = .076,

ηp
2 = .112, 90% CI [.000; .230], BF10 = 0.35). However, the feature

overlap by response interaction was significant (F(1,27) = 4.63,

p = .041, ηp
2 = .146, 90% CI [.035; .338], BF10 = 8.74). The mean

amplitude of the P3 decreased from the no feature overlap to the full

feature overlap condition when response had to be repeated

(12.82 μV/m2 ± 12.47 vs. 7.45 μV/m2 ± 10.14, p = .007, d = .551) but

not when the response had to be alternated (7.75 μV/m2 ± 9.94

vs. 9.59 μV/m2 ± 13.39, p = .393, d = −.164). The sLORETA analysis

(see Figure 3) revealed that this interaction effect was reflected by

activation modulations in the left inferior parietal cortex (BA40; MNI

[x,y,z]: −52, −38, 43), the superior frontal gyrus (BA6; MNI [x,y,z]:

−18, 11, 67) and the medial frontal gyrus (BA9; MNI [x,y,z]: −9,

38, 23). The given coordinates reflect the locations of maximal activity

(p < .05; corrected for multiple comparisons in SnPM).

Grand-average ERP waveforms for the three RIDE clusters split

by feature overlap and response type are presented in Figure 3. The

feature overlap by response ANOVA for the mean amplitude in the C-

cluster P3 time window showed that the main effect of feature over-

lap was significant (F(1,27) = 7.45, p = .001, ηp
2 = .216, 90% CI [.301;

.407], BF10 = 2.45). The amplitude was larger for the no feature over-

lap (7.02 μV/m2 ± 14.03) than for the full feature overlap condition

(2.61 μV/m2 ± 12.92). In contrast, the main effect of response was

not significant (F(1,27) = 0.011, p = .918, ηp
2 = .001, 90% CI [.000;

.016], BF10 = 0.20). Finally, the interaction between feature overlap

F IGURE 2 Behavioral results
across feature overlap and
response type. (a) Mean accuracy
(left) is shown as a function of
feature overlap (i.e., number of
overlapping features) for repeated
and alternated responses. Mean
RT (right) is shown as a function
of feature overlap for repeated

and alternated responses.
Repeated responses are indicated
by black bars, alternated
responses are indicated by dotted
bars. (b) Binding (interaction)
effects for mean accuracy and for
mean RT in the no feature overlap
and full feature overlap condition.
Repeated responses are indicated
by black lines, alternated
responses are indicated by dotted
lines. Error bars denote SE
of mean
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and response type was significant (F(1,27) = 7.12, p = .013, ηp
2 = .209,

90% CI [.027; .400], BF10 = 10.31). The mean amplitude of the C-

cluster P3 decreased from the no feature overlap to the full feature

overlap condition when response had to be repeated (9.08 μV/

m2 ± 14.08 vs. 0.38 μV/m2 ± 12.12, p < .001, d = .744) but not when

the response had to be alternated (4.95 μV/m2 ± 13.98 vs. 4.84 μV/

m2 ± 13.71, p = .961, d = −.009). The sLORETA analysis (see Figure 3)

revealed that this interaction effect was reflected by activation

modulations in the left inferior parietal cortex (BA40; MNI [x,y,z]:

−48, −34, 36) and the anterior cingulate cortex (BA24; MNI [x,y,z]:

−2, 29, 23).

Regarding the R cluster in the P3 time window (refer Supplemen-

tal Figure S1), the feature overlap by response ANOVA on the mean

amplitude of P3 showed that the main effects of feature overlap (F

(1,27) = .098, p = .757, ηp
2 = .004, 90% CI [.000; .101], BF10 = 0.14)

and response (F(1,27) = .031, p = .861, ηp
2 = .001, 90% CI [.000; .044],

F IGURE 3 Time-domain level results. Time point 0 denotes the stimulus presentation. The analyzed time window is marked with a gray
shaded area. (a) The standard event-related potential (ERP) results. The standard P3 ERP component is shown across four conditions: no feature
overlap repetition (red), full feature overlap repetition (blue), no feature overlap alternation (green), and full feature overlap alternation (brown).
Voxels with significant differences for the binding effects according to the standard low resolution brain electromagnetic tomography (sLORETA)
analysis are presented. The sLORETA color bar shows critical t values. Difference waves are depicted for response repetition at no feature
overlap and between full feature overlap (pink), and response alternation at no feature overlap and between full feature overlap (orange). The
scalp topography plots show the distribution of the mean activity of the respective difference wave areas. The line graph shows the interaction
between the binding conditions for the standard ERP data. (b) The decomposed C-cluster results. The C-cluster P3 is shown across the four
experimental conditions, followed by the significant voxel activations in the sLORETA analysis. Difference waves for response repetition at no
feature overlap and between full feature overlap, and response alternation at no feature overlap and between full feature overlap are presented
for the C-cluster. The scalp topography plots show the distribution of the mean activity of the respective difference wave areas for the C-cluster.
The line chart depicts the interaction between the binding conditions for the C-cluster data
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BF10 = 0.14) were not significant. Similarly, the interaction between

feature overlap and response type was not significant (F(1,27) = .076,

p = .784, ηp
2 = .003, 90% CI [.000; .094], BF10 = 0.01). The Bayes fac-

tor supports the H0 over the H1. Furthermore, regarding the S-cluster

in the P3 time window (refer Supplemental Figure S1), the feature

overlap by response ANOVA on the mean amplitude showed that the

main effects of feature overlap (F(1,27) = 1.132, p = .297, ηp
2 = .040,

90% CI [.000; .203], BF10 = 0.24) and response (F(1,27) = .695,

p = .412, ηp
2 = .025, 90% CI [.000; .175], BF10 = 0.19) were not signifi-

cant. Similarly, the interaction between feature overlap and response

type was not significant (F(1,27) = .161, p = .692, ηp
2 = .006, 90% CI

[.000; .117], BF10 = 0.03). The Bayes factor for the feature overlap by

response interaction in the S-cluster supports the H0 over the H1.

For information about the P1 and N1 ERP components reflecting

perceptual and attentional processes (Herrmann & Knight, 2001) in

the S-cluster, please refer to the supplemental material (Supplemental

Figure S2). In short, none of these ERP components revealed interac-

tions indicating binding effects. The same was the case when examin-

ing RIDE clusters in these time windows.

3.2.2 | Network analyses

As explained in Section 2, TF-decomposition and network analyses

can only reliably be calculated for the nondecomposed EEG data. For

the TF-decomposition method and results, please, see the Supplemen-

tal Material.

Small-world network analyses are shown in Figure 4.

For the 90% threshold in the theta band, the network analysis

showed that the main effects of feature overlap (F(1,27) = .063,

p = .804, ηp
2 = .002, 90% CI [.000; .085], BF10 = 0.21) and response (F

(1,27) = .742, p = .397, ηp
2 = .027, 90% CI [.000; .178], BF10 = 0.20)

were not significant. However, the significant feature overlap by

response interaction was significant (F(1,27) = 8.69, p = .007,

ηp
2 = .244, 90% CI [.044; .432], BF10 = 4.21). Further post hoc t tests

showed that when response had to be repeated, ω were larger in the

no feature overlap condition (ω = 0.633 ± 0.046) as compared to the

full feature overlap condition (ω = 0.601 ± 0.071) (t(27) = 2.21;

p = .018). When response had to be switched, the parameter ω was

smaller in the no feature overlap condition (ω = 0.607 ± 0.073) as

compared to the full feature overlap condition (ω = 0.645 ± 0.068) (t

(27) = 1.97; p = .029). For the 85% threshold in the theta band, the

network analysis showed a similar pattern. The main effects of feature

overlap (F(1,27) = .055, p = .816, ηp
2 = .002, 90% CI [.000; .075],

BF10 = 0.20) and response (F(1,27) = .284, p = .598, ηp
2 = .010, 90%

CI [.000; .136], BF10 = 0.23) were not significant. However, the fea-

ture overlap by response w interaction (F(1,27) = 4.88, p = .036,

ηp
2 = .153, 90% CI [.006; .345], BF10 = 7.04) was significant. Further

post hoc t tests showed that when response had to be repeated, ω

were larger in the no feature overlap condition (ω = 0.773 ± 0.058) as

compared to the full feature overlap condition (ω = 0.739 ± 0.078) (t

(27) = 1.83; p = .039). Again, when response had to be switched,

parameter ω was smaller in the no feature overlap condition

(ω = 0.729 ± 0.077) as compared to the full feature overlap condition

(ω = 0.769 ± 0.085) (t(27) = 1.98; p = .029).

For the alpha frequency band, and using the 90% threshold, the

network analysis showed that the main effects of feature overlap (F

(1,27) = 1.204, p = .282, ηp
2 = .043, 90% CI [.000; .207], BF10 = 0.38)

and response (F(1,27) = .023, p = .880, ηp
2 = .001, 90% CI [.000; .033],

BF10 = 0.21) were not significant. Similarly, the response by feature

overlap interaction was not significant (F(1,27) = .849, p = .365,

ηp
2 = .030, 90% CI [.000; .185], BF10 = .37). For the 85% threshold in

the alpha band, the network analysis showed that the main effect of

feature overlap (F(1,27) = 5.086, p = .032, ηp
2 = .159, 90% CI [.014;

.370], BF10 = 7.90) was significant. The parameter ω was smaller in

the zero overlap (ω = 0.620 ± 0.012) than in the full feature overlap

condition (ω = 0.645 ± 0.008). However, the main effect of response

(F(1,27) = .180, p = .675, ηp
2 = .007, 90% CI [.000; .121], BF10 = 3.03)

was not significant. The feature overlap by response interaction was

significant (F(1,27) = 9.618, p = .004, ηp
2 = .263, 90% CI [.054; .449],

BF10 = 14.42). Further post hoc t tests showed that when response

had to be switched, the parameter ω was smaller in the no feature

overlap condition (ω = 0.600 ± 0.088) as compared to the full feature

F IGURE 4 Connectivity results. Alpha and theta oscillation-based
networks are illustrated for the four experimental conditions. The
graphs represent the threshold of 85%. The imaginary part of the
coherence is plotted as edges between the electrodes (nodes). The
clockwise order of the nodes are: CPz, CP6, CP5, CP4, CP3, CP2,
CP1, C6, C5, C4, C3, AFz, AF8, AF7, AF4, AF3, TP9, TP8, TP10, T8,
T7, Pz, PO2, PO1, P9, P8, P7, P4, P3, P2, P12, P11, P10, P1, Oz, O9,
O2, O10, O1, Iz, Fz, FT9, FT8, FT7, FT10, FP2, FP1, FCz, FC6, FC5,
FC4, FC3, FC2, FC1, F6, F5, F2, F1, Cz. The color bar denotes the
number of connections from one electrode to other nodes. The line
chart represents the interaction between the binding conditions for
the small-world values (ω)
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overlap condition (ω = 0.661 ± 0.041) (t(27) = −3.45; p = .001). In con-

trast, there was no significant difference between no feature overlap

and full feature overlap conditions, when the response had to be

repeated (t(27) = 0.81; p = .214).

4 | DISCUSSION

In the current study, we performed an in-depth analysis of neurophysi-

ological processes underlying response selection mechanisms in the

TEC framework. The goal of this study was to identify neurophysiologi-

cal correlates of event file processing at multiple levels of inspection

and to link cognitive-theoretical propositions to neurophysiological cor-

relates of response selection. To this end, we examined EEG data at the

ERP level, applied a temporal EEG signal decomposition procedure, and

examined theta frequency network organization.

The behavioral data show robust event file binding effects repli-

cating various previous findings (e.g., Colzato, Raffone, & Hommel,

2006; Colzato, Warrens, & Hommel, 2006; Hommel, 1998; Petruo

et al., 2016). The robustness of findings is supported by the observed

effect size and the Bayes factor providing evidence for the interaction

“feature overlap x response”. Whenever there was a strong overlap

between features of the S1 and the S2 stimulus, responses accuracy

decreased when the response had to be changed. This reflects partial

repetition costs because the previously established stimulus–response

bindings and expectancies on stimulus–response associations are only

partially fulfilled (Colzato, Warrens, & Hommel, 2006; Hommel, 2004).

In contrast, the strong overlap between S1 and S2 features improved

response accuracy when responses were repeated. This is in line with

previous behavioral studies using this task (Colzato, Warrens, &

Hommel, 2006; Hommel, 2004; Hommel, 2005; Petruo et al., 2016).

Furthermore, the behavioral analyses provided evidence that event

file coding occurs without a voluntary evaluation of S1 from the par-

ticipants [for this method, see Colzato, Raffone, & Hommel, 2006;

Petruo et al., 2016]. Thus, our results are in line with previous studies

showing that attention to the first stimulus is not required for initial

binding after the presentation of S1 (Hommel, 1998; Hommel, 2004;

Kühn et al., 2011). On the neurophysiological level, and in line with

the hypotheses, reliable binding processes (i.e., interactions “feature

overlap × response”) were evident for the P3 ERP-component ampli-

tudes and for the C-cluster amplitudes in the P3 time window. More-

over, the network organization of theta activity (and partially, alpha

activity) quantified using the small-world network metric revealed

robust binding effects. Below, we will first discuss the time domain

results and then network domain results. Finally, we compare the pos-

sible advantages of studying binding processes from the time domain

perspective and from a small-world network perspective.

4.1 | Time domain findings

Regarding the P3 amplitudes and the C-cluster amplitudes in the P3

time window, the results revealed an interaction “feature

overlap × response.” This interaction was slightly stronger for the C

cluster than for the P3 ERP component, as indicated by the effect

sizes in the interaction effect, and the confidence intervals for the

effect sizes. Effect sizes for the C-cluster interaction effect, surpassed

the criterion of the sensitivity analysis, which suggests that the

observed effects are reliable. Furthermore, the Bayes factor of the

interaction in the C-cluster was high (BF > 10), thus provides strong

evidence for the interaction “feature overlap × response” and corrob-

orates the robustness of the finding. The reason is that the applied

decomposition method (RIDE) uses an L1-norm estimation to decom-

pose ERPs, which reduces intraindividual variability. Standard ERPs

are based on averaging and minimize the L2 norm of the data, which

is more sensitive to intraindividual variability (Ouyang et al., 2011;

Ouyang et al., 2015; Ouyang et al., 2017). Therefore, the relatively

low trial numbers used for the ERP analysis could be accounted for

higher intraindividual variability, which affected the RIDE analysis in

lesser extent. Interestingly, the S-cluster and the R-cluster did not

reveal effects of experimental manipulations. This is corroborated by

a Bayesian analysis of the data and in line with the hypotheses. This

lack of effects in the S- and R-cluster suggests that purely stimulus-

related processes (like perception and attention) and purely response-

related processes (like motor preparation/execution) (Ouyang et al.,

2011; Ouyang et al., 2015; Ouyang et al., 2017) do not capture the

dynamics of processes occurring in an event file. This is completely in

line with the TEC framework stating that it is the binding/association

between stimulus features and response features that are accom-

plished in an event file. Although object files and action files are part

of the event file (Hommel, 2009), the structure of the object and the

action file itself is not changed during event binding processes

(Hommel, 2004). Exactly this is suggested by the lack of interaction

for the S-cluster and the R-cluster data. Although the applied tempo-

ral decomposition method was originally developed to account for

intraindividual variability in EEG data (Ouyang et al., 2011; Ouyang

et al., 2015; Ouyang et al., 2017), it has been shown that it can be

used to dissociate different coding levels in a theoretically meaningful

way in EEG data (Mückschel, Chmielewski, et al., 2017; Mückschel,

Dippel, & Beste, 2017). In line with these hypotheses, the results sug-

gest that a temporal EEG signal decomposition procedure reveals a

result that well reflects theoretical principles of TEC. It is likely that

the S-cluster reflects object file related processes and the R-cluster

action file related processes. This may further be tested using experi-

ments specifically measuring object and action file processing.

According to TEC, event file processes are concerned with the

binding of stimulus features to response features. Several lines of evi-

dence suggest that particularly the C-cluster may reflect stimulus–

response translation processes (Ouyang et al., 2017; Verleger et al.,

2014; Wolff, Mückschel, & Beste, 2017). The current results corrobo-

rate this using a stringent theoretical framework. In detail, the results

show that amplitudes in the P3 ERP and the C-cluster in the P3 time

window are small if S1 and S2 stimuli share many features and if no

change in responses was required. At the behavioral level, this condi-

tion was associated with better performance. Several lines of evi-

dence show that the P3 becomes smaller when response selection
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becomes more difficult (Falkenstein et al., 1994; Twomey et al., 2015;

Verleger et al., 2005), when more processing resources have to be

allocated (Polich, 2007) and when responses have to be switched/

alternated (Barceló, Muñoz-Céspedes, Pozo, & Rubia, 2000;

Gajewski & Falkenstein, 2011; Gajewski, Kleinsorge, & Falkenstein,

2010; Hsieh & Liu, 2009; Karayanidis, Coltheart, Michie, & Murphy,

2003; Kieffaber & Hetrick, 2005; Lorist et al., 2000; Rushworth, Pass-

ingham, & Nobre, 2002). A reduction of the amplitudes in the P3 and

the C-cluster indicates that the above-mentioned processes will be

intensified. However, these accounts would also suggest that the

reduction of amplitudes takes place when the allocation of response

selection capacities was successful. As we saw in the behavioral

results, in conditions, where responses were repeated, performance

was improved. In the condition, in which the response was alternated,

no further modulation of the amplitude takes place. This indicates that

with a combination of high feature overlap between S1 and S2 and a

simultaneous alternation of the response, not enough response selec-

tion capacities can be mobilized. Consequently, the behavioral perfor-

mance became worse. Alternatively, the P3 and the C cluster

amplitudes could reflect the amount of reactivation or retrieval of the

S–R links (Verleger et al., 2015; Verleger et al., 2017). In this case, a

full feature overlap with response repetition would reflect a simple,

nonconflicting reactivation, hence, a small P3 or C cluster amplitude.

In contrast, a no overlap condition with response repetition would

indicate a retrieval of the S–R link and the reconfiguration of

it. Consequently, this condition was characterized by larger P3 and C

cluster amplitude. Interestingly, response alternation conditions did

not show amplitude modulation. While no feature overlap with

response alternation does not require any retrieval, a full feature over-

lap would reactivate the original S–R link. Thus, it is possible that the

P3 and C cluster modulations observed after the presentation of S2

reflect the success of response selection capacities (Falkenstein et al.,

1994; Twomey et al., 2015; Verleger et al., 2005), rather than the

retrieval or reactivation of S–R links (Verleger et al., 2015; Verleger

et al., 2017). The source localization using sLORETA suggests that

regions in superior frontal gyrus (BA6), the medial frontal cortex

(BA24), anterior cingulate cortex (BA24) and the inferior parietal cor-

tex (BA40) were modulated by interactive effects between “feature

overlap × response” for the P3 and the C-cluster. These regions have

previously been suggested to be involved in event coding processes

(Chmielewski & Beste, 2019a; Chmielewski & Beste, 2019b;

Chmielewski & Beste, 2019c; Elsner et al., 2002; Kühn et al., 2011;

Petruo et al., 2016; Petruo et al., 2018; Zmigrod et al., 2014). How-

ever, the source localization findings were most consistent for the

inferior parietal cortex (BA40), since this area was seen both in the

sLORETA using the C-cluster data and the nondecomposed P3 ERP

data. Inferior parietal regions have previously been shown to be asso-

ciated with modulations in the P3 (Verleger et al., 1994) and are cen-

tral for response selection processes (Chersi, Ferrari, & Fogassi, 2011;

Karch et al., 2010; Mückschel et al., 2014). A more overarching con-

ceptual view on the function of inferior parietal regions suggests that

this area is important to update internal representations using task-

relevant stimuli to initiate appropriate actions (Geng & Vossel, 2013).

Exactly these aspects are at the core of event file binding processes

(Hommel, 2009). A recent study supported this notion by showing

that binding effects in event file related processes were shown in the

C-cluster and were related to activity in the BA40 (Opitz et al., 2020).

4.2 | Network findings

In the time–frequency domain, we expected that theta and poten-

tially alpha oscillations have a role in binding processes (Cavanagh &

Frank, 2014; Clarke et al., 2018; Cohen, 2014; Crivelli-Decker et al.,

2018; Tóth et al., 2017). In terms of the network architecture, and

using the small-world metric, the results show a clear interaction

“feature overlap × response” that directly reflects the interaction

observed at the behavioral level. The obtained effect size in the

interaction (i.e., eta squares) was larger for the theta frequency

small-world metric, compared to the parameters in the time domain

analysis (cf. C-cluster and P3 data, see also the related confidence

intervals for effect sizes). The interaction is also supported by the

Bayesian analysis. This suggests that network measures may be

especially suitable to describe the neurophysiological dynamics of

event file binding processes.

Regarding the small-world network perspective, partial repeti-

tion costs at the behavioral level were paralleled by a larger (more

positive) small-world network parameter. Opposed to this, partial

repetition benefits occurring when the response was not changed,

when there was a strong overlap between S1 and S2 features, were

reflected by a smaller small-world network parameter. A small-

world-like network architecture enables an efficient separation and

functional integration of information (Achard & Bullmore, 2007;

Bassett & Bullmore, 2006; Bullmore & Sporns, 2009). According to

Telesford et al. (2011), a more random network organization (indi-

cated by larger small-world values) is less efficient. Previous results

have already shown that network organization in the theta band

becomes more random (inefficient) when demands on response

selection processes increase (Beste et al., 2019). That data also sug-

gest that the theta network architecture is more important to con-

sider than pure theta power aspects when it comes to response

selection processes (Beste et al., 2019). That is, information

processing efficiency in the network plays a more important role in

event-file coding than the power of the neuronal activity (theta

power results of the current study are available in the Supplemen-

tary materials). The current results suggest that whenever event file

binding leads to partial repetition costs and complicates response

selection, the associated theta network architecture is less small-

world like (i.e., more random) and hence less efficient. Whenever

event file binding is associated with partial repetition benefits and

increases response selection accuracy, the associated theta network

architecture is more small-world like and hence more efficient. A

small-world architecture has been suggested to be very efficient

because this network architecture shows dense local interconnectiv-

ity and short average path length, thus linking nodes in a short and

efficient way (Achard & Bullmore, 2007; Bassett & Bullmore, 2006;
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Bullmore & Sporns, 2009). From a biophysical point of view, it is rea-

sonable that theta networks are important during event file pro-

cesses (Cavanagh & Frank, 2014; Clarke et al., 2018; Cohen, 2014;

Crivelli-Decker et al., 2018; Tóth et al., 2017). Imaging studies sug-

gest that event file processes depend on a widely distributed brain

areas (Chmielewski & Beste, 2019a; Chmielewski & Beste, 2019b;

Chmielewski & Beste, 2019c; Elsner et al., 2002; Kühn et al., 2011;

Petruo et al., 2016; Petruo et al., 2018; Zmigrod et al., 2014). Also,

the cognitive conception of event files, according to which the asso-

ciation of stimulus and response-related processes is at stake

(Hommel, 2004), implies that widely distributed areas from sensory

processing to motor implementation are relevant. For information

processing between such distant neural assemblies especially low-

frequency, high-amplitude oscillations are suitable to integrate infor-

mation across spatial distances (Buzsáki & Draguhn, 2004). Impor-

tantly, apart from the theta band, delta and alpha could be also

potential candidates as they are characterized by low frequencies

and high amplitudes. In the current study, we analyzed small-world

network activity in the alpha band, as well. Interestingly, in the alpha

band, “feature overlap × response” interaction occurred only with

one threshold parameter (85%), which showed difference between

the no feature overlap with response alternation and the full feature

overlap with response alternation conditions. Similar to the theta

band results, the latter one was characterized by a more random (less

effective) network architecture. However, unlike in the theta net-

work, response repetition conditions did not differ from each other.

Moreover, with a more conservative threshold (90%), the “feature

overlap × response” interaction was not significant. Thus, network

dynamics in the theta band show robust binding effects akin to the

behavioral results. At the same time, the alpha network shows only

partial sensitivity to the binding processes, and it is more sensitive to

the overall strength of the network. It is possible, that the alpha net-

work is related to general response selection processes (Clarke et al.,

2018; Crivelli-Decker et al., 2018; Tóth et al., 2017) rather than

event file coding. In conclusion, the binding processes including

retrieval, unbinding, and rebinding of S–R links are primarily

reflected by the theta network. Nevertheless, future studies

warranted to specifically investigate the potential role of network

activities in the delta band. Intriguingly, and according to the TEC

framework, processes in the event file can be understood in terms of

network processes (Hommel, 2005; Hommel, 2009) in that an event

file resembles a network of stimulus and response feature bindings

(Hommel, 2009). Partial repetition costs and partial repetition bene-

fits have been suggested to reflect a direct consequence of the

network-like processes in event files, that is, integration of informa-

tion during event file retrieval, unbinding, and reconfiguration. The

current results attribute this network-like dynamic during event file

processing to mechanisms in the theta frequency band and suggest

that the small-world network metric is suitable to describe network

dynamics occurring in event files on a neurophysiological level. At

present, the TEC framework does not yet contain a statement about

the exact organization of (neurophysiological) network aspects dur-

ing event file coding. Therefore, the analysis of neurophysiological

data from the perspective of network organization contributes to

the further development of the TEC framework.

4.3 | Comparison of the time domain and network
findings

The current study aimed to provide an in-depth analysis of the neuro-

physiological underpinnings of event file binding processes. To gain reli-

able effects, we investigated the possible neural effects similar to the

well-known behavioral phenomena: we analyzed partial repetition ben-

efit and partial repetition cost with the tools of ERP, signal decomposi-

tion (RIDE), and small-world network analyses. Importantly, these

methods have complimentary roles: they represent different temporal

and spatial perspectives, specificities, and sensitivities to intraindividual

variability. Thus, the results presented in the current study are hardly

comparable directly to each other. Specifically, results from the time

domain analyses represent focal results from a single electrode. In con-

trast, the small-world network metric takes into account all possible

electrode pairs. Additionally, the time domain results reflect the combi-

nation of different frequency bands, while the network analyses are

specific for the theta and alpha oscillations. Finally, the RIDE decompo-

sition provided clearer results in the C cluster compared to traditional

ERP analysis. Unfortunately, this process was not available for the net-

work analysis; therefore, the small-world networks reflect non-

decomposed activities. RIDE includes an iterative realignment of the

single-trial EEG data, separately for each electrode to reduce intra-

individual variability (Ouyang et al., 2013; Ouyang et al., 2015). As a

result, RIDE can distort the power and phase relationships of EEG data.

Since these information are crucial to calculate the coherence between

electrodes, signal decomposition would lead to nonreliable small-world

metric analyses. In conclusion, both time domain and network-based

approaches represent potential advantages to understand the neuro-

physiology of event file binding. The parallel use of methods has impor-

tant theoretical implications: The different sensitivities allow us to

capture event file processes both at the local (subprocess), and global

(information processing efficiency) levels. In the current study, modula-

tion of the P3 and the C cluster amplitude likely reflected the allocation

of response selection resources during event file coding. This is a core

aspect of event file coding; however, it is unlikely to reflect all subpro-

cesses related to binding, retrieval, unbinding, and reconfiguration. At

the same time, the small-world network characteristics predominantly

in the theta band reflected the separation and integration of informa-

tion needed to successfully solve the task. Importantly, while a sub-

process can be tied to a certain area, the global perspective reflected

by the small-world analysis represent a more widely distributed net-

work. Please, note, that while in the source localization analyses BA40

proved to be the most consistent source of activation across the P3

and C-cluster effects, in both cases, other areas were implicated too.

That is, even from a more focal, subprocess-based perspective binding

effects do not resemble single source activation. In sum, from different

lenses, both the localized and the distributed effects present valid neu-

rophysiological underpinnings for event file processes.
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4.4 | Conclusions

In summary, we linked EEG signal decomposition methods to theoreti-

cal components of the TEC framework to delineate the neurophysio-

logical mechanisms underlying event file binding, including the

retrieval and reconfiguration of event files. In particular, we show that

event file binding is associated with modulations in the P3 ERP com-

ponent and is associated with processes in the inferior parietal cortex

(BA40). However, ERPs reflect a mixture of processes. From the per-

spective of TEC, it is important to dissociate binding processes occur-

ring in an event file from stimulus-related and response-related

processes in the object file and the action file. We show that a tempo-

ral EEG signal decomposition reveals a pattern of results suggesting

that event file processes can be isolated using signal decomposition.

The decomposition result is in line with the theoretical assumption

that event files mediate stimulus–response association/binding pro-

cesses. Most important, however, is the finding that event file binding

processes are strongly reflected by modulations in the organization of

networks in the theta frequency band using a small-world metric. The

effects of partial repetition cost and benefit are associated with mod-

ulations of the network towards an inefficient or more efficient orga-

nization of the network, respectively. In this respect,

neurophysiological network measures correspond to the processes

that have already been assumed on the cognitive-theoretical level.

Taken together, theoretical propositions of TEC can be translated into

human neurophysiology.
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