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Abstract: A monolithic rod of polyurethane foam–[4-(2-pyridylazo) resorcinol] (PUF–PAR) as a sim-
ple chemical sensor for lead assays with smartphone detection and image processing was developed.
With readily available simple apparatus such as a plastic cup and a stirrer rod, the monolithic PUF
rod was synthesized in a glass tube. The monolithic PUF–PAR rod could be directly loaded by
standard/sample solution without sample preparation. A one-shot image in G/B value from a profile
plot in ImageJ for a sample with triplicate results via a single standard calibration approach was
obtained. A linear single standard calibration was: [G/B value] = −0.038[µg Pb2+] + 2.827, R2 = 0.95
for 10–30 µg Pb2+ with a limit of quantitation (LOQ) of 33 µg L−1. The precision was lower than
15% RSD. The proposed method was tested by an assay for Pb2+ contents in drinking water samples
from Bangkok. The results obtained by the proposed method agree with those of ICP-OES and with
100–120% recovery, demonstrating that the method is useful for screening on-site water monitoring.

Keywords: monolithic polyurethane foam–[4-(2-pyridylazo) resorcinol]; chemical sensor; lead;
smartphone; on-site screening; water monitoring

1. Introduction

Lead is a substance of concern due to its toxicity. According to Thailand’s guidelines
for health effects, a maximum of 50 µg L−1 of lead is allowed in drinking water [1].
The standard methods for water analysis usually employ colorimetry (using dithizone
reagent), atomic absorption spectroscopy (AAS) with flame and non-flame, inductively
coupled plasma optical emission spectrometry/mass spectrometry (ICP-OES/MS), and
anodic stripping voltammetry (ASV) [2]. The development of lead determination has been
of interest for various kinds of applications, including water monitoring. Even in recent
decades, there have been a number of reports devoted to lead monitoring, including the use
of nanoparticles [3–6] and smartphones [7–11], although various screen-printed electrodes
have been used for the electrochemical analysis of lead [12–14], with the aims of improved
sensitivity and more convenient procedures.

4-(2-pyridylazo) resorcinol (PAR) has been a color reagent of interest for lead deter-
mination since the 1960s [15], due to its good solubility in water, rapid color formation,
reasonable sensitivity, and high stability for lead complexes [16]. PAR, which could be
viable in laboratories, has made the colorimetric determination of lead a popular imple-
mentation, with simple operation. Pretreatment may be associated with the colorimetric
determination of lead using PAR. Some sorbents such as AV-17 [17–19], polyurethane foam
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(PUF) [20], Amberlite XAD-1180 [21], Amberlite XAD-7 [22], modified silica [23], imprinted
polymer nanoparticles [24], modified nano-alumina [6], nanomagnetic materials [3,5],
TrisKem Pb resin [25], NOBIAS chelate PA-1 [26], Amberlite IR-120 [27], PB-resin [28], and
nonwoven polypropylene [29] have been employed. Some of those were used to sorb lead
with elution, for the next step of forming color with PAR for a colorimetric assay [22,25–28].
In some previous works, lead that formed anionic complexes before being sorbed on AV-17
could then form a color complex when treated with a PAR solution [17–19]. The silica
was treated with mixed ligands for the sorption of lead before forming a color product
with PAR [23]. In both the latter cases, detection with diffuse reflectance spectrometry
was employed.

Polyurethane foam (PUF) has gained interest for use as a sorbent for lead [20,30–47].
Many previous works have been devoted to pretreatment for the determination of lead by
atomic absorption spectrometry. Only one of them was applied using PAR [20]; PUF, as
purchased, was made into a powder and packed into a column, then loaded with PAR in a
flow injection system. The eluted lead from the column was then allowed to flow into AAS
for lead determination.

Recently, our research group introduced PUF as a monolithic rod with the single
standard calibration approach for anionic surfactant assays, employing methylene blue
reagent [48] and a PUF–alginate monolithic rod for lead determination using flow injection–
flame atomic absorption spectrometry [49].

It would, therefore, be of interest to make use of PUF loading with PAR as a monolithic
column to sorb lead, producing a color product (Pb2+–PAR sorbed on PUF) with the use
of smartphone detection for various expected benefits, such as simplicity in monolithic
PUF–PAR rod fabrication for a ready-to-use chemical sensor, according to the IUPAC
definition of a sensor [50] with a one-shot image, and the advantage of the single standard
calibration approach without sample preparation for on-site water monitoring.

2. Results
2.1. The Monolithic PUF–PAR Rod

A monolithic PUF rod (obtained from the synthesis) of a cylindrical shape, 2 cm in
height, with good porosity characteristics, was instantly packed into the glass rod to create
a mold during the synthesis step. The color of the obtained monolithic PUF rod was
white (see Figure 1a). After loading with a PAR solution, and being left to dry, the PUF
immobilized with PAR resulted in a yellow monolithic PUF–PAR rod, as depicted in Figure
1b. When passing a Pb2+ solution, red coloration appeared on the monolithic PUF–PAR rod
(see Figure 1c). The higher the concentration of Pb2+, the more intense the color observed.
In one batch of fabrication of the monolithic PUF–PAR rod, i.e., synthesizing the backbone
monolithic PUF rod in a glass rod as a mold, and immobilizing PAR, 40 monolithic rods
could be obtained, and were ready to use as working monolithic PUF–PAR rods for lead
assays (cf. A in Figure S1). The working monolithic PUF–PAR rod could be kept in a
desiccator for further use for at least a week.
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2.2. The Proposed Water Monitoring Procedure

An analyte solution (standard/sample) with the desired volume was loaded through a
monolithic PUF–PAR rod and left to dry. A set of nine rods (six rods for Pb2+ standards, and
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three rods of a sample for triplicate results) was employed for each sample (see Figure 2). The
one-shot image was obtained using a smartphone under the light control box. Image processing
was carried out using ImageJ for the ratio of the G/B value, where the G value and B value refer
to the color intensities of the color mode: red (R), green (G), and blue (B).

It is noted that the above analysis procedure is composed of two steps: detection
(loading and photographing) and evaluation (cf. B and C in Figure S1). After loading, it was
left to dry (for approximately two hours) before photographing. During the drying period,
operation of the other sites could be performed in parallel. The photographing would
take less than one minute, and then it would take less than five minutes for evaluation,
including image processing, to obtain the triplicate analysis results. This is still useful for
the on-site monitoring approach.

Loaded Pb2+ (in microgram) on a monolithic PUF–PAR rod could be computed by:
Pb2+ microgram = CPb

2+ × FRanalyte solution × LT, where CPb
2+ is the Pb2+ concentration

(µg mL−1) in the solution, FRanalyte solution is the flow rate of analyte (mL min−1), and
LT is the loading time (min). A linear calibration graph can be established by a plot of
the Pb2+ microgram against the G/B value. However, the equation can be reduced to
the shorter form: Pb2+ microgram = CPb

2+ × Vanalyte solution, where Vanalyte solution is the
loading volume.

A linear calibration graph, using a single standard calibration approach (see detail in
Section 3.3), was obtained by a plot of the Pb2+ microgram against the G/B value (see Figure 2).

The calibration equation was: G/B value = −0.038[µg Pb2+] + 2.827 (R2 = 0.95) for the
linear range of 10–30 µg Pb2+. The precision of the proposed method was less than 15% RSD.

It can be observed from Table 1 that using a solution of 0.4 µg mL−1 Pb2+ for I–G
positions, with different loading volumes, resulted in different µg from the single standard
calibration but yielded the same concentration values. In this way, triplicate results could
be obtained even when using different loading volumes. This offers a method through
which to verify the obtained results.

The developed procedure was tested for real application in assays of Pb2+ in drinking
water samples from coin-operated drinking water vending machines in various districts of
Bangkok (see Figure 3), Thailand, including Dindaeng (S1), Bangkapi (S2), Huai Khwang
(S3), and Thungkru (S4). The pH values of the drinking water samples were found to be 7
± 0.5, so the samples were directly loaded to the monolithic PUF–PAR rod without any
sample pretreatment. The results are summarized in Table 2.

The results obtained by the proposed method agree with those obtained by the ICP-
OES method. When spiking each sample with 50 Pb2+ std (µg L−1), which is the maximum
acceptable concentration of lead in drinking water, the results obtained by the proposed
procedure are 50 ± 10 µg L−1, indicating that the sensitivity of the proposed procedure is
appropriate for screening water in accordance with Thailand’s guidelines for the maximum
allowance of lead [1].

It was found that the observed values were less than the theoretical values (2.92 at
95% confidence level), indicating no significant difference. The aim of this work is to report
the development of simple procedures for lead assays employed in water monitoring.
However, we are aware that the number of samples needs to be increased to verify the
utility of the method. Further work regarding water monitoring on a larger scale is planned.
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Table 1. Assay using the proposed procedure for one-shot image of a sample with triplicate results via a single standard
calibration approach.

Position (in
Figure 2)

Loading Pb2+ Intensity

G/B value c

Pb2+ found

µg µg mL−1 Loading
volume(mL) G value B value µg a Concentration

(µg mL−1)

A 10 0.2 50 200 80 2.5 − −
D 10 0.5 20 200 80 2.5 − −
B 20 0.1 200 200 100 2.0 − −
C 20 0.1 200 200 90 2.2 − −
E 30 0.3 100 170 95 1.8 − −
F 30 0.5 60 170 95 1.8 − −
I − − 40 200 90 2.2 18 0.4 b

H − − 50 195 105 1.9 27 0.5 b

G − − 70 200 115 1.7 32 0.4 b

a µg from calibration; b see text; c the ratio of the G/B value, where the G (green) value and B (blue) value refer to the color intensities of the
color mode.

Molecules 2021, 26, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 2. Assay using the proposed procedure for one-shot image of a sample with triplicate results via a single standard 
calibration approach: (a) one-shot photo taken of the nine rods (A−F due to the Pb2+ standards, G–I due to a sample with 
different loading volumes); (b) profile of G and B values with calibration graph (see Table 1): A ( ), B ( ), C ( ), D ( ), E (

), F ( ). 

The developed procedure was tested for real application in assays of Pb2+ in drinking 
water samples from coin-operated drinking water vending machines in various districts 
of Bangkok (see Figure 3), Thailand, including Dindaeng (S1), Bangkapi (S2), Huai 
Khwang (S3), and Thungkru (S4). The pH values of the drinking water samples were 
found to be 7 ± 0.5, so the samples were directly loaded to the monolithic PUF–PAR rod 
without any sample pretreatment. The results are summarized in Table 2. 

Figure 2. Assay using the proposed procedure for one-shot image of a sample with triplicate results via a single standard
calibration approach: (a) one-shot photo taken of the nine rods (A−F due to the Pb2+ standards, G–I due to a sample with
different loading volumes); (b) profile of G and B values with calibration graph (see Table 1): A (

Molecules 2021, 26, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 2. Assay using the proposed procedure for one-shot image of a sample with triplicate results via a single standard 
calibration approach: (a) one-shot photo taken of the nine rods (A−F due to the Pb2+ standards, G–I due to a sample with 
different loading volumes); (b) profile of G and B values with calibration graph (see Table 1): A ( ), B ( ), C ( ), D ( ), E (

), F ( ). 

The developed procedure was tested for real application in assays of Pb2+ in drinking 
water samples from coin-operated drinking water vending machines in various districts 
of Bangkok (see Figure 3), Thailand, including Dindaeng (S1), Bangkapi (S2), Huai 
Khwang (S3), and Thungkru (S4). The pH values of the drinking water samples were 
found to be 7 ± 0.5, so the samples were directly loaded to the monolithic PUF–PAR rod 
without any sample pretreatment. The results are summarized in Table 2. 

), B (

Molecules 2021, 26, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 2. Assay using the proposed procedure for one-shot image of a sample with triplicate results via a single standard 
calibration approach: (a) one-shot photo taken of the nine rods (A−F due to the Pb2+ standards, G–I due to a sample with 
different loading volumes); (b) profile of G and B values with calibration graph (see Table 1): A ( ), B ( ), C ( ), D ( ), E (

), F ( ). 

The developed procedure was tested for real application in assays of Pb2+ in drinking 
water samples from coin-operated drinking water vending machines in various districts 
of Bangkok (see Figure 3), Thailand, including Dindaeng (S1), Bangkapi (S2), Huai 
Khwang (S3), and Thungkru (S4). The pH values of the drinking water samples were 
found to be 7 ± 0.5, so the samples were directly loaded to the monolithic PUF–PAR rod 
without any sample pretreatment. The results are summarized in Table 2. 

), C (

Molecules 2021, 26, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 2. Assay using the proposed procedure for one-shot image of a sample with triplicate results via a single standard 
calibration approach: (a) one-shot photo taken of the nine rods (A−F due to the Pb2+ standards, G–I due to a sample with 
different loading volumes); (b) profile of G and B values with calibration graph (see Table 1): A ( ), B ( ), C ( ), D ( ), E (

), F ( ). 

The developed procedure was tested for real application in assays of Pb2+ in drinking 
water samples from coin-operated drinking water vending machines in various districts 
of Bangkok (see Figure 3), Thailand, including Dindaeng (S1), Bangkapi (S2), Huai 
Khwang (S3), and Thungkru (S4). The pH values of the drinking water samples were 
found to be 7 ± 0.5, so the samples were directly loaded to the monolithic PUF–PAR rod 
without any sample pretreatment. The results are summarized in Table 2. 

), D (

Molecules 2021, 26, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 2. Assay using the proposed procedure for one-shot image of a sample with triplicate results via a single standard 
calibration approach: (a) one-shot photo taken of the nine rods (A−F due to the Pb2+ standards, G–I due to a sample with 
different loading volumes); (b) profile of G and B values with calibration graph (see Table 1): A ( ), B ( ), C ( ), D ( ), E (

), F ( ). 

The developed procedure was tested for real application in assays of Pb2+ in drinking 
water samples from coin-operated drinking water vending machines in various districts 
of Bangkok (see Figure 3), Thailand, including Dindaeng (S1), Bangkapi (S2), Huai 
Khwang (S3), and Thungkru (S4). The pH values of the drinking water samples were 
found to be 7 ± 0.5, so the samples were directly loaded to the monolithic PUF–PAR rod 
without any sample pretreatment. The results are summarized in Table 2. 

), E
(

Molecules 2021, 26, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 2. Assay using the proposed procedure for one-shot image of a sample with triplicate results via a single standard 
calibration approach: (a) one-shot photo taken of the nine rods (A−F due to the Pb2+ standards, G–I due to a sample with 
different loading volumes); (b) profile of G and B values with calibration graph (see Table 1): A ( ), B ( ), C ( ), D ( ), E (

), F ( ). 

The developed procedure was tested for real application in assays of Pb2+ in drinking 
water samples from coin-operated drinking water vending machines in various districts 
of Bangkok (see Figure 3), Thailand, including Dindaeng (S1), Bangkapi (S2), Huai 
Khwang (S3), and Thungkru (S4). The pH values of the drinking water samples were 
found to be 7 ± 0.5, so the samples were directly loaded to the monolithic PUF–PAR rod 
without any sample pretreatment. The results are summarized in Table 2. 

), F (

Molecules 2021, 26, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 2. Assay using the proposed procedure for one-shot image of a sample with triplicate results via a single standard 
calibration approach: (a) one-shot photo taken of the nine rods (A−F due to the Pb2+ standards, G–I due to a sample with 
different loading volumes); (b) profile of G and B values with calibration graph (see Table 1): A ( ), B ( ), C ( ), D ( ), E (

), F ( ). 

The developed procedure was tested for real application in assays of Pb2+ in drinking 
water samples from coin-operated drinking water vending machines in various districts 
of Bangkok (see Figure 3), Thailand, including Dindaeng (S1), Bangkapi (S2), Huai 
Khwang (S3), and Thungkru (S4). The pH values of the drinking water samples were 
found to be 7 ± 0.5, so the samples were directly loaded to the monolithic PUF–PAR rod 
without any sample pretreatment. The results are summarized in Table 2. 

).



Molecules 2021, 26, 5720 5 of 13

Molecules 2021, 26, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 3. Sampling areas in Bangkok, Thailand for lead assays of drinking water samples. 

Table 2. Assay of lead contents in drinking water samples from different districts in Bangkok. 

Sample Monitoring site a 
Added Pb2+ std  

(µg L−1) 

Found Pb2+ tobserved d 
Proposed method (n = 3) ICP-OES (n = 3)  

µg c µg L−1  % Recov-
ery µg L−1   

S1 (Dindaeng) 13° 46′ 12.80644′’N,  

100° 33′ 31.986′’ E  
− ND − − ND 

2.70 
50 b 18 ± 2 60 ± 7 120 49 ± 0.4 

S2 (Bangkapi) 
13° 46′ 7.2408′’ N,  
100° 38′ 30.03′’ E  

− ND − − ND 
1.22 

50 b 18 ± 5 60 ± 17 120 48 ± 0.4 
S3  

(Huai Khwang) 
13° 48′ 1.1916′’ N,  
100° 35′ 1.41′’ E  

− ND − − ND 
0.79 

50 b 15 ± 4 50 ± 13 100 44 ± 0.8 

S4 (Thungkru) 13° 38′ 58.182′’ N,  
100° 29′ 46.9896′’ E  

− ND − − ND 
2.07 

50 b 18 ± 3 60 ± 10 120 48 ± 0.4 
a monitoring sites with latitude and longitude; b a total of 50 Pb2+ std (µg L−1) was purposely added following the maximum 
acceptable concentration of lead in drinking water [1]; c µg evaluated from the calibration; ND = not detectable; d tobserved 
values were less than theoretical values (2.92 at 95% confidence level), indicating no significant difference. 

The results obtained by the proposed method agree with those obtained by the ICP-
OES method. When spiking each sample with 50 Pb2+ std (µg L−1), which is the maximum 
acceptable concentration of lead in drinking water, the results obtained by the proposed 
procedure are 50 ± 10 µg L−1, indicating that the sensitivity of the proposed procedure is ap-
propriate for screening water in accordance with Thailand’s guidelines for the maximum al-
lowance of lead [1]. 

It was found that the observed values were less than the theoretical values (2.92 at 95% 
confidence level), indicating no significant difference. The aim of this work is to report the 
development of simple procedures for lead assays employed in water monitoring. How-
ever, we are aware that the number of samples needs to be increased to verify the utility 
of the method. Further work regarding water monitoring on a larger scale is planned. 

  

Figure 3. Sampling areas in Bangkok, Thailand for lead assays of drinking water samples.

Table 2. Assay of lead contents in drinking water samples from different districts in Bangkok.

Sample Monitoring site a Added Pb2+ std
(µg L−1)

Found Pb2+ tobserved
d

Proposed method (n = 3) ICP-OES (n = 3)

µg c µg L−1 % Recovery µg L−1

S1 (Dindaeng) 13◦ 46′ 12.80644” N,
100◦ 33′ 31.986” E

− ND − − ND
2.7050 b 18 ± 2 60 ± 7 120 49 ± 0.4

S2 (Bangkapi) 13◦ 46′ 7.2408” N,
100◦ 38′ 30.03” E

− ND − − ND
1.2250 b 18 ± 5 60 ± 17 120 48 ± 0.4

S3 (Huai
Khwang)

13◦ 48′ 1.1916” N,
100◦ 35′ 1.41” E

− ND − − ND
0.7950 b 15 ± 4 50 ± 13 100 44 ± 0.8

S4 (Thungkru) 13◦ 38′ 58.182” N,
100◦ 29′ 46.9896” E

− ND − − ND
2.0750 b 18 ± 3 60 ± 10 120 48 ± 0.4

a monitoring sites with latitude and longitude; b a total of 50 Pb2+ std (µg L−1) was purposely added following the maximum acceptable
concentration of lead in drinking water [1]; c µg evaluated from the calibration; ND = not detectable; d tobserved values were less than
theoretical values (2.92 at 95% confidence level), indicating no significant difference.

3. Discussion
3.1. Properties of the Monolithic PUF–PAR Rod

Unlike that mentioned earlier (that PUF used in previous works was commercially
available), in this work, the monolithic PUF rod was synthesized by modifying the work
of [48,49] and by utilizing readily available simple apparatus such as a plastic cup and a
stirrer rod. Methylene diphenyl diisocyanate (MDI) was mixed for a few minutes with
polyol and additives (water and silicone oil). By plugging the glass rods into the mixture,
polymerization reactions took place within five minutes in the glass rods, which served
as molds within which to form the monolithic rods. PAR was immobilized onto the PUF
monolithic rods by loading with PAR solution for one hour and being left to dry overnight.

Employing the 2:1 ratio of diisocyanate groups from MDI and polyol groups could
properly generate rigid PUF in the rod due to the potential rigidity of the aromatic parts
provided by MDI. The white foam could be achieved from this ratio, as there is no profusion
of brown color from MDI, resulting in no brown color interfering in the colorimetric
detection step. PUF is shrunken and cohesive when the ratio of the polyol is higher than
that of MDI, on account of the excess softened part for forming the monolithic PUF rod.
Water, as a chemical blowing agent, serves to enlarge the porous cell and enhance the
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height of the foam by the generation of CO2 during the polymerization processes. Silicone
oil, as a surfactant, serves to control the size of the porous cell, and increase the numbers
of open cells. Consequently, this enhances the porosity characteristics (higher number of
pores, higher surface area, and well-controlled porousness), resulting in the smooth flow
of the solution and the whiteness of the obtained PUF. The obtained monolithic PUF rod
possesses these properties, while the PUF in powder lacks them.

The resulting characteristics of the obtained PUF monolithic rods offer advantages over
the PUF in powder form that was used in previous works [20,30,31,34–36,38,40,42,45,51].

The chemical structure of PUF consists of two parts: the diisocyanate group (-NHCO-)
and the polyol groups (-C-O-C-), which are depicted in Figure 4a, relating to Figure 1a.
It could be that the monolithic PUF performs as a weak positive charge [52] due to the
inducing of aromatic rings and carbonyl groups, as shown in Figure 4b in connection to
Figure 1b. At pH 7, PAR as the negative charge (denoted as HPAR¯) may sorb on an amino
group of PUF [53]. Typically, toluene diisocyanate (TDI), well known for its isocyanate
groups, is used in commercialized PUFs. Using the diisocyanate group from MDI instead of
TDI can possibly support the amino group of PUF to be the more positive charge, because
MDI includes two aromatic rings, whereas TDI has only one. For this reason, the amino
group of the urethane bond may enhance the transference of electrons to the aromatic
ring because of its electron-donating character. Moreover, the highly positive charge of
the amino group predominant in commercialized PUFs and the sorption of PAR could be
strong. After passing the Pb2+ solution, it would sorb on the monolithic PUF–PAR rod as
Pb2+–PAR complexes. Pb2+ may bind with the pyridine nitrogen atom, azo-nitrogen atom,
and o-hydroxyl group of PAR (see Figure 4c, associated with Figure 1c) [53].

A flow rate of 13 ± 5 mL min−1 was observed for gravitational flow through mono-
lithic PUF–PAR rods (n = 90), so the procedure was designed without using a pump. A
sample can be directly loaded into the monolithic PUF–PAR rod without any extra sample
preparation.

3.2. Parameters Affecting the Color Development: PAR Concentration and pH

In the preliminary investigation, color measurement, PUF–PAR in powder form was
studied by adding the PUF–PAR powder (0.25 g) to Pb2+ solutions (0.1–100 µg mL−1).
The mixture was shaken by a horizontal shaker at 110 rpm for two hours. The powder
was filtered out and dried before taking a photo with a smartphone camera under the
light control box. It was observed that the color of the PUF–PAR powder changed from
yellow to red in accordance with the PAR and the Pb2+–PAR complex formation. The
image characteristics were studied. It was found that the R (red), G (green), and B (blue)
values, which are the color properties, did not have any direct correlation with the Pb2+

concentration. The CMYK (cyan, magenta, yellow, key) mode provided no direct correlation
either. It was found that G/B (green divided by blue) or R/B (red divided by blue) values
resulted in a linear relationship with the Pb2+ concentration; the ratio of the G/B value was
chosen for further study, as the G/B value resulted in higher sensitivity.

3.2.1. PAR Concentrations

Instead of a column packed with PUF–PAR powder, a monolithic PUF–PAR rod
was used, as it offers smooth passage through solution. The concentration of PAR was
an important parameter for the color development of Pb2+–PAR complexes in which an
excess amount of PAR was required. The effect of PAR concentration was studied for PAR
concentrations at 0.01, 0.05, and 0.1% w/v. The concentrations of Pb2+ varying from 0.5
to 5 µg mL−1 were percolated into the monolithic PUF–PAR rod with a certain volume.
No significant difference was observed for coloration of Pb2+–PAR complexes via the
G/B value of 0.05 and 0.1% w/v PAR, while 0.01% w/v PAR produced lower signals of
G/B value, indicating an insufficient amount of the reagent for complex formation. The
concentration of 0.05% w/v PAR was chosen for further study.
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3.2.2. Effect of pH

PAR consists of four diverse forms that depend on the pH of the solution, and persist
with different charges and colors, namely H3L+ (yellow), H2L (yellow-orange), HL− (orange),
and L2− (red) [53]. The wavelength of the maximum absorption of the red Pb2+–PAR complex
is 520 nm at various pH, ranging from pH 4 to 12 [15]. As the Pb2+–PAR complexes were
formed on the PUF–PAR surface, the pH of the loading solution affected the form of PAR on
the surface. Therefore, the optimal pH of the loading solution was then investigated. Each
of the solutions, containing 20 µg Pb2+ with pH varying from 1 to 10, was percolated to the
monolithic PUF–PAR rod. The effect of pH on the G/B value, and thus on the amount of the
Pb2+–PAR complexes, is represented in Figure 5. Pb2+–PAR complexes rarely formed at pH 1
and partially formed at pH 2−4, because hydrogen ions competitively protonate the nitrogen
atom of the pyridine ring of PAR [53]. On the other hand, in the basic medium (pH 8–10), the
complexation of the Pb2+–PAR complex was decreased because of the plausible interaction
between Pb2+ and hydroxide ions such as Pb(OH)2 at pH 10, so the Pb2+–PAR complexes
could scarcely occur [54]. Obviously, pH 7 provided the maximum G/B value because of the
existent forms of H2L and HL− of PAR. The occurrence of Pb2+–PAR complexes on PUF at pH
7 was found to be appropriate, which agreed with a previous report [20]. Moreover, the weak
positive charge from the amino group dramatically encouraged the sorption of PAR on PUF.
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3.3. Single Standard Calibration

In preliminary study, it was observed that the G/B value was directly proportional
to the loading volume of a Pb2+ solution of a given concentration. This indicated that the
single standard method could possibly be applied, as described earlier (in Section 2.2),
when calculating the expected amount of Pb2+ (in microgram) of a solution percolating
through a monolithic PUF–PAR rod. Various loading volumes from 5 to 100 mL of Pb2+

solutions at concentrations of 0.1 to 2 µg mL−1 were studied. The range of Pb2+ amounts
at 10–40 µg was obtained using different volumes and concentrations of Pb2+ (Table 3). In
addition, though the same amount of Pb2+ was obtained from diverse conditions, the same
value of the resulting G/B signals was observed. The G/B value increased with the amount
of Pb2+. However, at the higher amount of Pb2+ (30–40 µg), the G/B value became constant.
This is due to the limitations of the PUF–PAR surface area and the amount of PAR.

Table 3. Loading Pb2+ solutions of different concentrations and volumes for single standard calibra-
tion (n = 3).

Amount of Pb2+

(µg)

Concentration of
Pb2+

(µg mL−1)

Loading Volume
(mL) G/B a ± SD b

10 0.1 100 2.5 ± 0.3
10 0.2 50 2.5 ± 0.3
10 2.0 5 2.6 ± 0.2
20 0.2 100 2.1 ± 0.2
20 0.5 40 2.1 ± 0.3
20 2.0 10 2.0 ± 0.1
30 0.3 100 1.7 ± 0.1
30 0.5 60 1.8 ± 0.1
30 2.0 15 1.8 ± 0.1
40 0.5 80 1.6 ± 0.2
40 2.0 20 1.6 ± 0.1

a The ratio of G/B value, where the G (green) value and B (blue) value refer to the color intensities of the color
mode. b ± SD is the standard deviation of triplicate measurements of the G/B values.

The results of the studies confirm the possibility of employing the single standard
calibration approach.

The lowest amount of Pb2+ in the linear calibration (Section 2.2) was 10 µg Pb2+.
Considering a loading volume of 300 mL for 10 µg Pb2+, which was the last point of the
calibration, would result in 33 µg L−1 Pb2+, which indicated the limit of quantitation (LOQ).
The LOQ of the proposed procedure is lower than Thailand’s guidelines for the maximum
allowance of lead, being 50 µg L−1 Pb2+.

It should be noted that, for an additional advantage when using the single standard
approach for a given set of conditions (constant flow rate), if loading a sample solution with
a given loading volume produced a G/B value lower than the lowest point of the linear
calibration, the sample solution could be reloaded with a more appropriate loading volume to
produce a G/B value within the linear range. Similarly, if loading a sample solution resulted
in a higher G/B value, a lower reloading volume would provide a G/B value within the
linear range. It is worth mentioning that the previous reports [9,12–14], employing sensors
with electrochemical analysis of 3–17 min duration, provided reported LODs of 1–4.4 µg L−1

being converted to LOQs of 3–15 µg L−1, by calculating LOQ = 3.3LOD. The sensors with
nanomaterials [8,10,11,55] reported LODs of 7.7−20 µg L−1 Pb2+, with an analysis time of
5−15 min. With the resin, AV-17 using PAR [17,19], LODs were reported to be 10−20 µg L−1

Pb2+, with an analysis time of 5 min. The proposed procedure in this work may be not as
sensitive as those [9,12–14], but it is still useful for monitoring screening, in accordance with
the guideline of 50 µg L−1 [1]. In addition, the proposed procedure offers other advantages,
namely greater cost effectiveness when considering the sensor material (PUF–PAR), and simple
operation with simple apparatus. The use of a smartphone offers the novel detection of lead via
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the developed chemical sensor (monolithic PUF–PAR rod), in association with other benefits,
such as providing sampling locations for the possible mapping of the monitoring scheme. In
terms of analysis time, the proposed procedure in this work requires a long period in order
for the loaded monolithic PUF–PAR rod to be dried; parallel operations could be arranged to
compensate for the time.

The proposed procedure indicates that its sensitivity would be useful for the on-site
screening of drinking water in Thailand, which should be useful to some organizations
such as the Pollution Control Department of Thailand, a rural waterworks authority (such
as in Klity village, Kanchanaburi, Thailand), and for rural places without external power
and where the budget is limited.

3.4. Interference Study

Using PAR as the chelating color agent, some co-existing metal ions in drinking water
such as Ca2+, Fe3+, Cu2+, and Zn2+ were examined for potential interference. A higher
standard deviation than ±15% of the G/B value was taken as interference. In this work,
the ratios of [Ion]/[Pb2+] were evaluated, indicating the tolerant limits as 500 for Ca2+;
0.2 for Fe2+, Co2+, Ni2+, and Cu2+; and 1 for Fe3+, Zn2+, and Cd2+. The observed results
may possibly be in connection with the potential for complexation formation of the metal
ions with PAR, by considering the stability constants [56–59]. In a previous study [60], it
was reported that the ratio of [Ion]/[Pb2+] was 500 for Na+, K+, Cl−, CO2−

3 , and NO−3 .

4. Materials and Methods
4.1. Apparatus

Digital images of Pb2+–PAR complexes on monolithic PUF–PAR rods were taken using
a smartphone (Lumia 930, Nokia, Tampere, Finland) in manual mode. The smartphone
camera settings were as follows: white balance, daylight; ISO, 200; shutter speed, 1:3200;
brightness, 0.5; and zoom, 20×. A light-controlled photograph box (UDIOBOX UDIO BIZ
40 × 40 × 40 cm, Bangkok, Thailand) was used. ImageJ software (National Institutes of
Health, Bethesda, ML, USA) was chosen for processing the images. An inductively coupled
plasma emission spectrometer, ICP-OES (Perkin Elmer, Optima 8000, Waltham, MA, USA),
was used for method validation. A digital pH meter (METTLER TOLEDO, Greifensee,
Switzerland) was employed for measuring the pH of solutions.

4.2. Reagents and Materials

All chemical reagents used in this work were of analytical grade. Deionized water
was used for solution preparation.

A 1000 µg mL−1 stock solution of Pb2+ was prepared by dissolving 0.160× g of
Pb(NO3)2 (Loba Chemie, Mumbai, India) in 100 mL of water in a volumetric flask. Work-
ing solutions with various concentrations of Pb2+ were prepared daily by diluting with
deionized water.

The solution of 0.05% w/v of 4-(2-pyridylazo) resorcinol (PAR) at pH 7 was prepared
by dissolving 0.05 g of 4-(2-pyridylazo) resorcinol (TCI, Tokyo, Japan) in 1 mol L−1 NaOH,
adjusting the pH to 7 with 2 mol L−1 of nitric acid, and diluting it to 100 mL in a volumetric
flask with deionized water.

4.3. Preparation of Monolithic PUF–PAR Rod

The monolithic PUF rod was synthesized by mixing methylene diphenyl diisocyanate
(MDI; IRPC, Rayong, Thailand) with polyol (polyether; IRPC, Rayong, Thailand) at a
ratio of 2:1 with a few drops of water and silicone oil in a beaker. Two open-ended glass
tubes, each 0.8 cm i.d. × 1.0 cm o.d. × 5.0 cm in length, were plugged into the mixture.
The reaction was allowed to continue for 5 min. The obtained PUF rod was approximately
2 cm in height. The synthesized PUF rods were then cleaned with water and loaded with
0.05% w/v PAR (pH 7) for 1 h. Finally, the loaded foam was rinsed with water to remove
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the excess PAR before drying at room temperature overnight. The monolithic PUF–PAR
rods could be used for at least a week.

4.4. General Procedure for Lead Determination Using Monolithic PUF–PAR Rod

The monolithic PUF–PAR rod was loaded by an analyte solution with a desired
volume. Image processing was performed via ImageJ to obtain a color value. A single
standard calibration was plotted in terms of µg Pb2+ vs. the signal of an image property.
The amount of Pb2+ in the sample was then calculated.

5. Conclusions

A novel method for monitoring lead contents in water, by using smartphone detection
and employing PUF immobilized with a PAR monolithic rod as a ready-to-use simple
chemical sensor was proposed, by following the IUPAC definition of a chemical sensor.
The PUF could be easily synthesized in simple lab conditions and lead to the simple
fabrication of a monolithic PUF rod. With a PAR solution being loaded to the rod, the
obtained monolithic PUF–PAR rod, serving as a ready-to-use chemical sensor, has a shelf-
life of at least one week. The monolithic characteristics offer advantages over the previous
conventional forms of PUF, including the smooth flow of the loading of an analyte solution
(standard/sample), and the fact that no sample pretreatment is required. Lead content
in a water sample can be assayed via the single standard calibration approach, with
the concept of a one-shot image, in one single operation with nine rods: six rods for
standards of different amounts of lead loaded on the monolithic PUF–PAR rods, and three
rods of a sample for triplicate analysis. By this method, the triplicate results of the final
concentration of lead in the sample can be obtained even when using different loading
volumes. This offers a method through which to verify the obtained results. The additional
advantage is that if the operation results in the loaded amounts of Pb2+ producing a color,
with PAR being outside the calibration graph, which is a plot of µg Pb2+ loaded vs. the G/B
value, then a new operation can be re-run immediately so that an appropriate result can be
obtained. The developed method offers various benefits, even with the simple apparatus
used. It is useful for screening following Thailand’s guidelines for health effects, which
list a maximum allowance of 50 µg L−1 for lead in drinking water. The smartphone serves
not only as a detector, but also as the provider of the sampling location. This leads to the
ability to map lead in water as part of a cost-effective schedule.

Supplementary Materials: Figure S1: Lead assay with smartphone detection: A = ready-to-use
sensor, B = detection (loading and photographing) 18 and C = evaluation.
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