

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 25 November 2016 Accepted 2 December 2016

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; chiral ligand; sodium thiocyanate; π - π interactions; synchrotron data.

CCDC reference: 1520395

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\widehat{\bigcirc}$ ACCESS

Crystal structure of {(S)-1-phenyl-N,N-bis[(pyridin-2-yl)methyl]ethanamine- $\kappa^3 N, N', N''$ }bis(thiocyanato- κN)zinc from synchrotron data

Dong Won Lee and Jong Won Shin*

Daegu-Gyeongbuk Branch, Korea Institute of Science and Technology Information, 90 Yutongdanji-ro, Buk-gu, Daegu 41515, Republic of Korea. *Correspondence e-mail: jwshin@kisti.re.kr

The title Zn^{II} complex, $[Zn(NCS)_2(C_{20}H_{21}N_3)]$, has been characterized by synchrotron single-crystal diffraction and FT–IR spectroscopy. The central Zn^{II} ion has a distorted square-pyramidal coordination geometry, with three N atoms of the chiral (*S*) 1-phenyl-*N*,*N*-bis[(pyridin-2-yl)methyl]ethanamine (*S*-ppme) ligand and one N atom of a thiocyanate anion in the equatorial plane, and one N atom of another thiocyanate anion at the apical position. The average $Zn-N_{S}$. ppme and $Zn-N_{NCS}$ bond lengths are 2.183 (2) and 1.986 (2) Å, respectively. In the crystal, intermolecular $C-H\cdots$ S hydrogen bonds and a face-to-face $\pi-\pi$ interaction [centroid–centroid distance = 3.482 (1) Å] link the molecules and give rise to a supramolecular sheet structure parallel to the *ac* plane.

1. Chemical context

Recently, the preparation of new polyamines or their derivatives have attracted increasing attention in organic chemistry, pharmaceutical chemistry and materials science because they can easily interact with metal ions and form stable multifunctional compounds with various applications in magnetic materials, sorption materials, as well as fluorescent substances (Lodeiro & Pina, 2009; Nowicka et al., 2011; Yao et al., 2015). For instance, metal complexes with cyclam or azamacrocyclic ligands have been synthesized and investigated for selective adsorption of CO₂ over N₂ gases (Huang et al., 2013). In particular, chiral derivatives based on polyamine ligands can easily form chiral metal complexes with interesting properties, such as chiral recognition or as asymmetric catalysts. For example, the chiral two-dimensional coordination polymer, $[Ni(L^{R,R})]_3[C_6H_3(COO)_3]_2 \cdot 12H_2O \cdot CH_3CN \{L^{R,R} \text{ is } 1,8\text{-bis-}$ [(*R*)- α -methylbenzyl]-1,3,6,8,10,13-hexaazacyclotetradecane}, showed an efficient chiral recognition for rac-1,1'-bi-2-naphthol (Ryoo et al., 2010). Moreover, a chiral iron(III) complex containing binol derivatives exhibited high enantioselectivity and high yield for the enantiopure β -amino alcohols (Tak et al., 2016). Nevertheless, only a few of these complexes have been reported and characterized because the preparation of these complexes remains a major challenge in synthetic chemistry and materials science (Gu et al., 2016). The thiocyanate ion is a versatile anion which can bridge to metal ions through the S or N atom, thus allowing the assembly of supramolecular compounds (Nawrot et al., 2016). We report here the preparation and crystal structure of a chiral zinc complex constructed from the versatile tridentate chiral ligand (S)-1-phenyl-N,N-bis[(pyridin-2-yl)methyl]ethanamine (S-ppme) and the thiocyanate ion, namely $[Zn(NCS)_2(S-ppme)].$

2. Structural commentary

A view of the molecular structure of the title compound is shown in Fig. 1. The coordination environment of the Zn^{II} ion can be described as distorted square pyramidal. The Zn^{II} ion is coordinated by three N atoms from the chiral S-ppme ligand and by two N atoms of thiocyanate ions. The thiocyanate ions coordinate through the N atoms in *cis* positions with respect to each other and are *trans* to the phenyl group of the chiral S-ppme ligand. The coordinating thiocyanate ions are linear but slightly bent in relation to the Zn^{II} ion [N4-C21-S1 =179.9 (1)°, N5-C22-S2 = 178.5 (4)°, Zn1-N4-C21 = 171.6 (4)° and Zn1-N5-C22 = 170.3 (4)°]. The bond angle between the thiocyanate ions is 101.43 (2)°. The average N==C and C-S bond lengths of the thiocyanate ions are 1.158 (4)

Figure 1

A view of the molecular structure of the title compound, showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability.

Table 1				
Hydrogen-bond geometry	у (.	Å,	°).	

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C3-H3\cdots S2^{i}$ $C11-H11\cdots S1^{ii}$	0.95 0.95	2.77 2.80	3.604 (5) 3.738 (5)	147 169

Symmetry codes: (i) -x + 1, y + 1, -z + 2; (ii) -x + 1, y, -z + 1.

and 1.629 (6) Å, respectively, which implies that both thiocyanate ions are not delocalized. The former is very similar to the C=N triple-bond length, while the latter is slightly shorter than reported C-S single-bond length (Hashem *et al.*, 2014). The pyridine rings of the *S*-ppme ligand are twisted with respect to each other. The average Zn-N_{*S*-ppme} and Zn-N_{NCS} bond lengths are 2.183 (2) and 1.986 (2) Å, respectively. The bond angles around the Zn^{II} ion range from 73.99 (1) to 156.01 (1)°.

3. Supramolecular features

The thiocyanate ligands form intermolecular C-H···S hydrogen bonds with adjacent pyridine groups of the chiral S-ppme ligand, giving rise to a sheet structure parallel to the *ac* plane (Fig. 2 and Table 1) (Steed & Atwood, 2009). In the sheet, adjacent C8-C12/N3 pyridine rings of chiral S-ppme ligands are also linked through a face-to-face π - π interaction, with a centroid-centroid distance of 3.482 (1) Å and a dihedral angle of 2.947 (1)°.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, February 2016 with two updates; Groom *et al.*, 2016) gives three copper(II) complexes with the same chiral *S*-ppme

Figure 2

A view of the crystal-packing structure for the title compound, showing the C-H···S hydrogen bonds (sky-blue dashed lines) and π - π interactions (black dashed lines).

ligand (Rowthu et al., 2011; Woo et al., 2011) for which syntheses, magnetic properties and crystal structures have been reported.

5. Synthesis and crystallization

The chiral S-ppme ligand was prepared according to a slight modification of the method of Rowthu et al. (2011). A methanol solution (5 mL) of KNCS (0.078 g, 0.80 mmol) was added slowly to a methanol solution (15 mL) containing ZnSO₄·7H₂O (0.115 g, 0.40 mmol). The mixture was stirred for 20 min and the formed white precipitates were eliminated by filtration. A solution of the chiral S-ppme (0.121 g, 0.40 mmol) in MeOH (10 mL) was added slowly to the filtered solution with vigorous stirring at room temperature. The resulting pale-yellow precipitates were collected by filtration, washed with methanol and diethyl ether, and dried in air. Single crystals were obtained by slow evaporation from methanol solution for a period of several days (yield: 0.123 g, 64%). FT-IR (KBr, cm⁻¹): 3102, 3029, 2995, 2910, 2056, 1606.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H distances of 0.95-0.99 Å and $U_{\rm iso}({\rm H})$ values of 1.2 or $1.5U_{\rm eq}$ of the parent atoms.

Acknowledgements

The X-ray crystallography BL2D-SMC beamline at the PLS-II were supported in part by MSIP and POSTECH.

References

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.
- Gu, Z.-G., Zhan, C., Zhang, J. & Bu, X. (2016). Chem. Soc. Rev. 45, 3122-3144.
- Hashem, E., Platts, J. A., Hartl, F., Lorusso, G., Evangelisti, M., Schulzke, C. & Baker, R. J. (2014). Inorg. Chem. 53, 8624-8637.
- Huang, S.-L., Zhang, L., Lin, Y.-J. & Jin, G.-X. (2013). CrystEng-Comm, 15, 78-85.
- Lodeiro, C. & Pina, F. (2009). Coord. Chem. Rev. 253, 1353-1383.
- Nawrot, I., Machura, B. & Kruszynski, R. (2016). CrystEngComm, 18, 2650-2663.
- Nowicka, B., Bałanda, M., Gaweł, B., Ćwiak, G., Budziak, A., Łasocha, W. & Sieklucka, B. (2011). Dalton Trans. 40, 3067-3073.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. Academic Press: New York.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$[Zn(NCS)_2(C_{20}H_{21}N_3)]$
$M_{ m r}$	484.93
Crystal system, space group	Monoclinic, C2
Temperature (K)	100
a, b, c (Å)	19.270 (4), 7.7950 (16), 14.834 (3)
β (°)	91.71 (3)
$V(Å^3)$	2227.2 (8)
Ζ	4
Radiation type	Synchrotron, $\lambda = 0.630$ Å
$\mu \text{ (mm}^{-1})$	0.94
Crystal size (mm)	$0.10 \times 0.04 \times 0.02$
Data collection	
Diffractometer	ADSC Q210 CCD area detector
Absorption correction	Empirical (using intensity
	measurements) (HKL3000sm
	SCALEPACK; Otwinowski &
	Minor, 1997)
T_{\min}, T_{\max}	0.912, 0.981
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	11189, 6035, 5123
R _{int}	0.048
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.696
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.093, 0.99
No. of reflections	6035
No. of parameters	272
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.35, -1.03
Absolute structure	Flack x determined using 2026
	quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$
	(Parsons et al., 2013)
Absolute structure parameter	-0.010 (6)

Computer programs: PAL BL2D-SMDC (Shin et al., 2016), HKL3000sm (Otwinowski & Minor, 1997), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Putz & Brandenburg, 2014) and publCIF (Westrip, 2010).

- Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Rowthu, S. R., Shin, J. W., Kim, S.-H., Kim, J. J. & Min, K. S. (2011). Acta Cryst. E67, m873-m874.
- Ryoo, J. J., Shin, J. W., Dho, H.-S. & Min, K. S. (2010). Inorg. Chem. 49, 7232-7234.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373
- Steed, J. W. & Atwood, J. L. (2009). In Supramolecular Chemistry, 2nd ed. Chichester: John Wiley & Sons Ltd.
- Tak, R., Kumar, M., Kureshy, R. I., Choudhary, M. K., Khan, N. H., Abdi, S. H. R. & Bajaj, H. C. (2016). RSC Adv. 6, 7693-7700.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Woo, A., Lee, Y. H., Hayami, S., Lindoy, L. F., Thuery, P. & Kim, Y. (2011). J. Inclusion Phenom. Macrocycl. Chem. 71, 409-417.
- Yao, J., Fu, X., Zheng, X.-L., Cao, Z.-Q. & Qu, D.-H. (2015). Dyes Pigm. 121, 12-20.

supporting information

Acta Cryst. (2017). E73, 17-19 [https://doi.org/10.1107/S2056989016019253]

Crystal structure of {(S)-1-phenyl-N,N-bis[(pyridin-2-yl)methyl]ethanamine- $\kappa^3 N, N', N''$ }bis(thiocyanato- κN)zinc from synchrotron data

Dong Won Lee and Jong Won Shin

Computing details

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: *publCIF* (Westrip, 2010).

 $\{(S)-1-Phenyl-N,N-bis[(pyridin-2-yl)methyl]ethanamine-\kappa^3N,N',N''\}bis(thiocyanato-\kappa N)zinc(II)$

```
Crystal data
[Zn(NCS)_2(C_{20}H_{21}N_3)]
M_r = 484.93
Monoclinic, C2
a = 19.270 (4) Å
b = 7.7950 (16) \text{ Å}
c = 14.834(3) Å
\beta = 91.71 (3)^{\circ}
V = 2227.2 (8) Å<sup>3</sup>
Z = 4
```

Data collection

ADSC Q210 CCD area detector diffractometer Radiation source: PLSII 2D bending magnet $R_{\rm int} = 0.048$ ω scan Absorption correction: empirical (using intensity measurements) $h = -26 \rightarrow 26$ (HKL3000sm SCALEPACK; Otwinowski & $k = -10 \rightarrow 10$ Minor, 1997) $l = -20 \rightarrow 20$ $T_{\rm min} = 0.912, T_{\rm max} = 0.981$ Refinement Refinement on F^2 Least-squares matrix: full neighbouring sites

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.093$ S = 0.996035 reflections 272 parameters 1 restraint

F(000) = 1000 $D_{\rm x} = 1.446 {\rm Mg} {\rm m}^{-3}$ Synchrotron radiation, $\lambda = 0.630$ Å Cell parameters from 32924 reflections $\theta = 0.4 - 33.6^{\circ}$ $\mu = 0.94 \text{ mm}^{-1}$ T = 100 KNeedle, colorless $0.10 \times 0.04 \times 0.02 \text{ mm}$

11189 measured reflections 6035 independent reflections 5123 reflections with $I > 2\sigma(I)$ $\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.4^\circ$

Hydrogen site location: inferred from H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0509P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.35 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -1.03 \ {\rm e} \ {\rm \AA}^{-3}$

Absolute structure: Flack *x* determined using 2026 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons *et al.*, 2013) Absolute structure parameter: -0.010 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.46128 (2)	0.33954 (6)	0.76988 (3)	0.01920 (11)	
N1	0.52691 (16)	0.5093 (4)	0.8331 (2)	0.0213 (7)	
N2	0.40589 (15)	0.6204 (4)	0.7503 (2)	0.0165 (7)	
N3	0.43224 (14)	0.3562 (5)	0.6353 (2)	0.0199 (6)	
C1	0.5905 (2)	0.4552 (6)	0.8617 (3)	0.0287 (9)	
H1	0.6043	0.3414	0.8480	0.034*	
C2	0.6357 (2)	0.5585 (7)	0.9097 (3)	0.0331 (10)	
H2	0.6797	0.5161	0.9298	0.040*	
C3	0.6165 (2)	0.7254 (7)	0.9286 (3)	0.0306 (10)	
H3	0.6474	0.7999	0.9606	0.037*	
C4	0.5509(2)	0.7824 (6)	0.8998 (3)	0.0254 (9)	
H4	0.5362	0.8960	0.9126	0.030*	
C5	0.50773 (19)	0.6714 (6)	0.8525 (3)	0.0198 (8)	
C6	0.4348 (2)	0.7272 (5)	0.8232 (3)	0.0232 (8)	
H6A	0.4042	0.7208	0.8755	0.028*	
H6B	0.4360	0.8480	0.8028	0.028*	
C7	0.44001 (19)	0.6585 (6)	0.6647 (3)	0.0194 (7)	
H7A	0.4905	0.6735	0.6761	0.023*	
H7B	0.4212	0.7666	0.6388	0.023*	
C8	0.42740 (19)	0.5140 (5)	0.5994 (3)	0.0188 (8)	
C9	0.4133 (2)	0.5404 (7)	0.5076 (3)	0.0277 (10)	
H9	0.4107	0.6529	0.4831	0.033*	
C10	0.4032 (2)	0.3974 (7)	0.4533 (3)	0.0360 (13)	
H10	0.3938	0.4108	0.3905	0.043*	
C11	0.4069 (2)	0.2344 (7)	0.4910 (3)	0.0360 (13)	
H11	0.3991	0.1356	0.4546	0.043*	
C12	0.4220 (2)	0.2182 (6)	0.5822 (3)	0.0282 (10)	
H12	0.4252	0.1069	0.6081	0.034*	
C13	0.32788 (18)	0.6288 (5)	0.7383 (3)	0.0188 (8)	
H13	0.3149	0.5409	0.6917	0.023*	
C14	0.30213 (18)	0.8003 (5)	0.7011 (3)	0.0184 (8)	
C15	0.2898 (2)	0.9419 (5)	0.7561 (3)	0.0238 (8)	
H15	0.2977	0.9328	0.8194	0.029*	
C16	0.2663 (2)	1.0954 (6)	0.7194 (3)	0.0286 (10)	
H16	0.2576	1.1899	0.7579	0.034*	

C17	0.2554 (2)	1.1123 (5)	0.6272 (3)	0.0258 (9)	
H17	0.2394	1.2179	0.6024	0.031*	
C18	0.2679 (2)	0.9745 (6)	0.5717 (3)	0.0272 (9)	
H18	0.2616	0.9858	0.5083	0.033*	
C19	0.28976 (18)	0.8195 (6)	0.6087 (3)	0.0221 (8)	
H19	0.2964	0.7241	0.5701	0.027*	
C20	0.2913 (2)	0.5759 (6)	0.8239 (3)	0.0253 (9)	
H20A	0.2982	0.6648	0.8700	0.038*	
H20B	0.3107	0.4672	0.8462	0.038*	
H20C	0.2415	0.5619	0.8104	0.038*	
N4	0.53102 (18)	0.1463 (5)	0.7434 (3)	0.0299 (8)	
C21	0.5672 (2)	0.0390 (5)	0.7176 (3)	0.0210 (8)	
S1	0.61788 (5)	-0.11203 (13)	0.68120 (7)	0.0269 (2)	
N5	0.40467 (18)	0.2318 (5)	0.8601 (3)	0.0267 (8)	
S2	0.31745 (6)	0.13587 (16)	0.99713 (8)	0.0303 (3)	
C22	0.3691 (2)	0.1913 (5)	0.9177 (3)	0.0220 (8)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.01633 (18)	0.0166 (2)	0.0249 (2)	0.0000 (2)	0.00448 (14)	0.0002 (2)
N1	0.0170 (15)	0.0190 (17)	0.0276 (17)	0.0002 (14)	-0.0009 (13)	0.0016 (13)
N2	0.0123 (13)	0.0154 (16)	0.0221 (16)	-0.0017 (12)	0.0027 (12)	-0.0035 (12)
N3	0.0122 (12)	0.0209 (17)	0.0270 (15)	0.0012 (16)	0.0053 (11)	-0.0060 (15)
C1	0.0173 (18)	0.029 (2)	0.039 (2)	0.0041 (18)	-0.0019 (17)	0.0042 (19)
C2	0.0173 (19)	0.039 (3)	0.043 (3)	-0.003 (2)	-0.0062 (18)	0.004 (2)
C3	0.027 (2)	0.040 (3)	0.025 (2)	-0.012 (2)	-0.0027 (17)	0.0042 (19)
C4	0.0291 (19)	0.026 (2)	0.0212 (19)	-0.0066 (18)	0.0015 (15)	0.0004 (15)
C5	0.0170 (17)	0.021 (2)	0.0212 (18)	-0.0035 (17)	0.0021 (14)	0.0012 (15)
C6	0.0206 (18)	0.022 (2)	0.027 (2)	0.0001 (17)	0.0027 (15)	-0.0061 (16)
C7	0.0145 (16)	0.0213 (19)	0.0226 (18)	0.0009 (16)	0.0041 (14)	0.0029 (16)
C8	0.0103 (16)	0.025 (2)	0.0217 (19)	0.0004 (16)	0.0050 (14)	-0.0006 (16)
C9	0.0163 (18)	0.044 (3)	0.023 (2)	0.005 (2)	0.0043 (15)	0.0002 (19)
C10	0.0156 (17)	0.069 (4)	0.024 (2)	0.001 (2)	0.0044 (15)	-0.011 (2)
C11	0.020 (2)	0.053 (4)	0.036 (3)	-0.004 (2)	0.0055 (19)	-0.026 (2)
C12	0.018 (2)	0.027 (2)	0.040 (3)	0.0004 (19)	0.0066 (17)	-0.009 (2)
C13	0.0138 (16)	0.0162 (19)	0.027 (2)	0.0018 (15)	0.0036 (14)	-0.0021 (15)
C14	0.0110 (14)	0.016 (2)	0.0280 (19)	0.0010 (14)	0.0021 (13)	-0.0027 (14)
C15	0.0221 (19)	0.021 (2)	0.029 (2)	0.0023 (18)	0.0022 (15)	-0.0063 (17)
C16	0.026 (2)	0.023 (2)	0.037 (2)	0.0081 (19)	-0.0006 (18)	-0.0068 (18)
C17	0.0190 (19)	0.021 (2)	0.037 (2)	0.0048 (17)	-0.0008 (17)	0.0020 (17)
C18	0.0201 (19)	0.031 (2)	0.030(2)	0.0104 (19)	-0.0016 (16)	0.0013 (18)
C19	0.0171 (15)	0.021 (2)	0.0277 (18)	0.0029 (18)	-0.0016 (13)	-0.0064 (18)
C20	0.0179 (17)	0.027 (2)	0.031 (2)	0.0028 (18)	0.0079 (15)	0.0043 (18)
N4	0.0291 (18)	0.027 (2)	0.034 (2)	0.0080 (17)	0.0060 (16)	0.0060 (16)
C21	0.0214 (18)	0.020 (2)	0.0216 (18)	0.0018 (17)	0.0034 (14)	0.0026 (15)
S 1	0.0247 (5)	0.0236 (6)	0.0326 (5)	0.0079 (4)	0.0072 (4)	0.0012 (4)
N5	0.0260 (18)	0.0229 (18)	0.0316 (19)	-0.0019 (15)	0.0071 (14)	0.0042 (15)

supporting information

S2	0.0287 (5)	0.0326 (6)	0.0300 (6)	-0.0088(5)	0.0087 (4)	0.0029 (5)
C22	0.0219 (18)	0.0156 (19)	0.028 (2)	-0.0021 (17)	-0.0032 (15)	0.0011 (16)

Geometric parameters (Å, °)

Zn1—N5	1.942 (3)	С9—Н9	0.9500
Zn1—N1	2.039 (3)	C10—C11	1.389 (8)
Zn1—N3	2.061 (3)	C10—H10	0.9500
Zn1—N4	2.064 (4)	C11—C12	1.381 (7)
Zn1—N2	2.449 (3)	C11—H11	0.9500
N1—C5	1.350 (5)	C12—H12	0.9500
N1—C1	1.352 (5)	C13—C14	1.524 (5)
N2-C6	1.461 (5)	C13—C20	1.526 (5)
N2—C7	1.478 (5)	C13—H13	1.0000
N2—C13	1.510 (5)	C14—C19	1.392 (5)
N3—C8	1.342 (6)	C14—C15	1.397 (5)
N3—C12	1.344 (6)	C15—C16	1.385 (6)
C1—C2	1.370 (7)	C15—H15	0.9500
C1—H1	0.9500	C16—C17	1.384 (6)
C2—C3	1.383 (7)	C16—H16	0.9500
C2—H2	0.9500	C17—C18	1.378 (6)
C3—C4	1.394 (6)	C17—H17	0.9500
С3—Н3	0.9500	C18—C19	1.387 (6)
C4—C5	1.378 (6)	C18—H18	0.9500
C4—H4	0.9500	C19—H19	0.9500
С5—С6	1.523 (5)	C20—H20A	0.9800
С6—Н6А	0.9900	C20—H20B	0.9800
C6—H6B	0.9900	C20—H20C	0.9800
С7—С8	1.500 (6)	N4—C21	1.160 (5)
C7—H7A	0.9900	C21—S1	1.633 (4)
С7—Н7В	0.9900	N5—C22	1.155 (5)
С8—С9	1.397 (6)	S2—C22	1.624 (4)
C9—C10	1.385 (7)		
N5—Zn1—N1	108.46 (15)	N3—C8—C9	122.1 (4)
N5—Zn1—N3	123.55 (14)	N3—C8—C7	115.1 (4)
N1—Zn1—N3	123.46 (14)	C9—C8—C7	122.8 (4)
N5—Zn1—N4	101.43 (15)	С10—С9—С8	117.9 (5)
N1—Zn1—N4	99.36 (15)	С10—С9—Н9	121.1
N3—Zn1—N4	91.21 (14)	С8—С9—Н9	121.1
N5—Zn1—N2	102.49 (13)	C9—C10—C11	119.9 (4)
N1—Zn1—N2	74.73 (12)	C9—C10—H10	120.1
N3—Zn1—N2	73.99 (13)	C11—C10—H10	120.1
N4—Zn1—N2	156.01 (13)	C12—C11—C10	119.0 (5)
C5—N1—C1	118.4 (4)	C12—C11—H11	120.5
C5—N1—Zn1	122.4 (3)	C10-C11-H11	120.5
C1—N1—Zn1	119.1 (3)	N3—C12—C11	121.6 (5)
C6—N2—C7	110.6 (3)	N3—C12—H12	119.2

C6—N2—C13	114.7 (3)	C11—C12—H12	119.2
C7—N2—C13	110.9 (3)	N2-C13-C14	113.1 (3)
C6—N2—Zn1	105.5 (2)	N2-C13-C20	111.9 (3)
C7—N2—Zn1	94.5 (2)	C14—C13—C20	112.6 (3)
C13—N2—Zn1	118.8 (2)	N2—C13—H13	106.2
C8—N3—C12	119.6 (4)	C14—C13—H13	106.2
C8—N3—Zn1	117.1 (3)	С20—С13—Н13	106.2
C12—N3—Zn1	123.2 (3)	C19—C14—C15	117.6 (4)
N1—C1—C2	122.4 (4)	C19—C14—C13	119.7 (4)
N1—C1—H1	118.8	C15—C14—C13	122.7 (4)
С2—С1—Н1	118.8	C16—C15—C14	120.8 (4)
C1—C2—C3	119.2 (4)	С16—С15—Н15	119.6
C1—C2—H2	120.4	C14—C15—H15	119.6
C3—C2—H2	120.4	C17—C16—C15	120.6 (4)
C2-C3-C4	118.9 (4)	C17—C16—H16	119.7
C2—C3—H3	120.5	C15—C16—H16	119.7
C4—C3—H3	120.5	C18—C17—C16	119.5 (4)
C5-C4-C3	118.9 (4)	C18—C17—H17	120.3
C5-C4-H4	120.5	C16—C17—H17	120.3
C3—C4—H4	120.5	C17-C18-C19	119.9 (4)
N1-C5-C4	122.1 (4)	C17—C18—H18	120.0
N1-C5-C6	117.6 (4)	C19—C18—H18	120.0
C4—C5—C6	120.3 (4)	C18—C19—C14	121.6 (4)
N2—C6—C5	112.1 (3)	С18—С19—Н19	119.2
N2—C6—H6A	109.2	С14—С19—Н19	119.2
С5—С6—Н6А	109.2	С13—С20—Н20А	109.5
N2—C6—H6B	109.2	С13—С20—Н20В	109.5
С5—С6—Н6В	109.2	H20A—C20—H20B	109.5
H6A—C6—H6B	107.9	С13—С20—Н20С	109.5
N2—C7—C8	109.6 (3)	H20A—C20—H20C	109.5
N2—C7—H7A	109.7	H20B-C20-H20C	109.5
С8—С7—Н7А	109.7	C21—N4—Zn1	171.6 (4)
N2—C7—H7B	109.7	N4—C21—S1	179.9 (5)
С8—С7—Н7В	109.7	C22—N5—Zn1	170.3 (4)
H7A—C7—H7B	108.2	N5—C22—S2	178.5 (4)
C5—N1—C1—C2	0.3 (6)	N3-C8-C9-C10	0.9 (6)
Zn1—N1—C1—C2	-175.7 (4)	C7—C8—C9—C10	179.3 (3)
N1—C1—C2—C3	-1.2 (7)	C8—C9—C10—C11	0.4 (6)
C1—C2—C3—C4	1.4 (7)	C9-C10-C11-C12	-1.3 (6)
C2—C3—C4—C5	-0.8 (6)	C8—N3—C12—C11	0.4 (5)
C1—N1—C5—C4	0.3 (6)	Zn1—N3—C12—C11	-175.8 (3)
Zn1—N1—C5—C4	176.2 (3)	C10-C11-C12-N3	0.9 (7)
C1—N1—C5—C6	-177.4 (4)	C6—N2—C13—C14	70.2 (4)
Zn1—N1—C5—C6	-1.5 (5)	C7—N2—C13—C14	-56.0 (4)
C3—C4—C5—N1	0.0 (6)	Zn1—N2—C13—C14	-163.8 (2)
C3—C4—C5—C6	177.7 (4)	C6—N2—C13—C20	-58.3 (4)
C7—N2—C6—C5	-72.5 (4)	C7—N2—C13—C20	175.5 (3)

C13—N2—C6—C5 Zn1—N2—C6—C5 N1—C5—C6—N2 C4—C5—C6—N2 C6—N2—C7—C8 C13—N2—C7—C8 C12—N3—C7—C8 C12—N3—C8—C9 Zn1—N3—C8—C9	161.1 (3) 28.5 (4) -21.4 (5) 160.8 (3) 161.8 (3) -69.7 (4) 53.4 (3) -1.3 (5) 175.1 (3) 170.8 (2)	Zn1—N2—C13—C20 N2—C13—C14—C19 C20—C13—C14—C19 N2—C13—C14—C15 C20—C13—C14—C15 C19—C14—C15—C16 C13—C14—C15—C16 C14—C15—C16—C17 C15—C16—C17—C18 C16—C17—C18	67.7 (4) 94.8 (4) -137.1 (4) -85.5 (4) 42.7 (5) -0.1 (6) -179.9 (4) -0.9 (7) 0.2 (7) 1.5 (C)
Zn1—N3—C8—C9	-1.5 (5)	C14—C15—C16—C17	-0.9 (7)
	175.1 (3)	C15—C16—C17—C18	0.2 (7)
C12—N3—C8—C7	-179.8 (3)	C16—C17—C18—C19	1.5 (6)
Zn1—N3—C8—C7	-3.4 (4)	C17—C18—C19—C14	-2.5 (6)
N2—C7—C8—N3	-41.4 (4)	C15—C14—C19—C18	1.8 (6)
N2—C7—C8—C9	140.1 (4)	C13—C14—C19—C18	-178.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
C3—H3…S2 ⁱ	0.95	2.77	3.604 (5)	147
C11—H11…S1 ⁱⁱ	0.95	2.80	3.738 (5)	169

Symmetry codes: (i) -*x*+1, *y*+1, -*z*+2; (ii) -*x*+1, *y*, -*z*+1.