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Abstract

Background: The CHRNA5/A3/B4 gene locus is associated with nicotine dependence and other smoking related
disorders. While the non-synonymous CHRNA5 variant rs16969968 appears to be the main risk factor, linkage disequilibrium
(LD) bins in the gene cluster carry frequent variants that regulate expression. Pairwise LD and haplotype analyses
had identified at least three haplotype tagging SNPs including rs16969968 as main genetic risk factors. Searching
for variants with evidence of regulatory functions, we have reported interactions between CHRNA5 and CHRNA3
enhancer variants (tagged by rs880395 and rs1948, respectively) and rs16969968, forming 3-SNP haplotypes and
diplotypes that may more accurately reflect the cluster’s combined effects on nicotine dependence (Barrie et al.,
Hum Mutat 38:112–9, 2017). Here we address further contributions by variants affecting CHRNB4, a possibly limiting
component of nicotinic receptors.

Results: We identify an LD bin (tagged by rs4887074) associated with expression of CHRNB4. Additive logistic
regression models indicate that rs4887074 is associated with nicotine dependence and modulates the effect of
rs16969968 in GWAS datasets (COGEND, UW-TTURC, SAGE). 4-SNP haplotype and diplotype analyses (rs880395-
rs16969968-rs1948 -rs4887074) yield nicotine dependence risk values that further differentiate those obtained
with the 3-SNP model. Moreover, both the main G allele of rs16969968 and the minor G allele of rs4887074 (associated
with reduced expression of CHRNB4), residing predominantly on common haplotypes that are protective, represent
significant allele-specific variance QTLs, indicating that they interact with each other.

Conclusions: These results indicate rs4887074 is associated with CHRNB4 expression, and along with two regulatory
variants of CHRNA3 and CHRNA5, modulates the effect of rs16969968 on nicotine dependence risk. Assignable to
individuals because of strong LD structures, 4-SNP haplotypes and diplotypes serve to assess the combined genetic
influence of this multi-gene cluster on complex traits, accounting for complex LD relationships and tissue-specific
genetic effects (CHRNA5/3) relevant to the traits analyzed. The 4-SNP haplotypes account at least in part for previous
tagging SNPs, including the highly GWAS-significant rs6495308, located in a distinct pair-wise LD bin but included in
protective 4-SNP haplotypes. Our approach refines and integrates the cluster’s overall genetic influence, an important
variable when integrating the genetics of multiple genomic loci.
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Background
The CHRNA5-CHRNA3-CHRNB4 gene cluster on
chromosome 15 encodes the α5, α3 and β4 subunits of
nicotinic acetylcholine receptors (nAChR). Genetic var-
iants in this cluster, in particular the non-synonymous
(ns) SNP of CHRNA5, rs16969968, yields the strongest
genome-wide association with nicotine dependence and
smoking related disease such as lung cancer [1–4]. A
hallmark of evolutionary selections, long haplotype struc-
tures with high frequency in this cluster create a local reg-
ulome with multiple genetic variants defining the overall
genetic influence of the entire cluster [5]. Previous studies
have addressed the genomic architecture and linkage
disequilibrium (LD) structure of this gene cluster, showing
that the CHNRA5 nsSNP rs16969968 represents the pre-
dominant genetic factor, while other candidate variants
may modulate this effect by regulating gene expression [2,
6–9]. In a large GWAS meta-analysis, Liu et al. have iden-
tified at least three LD-bin tagging SNPs, including
rs16969968, a SNP in the promoter region of CHRNA5
(rs588765), and a SNP located in the CHRNA3 locus
(rs6495308), all significantly associated with smoking
behavior [10]. Derived 3-SNP haplotypes then served to
estimate the combined genetic influence of the gene locus
[10]; however, the presence of additional LD bins sug-
gested as yet undetected multi-SNP haplotypes.
Taking advantage of emerging genomics databases,

such as GTEx (Genotype-Tissue Expression), ENCODE
(Encyclopedia of DNA element), and dbGaP (the data-
base of Genotype and Phenotypes), we had identified
two regulatory LD bins, represented by a lead candidate
variant for CHRNA3 and CHRNA5 (tagged by rs1948
and rs880395, respectively, the latter in high LD with
rs588765 in Europeans), that modulate influence on
nicotine dependence [11]. These two SNPs are either
the regulatory variants themselves or in high LD with
causative variants, an important criterion when utilizing
marker variants, because even small deviations from
perfect LD with the functional polymorphism lead to
failure in detecting dynamic interactions between gene
loci and other factors [12]. Both variants affect regula-
tory domains that direct the expression of more than
one gene each [11], via chromatin looping [13]. 3-SNP
haplotypes constructed with rs1948, rs880395 and
rs16969968 further refine the association with nicotine
dependence when compared to that with rs16969968
alone [9, 11]. These associations are likely trait and tis-
sue specific as rs1948 serves as a regulatory variant for
CHRNA3 only in the basal ganglia but not other
tissues, where both CHRNA3 and CHRNA5 mRNA
expression is associated with rs880395 [11]. These
results support the notion that associations with com-
plex clinical traits require an understanding of the com-
bined genetic influence of the entire gene cluster, with

distinct regulatory processes between tissues affecting dif-
ferent traits. However, eQTL and LD analyses suggested
that additional regulatory variants exist in the CHRNA5-
CHRNA3-CHRNB4 cluster, specifically affecting CHRNB4
expression. The goal of the present study is to identify
these additional variants and reconcile the results with
previous GWAS findings on nicotine dependence.
Several eQTLs (from GTEx) affect CHRNB4 mRNA

expression in peripheral tissues but are not detectable in
brain because of low expression. Here, we characterize
an LD bin with potential CHRNB4 regulatory variants
based on expression in peripheral tissues. We then evalu-
ate the combined influence of all four SNPs haplotypes/
diplotypes (rs16969968 and three regulatory variants) on
nicotine dependence in GWAS, extending our previous
3-SNP analysis [11]. Because of the extensive LD block
structure of the gene cluster, 4-SNP haplotypes and diplo-
types are assignable with confidence to a large portion of
subjects in a GWAS of nicotine dependence (COGEND,
UW-TTURC, SAGE). The results of the 4-SNP haplotype/
diplotype analysis confirm and extend previous findings
on the genetic influence of the CHRNA5-CHRNA3-
CHRNB4 gene cluster on nicotine dependence and recon-
cile previous GWAS data. We further use a machine
learning approach for the identification of generalizable
genetic markers associated with behavioral phenotypes
[14, 15]. Unlike a univariate approach comparing groups
on each measure separately, this machine learning
approach seeks to identify multivariate patterns of all the
measures that can predict or classify a phenotype in new
samples [16].
Lastly, we ask whether the four key haplotype SNPs

show evidence for dynamic interactions among each
other or with additional factors, evidenced as differences
in the allele-specific variance of phenotype associations,
rather than in the mean main effect. Dynamic interac-
tions between variants (epistasis) might well account for
part of the ‘missing heritability’ [17]. Significant differ-
ence in variance of phenotypic traits between alleles is
characterized as a variance QTL (vQTL) [18, 19], reveal-
ing dynamic interactions between candidate variants and
other factors that remain hidden in GWAS analysis with
assumption of linear additive effects. To assess dynamic
conditional effects, we apply a technique based on
neural networks together with the Breusch-Pagan test
for heteroscedasticity to detect vQTLs [20].

Methods
Pre-selection of candidate variants across the CHRNA5-
CHRNA3-CHRNB4 gene cluster
To identify putative causal variants, we followed the cri-
teria outlined previously [11] to select variants for
CHRNA5/A3/B4:
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1. Clinical associations/gene expression (GWAS/eQTL
hits): To select genetic variants associated with
clinical phenotypes, SNPs derived from NHGRI-
EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/)
and Genome-Wide Repository of Associations
Between SNPs and Phenotypes (GRASP) (http://
grasp.nhlbi.nih.gov/Overview.aspx) were preselected
with p < 10− 5 and p < 0.05 for GWAS and GRASP,
respectively. Among these SNPs, we selected genetic
variants overlapping with tissue specific expression
variants identified as eQTLs. Tissue specific eQTLs
were calculated in GTEx using normalized RPKM
(Reads Per Kilobase of transcript per Million mapped
reads), and imputed genotypes with PEER factors and
gender as covariates.

2. Regulatory regions: SNPs in perfect LD (R2 = 1,
D′ = 1) with GWAS/eQTL hits that reside in
regulatory regions defined by ENSEMBL (ENSRs)
using BiomaRt R package [21].

3. Gene expression: To select SNP most highly
associated with gene expression, eQTLs with
the lowest p values for CHRNA5, CHRNA3
and CHRNB4 in any given tissue in GTEx
were selected.
Using 1000 genomes project data, R2 and D′ of
LD were calculated using the ‘ld’ function in the
‘snpStats’ R package [22] and based on the R2

values, we generate a heatmap that highlight
LD bins of candidate SNPs.

Associations of genotype, haplotypes, and diplotypes
with nicotine dependence
To test the association of candidate variants with
nicotine dependence, genotypes and clinical pheno-
type information of Caucasian subjects (n = 4410,
mean age = 39.5 (± 9.8) years) were obtained from “The
study of Addiction: Genetics and Environment (SAGE)
(phs000092.v1.p1)” and “The Genetic Architecture of
Smoking and Smoking Cessation (phs000404.v1.p1)”
which includes COGEND (Collaborative Genetic Study of
Nicotine Dependence) and UW-TTURC (University of
Wisconsin Transdisciplinary Tobacco Use Research
Center) subjects. We used Fagerström Test for Nicotine
Dependence (FTND) score (0–10) to measure smoking
behavior. Among the participants, subjects whose FTND
score is more than 4 were categorized as ‘nicotine depend-
ence’ (n = 2821) whereas those whose FTND score was
zero and smoked at least 100 lifetime cigarettes were con-
trols (n = 840) according to established criteria [23, 24].

Logistic regression
Additive logistic regression models were used to evaluate
the association between each genetic variant and nico-
tine dependence. In single variant analysis, a SNP, age

and sex were used as independent variables, whereas in
the “pairwise snp” analysis: age, sex, rs4887074 and one
of the three remaining SNPs (3-SNP haplotype in [11])
were used as predictors. We estimated the effect sizes
(beta coefficients) and p-values (reported for the stand-
ard Wald’s test) using the ‘glm’ function in R.

Haplotype/diplotype analysis
Haplotype and diplotype probabilities were estimated via
the Expectation Maximization (EM) algorithm as imple-
mented in the Haplo.stat R package [25];. In short, pos-
terior probabilities of all possible haplotypes for each
subject were computed and the most significant haplo-
type and diplotype were selected for further analysis.
Individuals with rare haplotype/diplotype (frequency
below 2%) were excluded from further analysis. Odds
ratios and confidence intervals were calculated from the
effect sizes and standard errors. In the estimation step
GGGG haplotype or AGAC-GGGG diplotype (most fre-
quent) were set as the base for contrast calculation. To
compare the effects between each pair of diplotypes we
used the Tukey contrasts as implemented in the mult-
comp R package [26].

Multivariate regression: Machine-learning approach
We evaluated the discriminative power of the previous
3-SNP model compared to a 4-SNP model including
rs4887074, with sex and age as co-variants, to test the
predictive power of each model with respect to nicotine
dependence. For this, we applied the machine learning
algorithm Least Absolute Shrinkage and Selection Oper-
ator (LASSO) [27]. For fitting LASSO and generating
out-of-sample predictions, we used procedures validated
previously [14, 15]. In short, we divided the entire data-
set into a training (67% of the dataset) and a test set,
and estimated the LASSO model using 10-fold cross
validation only on the training set, including classifica-
tion accuracy. Then we obtain out-of-sample predictions
on the test set. The process was repeated 1000 times to
test model robustness across different training/test divi-
sions. As index of classification accuracy, we determined
the area under the curve (AUC) of the receiver operating
characteristic (ROC) curve of rs16969968 vs. rs880395/
rs16969968/ rs1948 vs. rs880395/ rs16969968/ rs1948/
rs4887074 using easyml R package [28], facilitating use
of glmnet R package [29].

Search for variance QTL applying heteroscedasticity
To assess the potential of interactions between each of
the four SNPs and genetic and/or environmental factors
not taken into account in this study, we utilized the con-
cept of heteroscedasticity – i.e., we tested whether the
residuals in the proposed linear models are dependent
on the SNP. For this approach, we applied the FTND
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score scale for 0 (non-dependence) or 4 to 10 (nicotine
dependence) and tested whether residual probabilities
(after regressing out the effect of age and sex) in the lo-
gistic regression depend on the genotype of each SNP, to
evaluate the influence of the genetic variant on the vari-
ability of the phenotype (i.e. FTND score). To this aim
we use the Breusch-Pagan test as implemented in the
package lmtest in R [30]. The neural network approach
focuses on modeling the probability of an individual fall-
ing into a whole spectrum of intermediate categories as
defined by the nicotine dependence score. Subsequently,
we use the residual probabilities (from a model with sex
and age as independent variables).

Results
Candidate variants across the CHRNA5-CHRNA3-CHRNB4
gene cluster identified as eQTLs or GWAS hits
The broad search of genomics data on the gene cluster
identified 44 candidate SNPs showing evidence for po-
tential function (eQTLs, GWAS hits) that coalesce into
4 groups representing distinct LD bins (Fig 1). For each
LD bin, we list the highest scoring SNPs (GWAS or
eQTLs) in Table 1, representing lead SNPs. LD bin 1 in-
cludes the nicotine dependence risk nsSNP rs16969968
[7, 9, 11, 31], which alters CHRNA5 receptor function,
and variants in high LD with it. LD bin 2 includes the

two eQTLs, rs880395 and rs1948 previously identified
[11], which increase CHRNA5/A3 expression in brain and
peripheral tissues (rs880395), and CHRNA3 exclusively in
the basal ganglia (rs1948) [11]. LD bin 3 includes variants
associated with reduced CHRNB4 expression, detectable
in GTEx only in peripheral tissues (testis and esophagus
mucosa), likely because of low expression in the brain
tissues. Variants in LD bin 4 are less well characterized by
eQTLs but it contains rs6495308, which is strongly associ-
ated with smoking quantity in a meta-analysis [10]. Minor
alleles of SNPs in bin 4 rarely occur together with the
minor alleles of lead SNPs in bin 1 or 2, so that the minor
allele of rs6495308 (C) resides mostly on the main G allele
of rs16969968 and rs1948 (Additional file 1: Table S1)
while it has lower frequency than rs16969968 (0.24 versus
0.37 in Europeans).
Focusing on key candidate regulatory variants of

CHRNA5/A3/B4, we select representative SNPs by
choosing the top-scoring eQTLs (bins 2 and 3) and the
nsSNP rs16969968 for LD bin 1. We do not include LD
bin 4 variants in haplotype analyses since rs6495308
(bin 4) appears to register as an eQTL because of op-
posite LD with rs16969968 and rs1948 (rs64953078 is
discussed further below). Moreover, rs6495308 is an
eQTL for CHRNA3 in multiple tissues, with p = 0.0001
and Normalized Effect Size (NES) = − 0.55 in nucleus
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rs6495308
rs4887074
rs28661610
rs2869552
rs62010552
rs7176070
rs7182694
rs7182993
rs12907511
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rs12899940
rs36045869
rs588765
rs1948
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rs905740
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rs4887064
rs1979907
rs1979906
rs12907966
rs1979905
rs1504550
rs7181486
rs17405217
rs17483548
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rs17486278
rs1051730
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rs8034191
rs55853698
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Fig. 1 Heatmap of linkage disequilibrium (LD) values (R2) between candidate SNPs in the CHRNA5/A3/B4 locus. Pairwise LD values (Caucasians)
were calculated between candidate variants selected by GWAS hits/eQTLs overlap, top eQTLs, and regulatory regions in the CHRNA5/A3/B4
nicotinic receptor locus. On the basis of pairwise LD (R2), the candidate SNPs were grouped into four distinct LD blocks; cluster 1 to 4. The
heatmap is independent of genomic location of each SNP
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accumbens, in nearly the same location as rs2869546,
with eQTL values of p = 1.7e-13 and NES = − 0.72,
whereas rs1948, included in our 4-SNP haplotype,
scores with p = 6e-15 and NES = − 0.81. These data and
LD data (Table 2) question a functional role for
rs6495308.
The selected three regulatory candidate SNPs (rs880395,

rs1948, and rs4887074) are located upstream of target
genes (Fig 2) and have varying degrees of LD with the
ns-SNP rs16969968 (Table 2, which includes rs6495308
for comparative analysis). While R2 is rather low (0.03–
0.04) between rs4887074 and the other three SNPs, in part
accounted for by lower MAF of rs4887074, D’ values are
higher (0.41–0.52) (Table 2). Owing to the substantial D’
values across the gene cluster, it is feasible to construct
haplotypes and diplotypes of the four SNPs for individual
subjects with high confidence.

Four candidate SNPs and nicotine dependence
We have previously focused on the CHRNA3 and CHRNA5
enhancers (tagged by rs1948 and rs880395, respectively)
combined with rs16969968 [11] in European popula-
tions from SAGE (Study of Addiction: Genetics and
Environment) and the Genetic Architecture of Smok-
ing and Smoking Cessation. Adding here a candidate
regulatory CHRNB4 variant (rs4887074), we use a

regression model to estimate haplotypes and diplo-
types for the four variants.

Regression model
Testing the association between each SNP and nicotine
dependence in the logistic regression model confirmed
previous results that rs16969968 is an individual risk fac-
tor for nicotine dependence (effect size = 0.27, p < .0001,
Additional file 1: Table S2) [11]. In contrast, the minor
allele (G) of rs4887074, associated with reduced expres-
sion of CHRNB4, is associated with significant protective
effect (negative effect size) in both single SNP and pair-
wise analysis with other SNPs (Table 3). Although
rs880395 and rs1948 are not individually significant
(effect size = − 0.09 and − 0.02, p = 0.11 and 0.76, re-
spectively) both variants show protective effect when
considered in context with rs4887074 (Table 3). This
result illustrates the hidden influence of these regulatory
variants that interact among each other, confounding
single SNP analysis.

Associations of genotype, haplotypes, and diplotypes
with nicotine dependence
Estimation of haplotypes and diplotypes
To evaluate the combined effect of the four candidate vari-
ants of the CHRNA5/A3/B4 locus on nicotine dependence,
we build haplotypes and diplotypes and examine the associ-
ation of the estimated genotype with nicotine dependence.
Because of extensive LD structure between rs16969968
(G>A), rs880395 (G>A) and rs1948 (G>A), the minor A
allele of rs16969968 occurs mainly together with the major
alleles of rs880395 and rs1948 (low expression of
CHRNA5/3). As a result, GAG (rs880395-rs16969968-
rs1948; major-minor-major allele) and AGA (minor-major-
minor) are the most frequent haplotypes (35 and 32%,
respectively). Adding rs4887074 (C>G; the G allele being
associated with reduced expression), the GAG haplotype is
divided intoGAGG (rs880395-rs16969968-rs1948-rs4887074,
5%) and GAGC (30%), whereas the AGA haplotype is divided

Table 1 Characteristics of candidate SNP representing LD blocks in the CHRNA5/A3/B4 locus

Group Candidate lead SNP Asociation with RNA expressiona Clinical phenotypeb

1 rs16969968 nsSNP alters CHRNA5 receptor function (CHRNA5) Smoking-related, cardiovascular, pulmonary/
lung cancer

2–1 rs880395 enhanced expression of CHRNA5/3 in brain and
peripheral tissues

Smoking-related, cardiovascular, pulmonary/
lung cancer

2–2 rs1948 enhanced expression of CHRNA3 in brain
basal ganglia

3 rs4887074 reduced expression of CHRNB4 in peripheral tissuesc Smoking-related
Cardio-vascular

4 rs6495308 reduced expression of CHRNA5/3 in peripheral tissues Smoking-related, cardiovascular, pulmonary/
lung cancer

aBased on GTEx
bBased on GWAS catalog and dbGaP database
cNo brain expression eQTLs available in brain regions because of low mRNA expression

Table 2 Pairwise LD of the lead SNPs in European population
from 1000 genomes project

rs880395 rs16969968 rs1948 rs4887074 rs6495308

rs880395 1 0.98 (0.33) 0.83 (0.54) 0.44 (0.04) 0.77 (0.11)

rs16969968 1 0.99 (0.27) 0.41 (0.03) 1 (0.18)

rs1948 1 0.52 (0.04) 0.92 (0.13)

rs4887074 1 0.42 (0.18)

rs6495308 1

D’(R2); rs880395 (G>A, CHRNA5 enhancer, MAF = 0.38), rs16969968 (G>A, CHRNA5
nsSNP, MAF= 0.37), rs1948 (G>A, CHRNA3 enhancer, MAF = 0.32) and rs4887074
(C >G, candidate CHRNB4 repressor, MAF = 0.24) and rs6495308 (T> C, MAF =0.24)
MAF Minor Allele Frequency
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into AGAG (2%) and AGAC (29%). This result demonstrates
that the minor A risk allele of rs16969968 is predominantly
associated with the major alleles of the other three SNPs, in-
cluding the C allele of rs4887074 (further compounding risk
compared to the minor rs4887074 G allele), and vice versa.
Moreover, rs4887074 C>G splits the next most frequent
haplotype, GGG (rs880395-rs16969968-rs1948) into GGGC
(7%) and GGGG (13%). The haplotype with all four minor
alleles (AAAG) is estimated not to occur in this dataset.
Because of the LD structure between four biallelic var-

iants, the number of diplotypes is reduced to 45 assign-
able diplotypes (Additional file 1: Tables S1 and S3) in
the dataset. The posterior probabilities of the haplotypes
assigned to each subject range from 0.62 to 1 (median =
0.997, Q1 = 0.932, Q3 = 1) (Additional file 1: Figure S1).
Among the diplotypes, we select 15 diplotypes with > 2%
frequency, accounting for 86% of the study population,
and calculate the odd ratios (OR) and confidence inter-
vals of each diplotype. The most frequent diplotype is
AGAC-GAGC (18%), the combination of the two most
frequent haplotypes. Among the 15 diplotype groups,
two diplotypes (red circles in Fig. 3) are homozygous for
the minor allele of rs16969968 (A/A), six are hererozy-
gous AG (green circles), and seven are homozygous G/G
(blue circles). This haplotype distribution illustrates the
skewed nature of haplotypes and diplotypes ranging
across the gene locus in long LD blocks.

Association of haplotype/diplotype with nicotine
dependence in the dataset
Association analysis of the four candidate variants con-
firms that the A allele of rs16969968 is a risk factor for
nicotine dependence (Fig. 3, Additional file 1: Table S4).
In the haplotype association analysis, the C and G alleles
of CHRNB4 SNP rs4887074 do not significantly

modulate the effect of GAGC (rs880395-rs16969968-
rs1948-rs4887074) compared to GAGG (Fig 3). In
contrast, among haplotypes with the main G allele of
rs16969968, rs4887074 appears to exert different effects
between haplotypes, for example, AGAC (29% frequency)
is associated with significant risk (all minor regulatory al-
leles are associated with enhanced expression) while other
G haplotypes show lesser ORs (e.g., AGAGOR< 1) (Fig. 3).
Taken together, these results demonstrate differences be-
tween the main effects of rs16969968 alone in comparison
to the haplotypes based on four SNPs.
We next address genotype effects of rs16969968 in the

context of diplotypes (Fig. 3). Taken alone, the OR for
heterozygous rs16969968 G/A carriers is 1.22 (95% con-
fidence intervals: 1.03–1.44), whereas it is 1.88 (1.43–
2.49) for homozygous AA, suggesting a non-linear super-
additive effect. Subjects homozygous for the rs16969968
AA genotype are assigned only one of two prevalent
diplotypes (GAGC-GAGC (9%) and GAGC-GAGG (3%))
and display the highest odds ratios (>two fold), when
compared to the AGAC-GGGG diplotype assigned an
OR of 1.0 (Fig. 3). The minor rs4887074 G allele does
not appear to alter risk, consistent with the haplotype
analysis. Subjects homozygous for the major rs16969968
GG alleles are carriers of seven assignable diplotypes
(blue circles in Fig. 3, bottom), displaying ORs ranging
from 0.82 to 1.63 (blue circles in Fig. 3, bottom). The
major C allele of rs4887074 is distributed throughout
the spectrum of diplotype OR values and is associated
with significant risk in the diplotype AGAC-AGAC (OR
= 1.63), a diplotype associated with high relative expres-
sion of all three genes (Table 3). Similarly, the other
haplotype homozygous for both rs16969968 G and
rs4887074 C (AGAC-AGGC) also is significant, but at a
lower OR = 1.18 (Table 4).
Subjects heterozygous for rs16969968 AG alleles cover

a diplotype range of ORs from 0.86 to 1.68, with two
diplotypes conveying risk (but only the most frequent
being significant: AGAC-GAGC (18%)), and three failing
to show nominal risk. Note that the minor rs16969968 A
allele is mostly on the same haplotype as the major
rs4887074 C allele. These results suggest that rs4887074
does influence risk in our analysis, but in an
allele-specific fashion: no effect is detectable if on the
same haplotype with the rs16969968 A alelle, but the C
allele appears to confer additional risk when together

PSMA4 CHRNA5 
CHRNA3 

CHRNB4 

rs880395 rs16969968 rs1948 rs4887074 

Fig. 2 Location of the three regulatory variants and a non-synonymous variant. rs880395 (chr15: 78552014, upstream of CHRNA5); rs16969968
(chr15: 78590583, nonsynonymous variant of CHRNA5); rs1948 (CHR15: 78625057, synonymous or 3 prime UTR variant located in CHRNB4; enhancer for
CHRNA5) from our previous study, and rs4887074 (chr15: 78659768, intronic variant of CHRNB4 newly added in the analysis

Table 3 Effect size in nicotine dependence (SAGE) of rs4887074
alone and with rs880395, rs16969968, or rs1948, obtained from
a Generalized Linear Model

rs880395 rs16969968 rs1948 rs4887074

ND~rs4887074 −0.21***

ND~rs880395 + rs4887074 −0.14* −0.25 ***

ND~rs16969968 + rs4887074 0.24*** −0.16*

ND~rs1948 + rs4887074 −0.07 −0.23***

*p < .05, **p < .01, ***p < .001 in GLM model
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with the main rs16969968 G allele. This will be tested fur-
ther below as a vQTL to detect allele selective interactions.

Assessment of SNPs in LD bin 4, including rs6495308
Liu et al. have shown in their GWAS meta-analysis that
rs6495308 is strongly associated with smoking quantity
(6 × 10− 44; MAF = 0.24; protective effect), an associ-
ation that remains significant after conditioning on
rs16969968 (1.5 × 10− 5; MAF = 0.37) [10], even though
the LD rs6495308/ rs16969968 has a D’ = 1 (R2 = 0.18
owing to different MAF; Table 2), with the minor alleles
on opposite strands. To resolve this paradox, we built a
5-SNP haplotype from a European population of the
1000 Genomes project (Additional file 1: Table S5). The
minor C allele of rs6495308 is almost exclusively present
on two haplotypes also carrying the main G allele of
rs169699698 (GGGG and GGGC), both conveying the
least risk (OR~ 1 in Fig. 3) for nicotine dependence.
Hence, rs6495308 is excluded from other haplotypes car-
rying the main G allele of rs16969968 that tend to convey
risk, specifically the AGAC haplotype (Fig. 3). We propose
that these hidden haplotype relationships drive the p
values of the GWAS single SNP meta-analysis, including
conditioning of one SNP on the other. These results

further suggest that rs6495308 is not directly a
marker of a single functional variant but rather tags
specific haplotypes that are protective relative to
other haplotypes in the gene cluster. However, we
cannot exclude the possibility that rs6495308, or any
other SNP associated with any of the 4-SNP haplo-
types, does have functional significance that could be
revealed by studying other ethnic groups with distinct
LD patterns.

Use of machine learning to integrate the effect of
multiple SNPs
Using a cross-validated machine learning (penalized
regression) approach, we determine how much these
candidate variants increase the out-of-sample classifi-
cation accuracy of nicotine dependence and non-de-
pendence. Comparing AUC values of three different
models (1 SNP: rs16969968 vs. 3 SNPs: rs880395-
rs16969968-rs1948 vs. 4 SNPs: rs880395-rs16969968-
rs1948-rs4887074), we find that the three models led
to similar AUC values (mean AUC = 0.67 in all three
models; see Additional file 1: Figure S2A). None of the
models reveal a strong genetic influence beyond a
model incorporating covariates (gender and age).
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AGAG(2%)
GGGG(13%)
GGGC(7%)
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AGGG(3%)
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Fig. 3 Association of nicotine dependence with rs16969968 allele alone (G > A) and haplotype and diplotype comprised of rs880395 (G > A),
rs16969968 (G > A), rs1948 (G > A) and rs4887074 (C > G), reported as odds ratio with 95% confidence intervals. For haplotype analysis, base
allele of rs16969968 and haplotype is G and GGGG respectively. For diplotype analysis, bases are G-G of rs16969968 and AGAC-GGGG for diplotypes.
Color represents different allele (or diplotypes) of rs16969968: blue; G (haplotype) or G-G (diplotype), green; G-A and red; A (haplotype) or A-A
(diplotype) (*** p < .0001, **p < .01,*p < .05, adjusted p-value for multiple corrections). The number next to the genotype/ haplotype/ diplotype
represents the frequency (%)
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Heteroscedasticity in interaction models (variance
QTL analysis)
To test the hypothesis that each of the four SNPs is
subject to allele-specific interactions with other factors,
we tested heteroscedasticity using the Breusch-Pagan
test. Presented in Fig 4, rs880395 and rs1948 are not
associated with residual probability of nicotine depend-
ence, and the underlying models are homoscedastic
(Fig. 4a and c; p = 0.92 and 0.70 respectively) – that is
the variance does not differ between genotype. In con-
trast, the major GG genotype of rs16969968 robustly
increases the residual probability of nicotine depend-
ence compared to a heteroscedastic logistic model
(Fig. 4b; p = 0.0005), suggesting an interaction with
other variants or factors. In addition, the minor allele
of rs4887074 in both CG and GG genotypes conveys
significantly increased variance in the heteroscedastic
model of nicotine dependence (Fig. 4d; p = 0.003). The
minor G allele is associated with lower expression of
CHRNB4 and appears to be protective (Table 4). As the
minor allele of rs4887074 is primarily on the same
strand as the major allele of rs16969968, these data
suggest a non-linear interaction between these two var-
iants, while not excluding other interacting factors
external to the gene cluster.

Discussion
This study shows that rs4887074 C > G, tagging an LD
bin associated with CHRNB4 expression is signifi-
cantly associated with nicotine dependence, the minor
G allele conveying a protective effect in GWAS data-
sets (COGEND, UW-TTURC, SAGE) (Table 3). We
then integrate the effect of rs4887074 with a previous
analysis of 3-SNP haplotypes that modulate the func-
tions of CHRNA5 and CHRNA3, namely rs880395/
rs16969968/ rs1948) [11]. Owing to extended LD
structures, haplotypes and diplotypes can be assigned
with high confidence to a substantial portion of indi-
vidual subjects for the 3-SNP haplotypes [11] and the
4-SNP haplotypes rs880395/ rs16969968/ rs1948/
rs4887074. The results further differentiate the modi-
fying effects in haplotypes observed with the 3-SNP
model [11] in the 4-SNP model. Subjects carrying the
minor rs16969968 A allele resides on only one of two
haplotypes that convey the strongest risk. On the
other hand, 4-SNP diplotypes homozygous for the
major rs16969968 G/G allele (previously thought to be
protective) range from protective to conveying risk,
which is significant for AGAC-AGAC. In this risk diplo-
type, the three regulatory tagging SNPs convey high
expression for each CHRNA3, CHRNA5, and CHRNB4.
Estimated diplotypes reveal a gradation of effects ran-

ging from ORs < 1 to > 2. Increased risk appears to be as-
sociated with enhanced expression of CHRNA3, CHRNA5,
and CHRNB4; however, in the context of the rs16969968
A allele, the two risk haplotypes convey mostly low
expression (GAGC-GAGC and GAGC-GAGG). We had
previously suggested that rs880395 (enhancing CHRNA5
expression) might convey a protective effect in the pres-
ence of the rs16969968 A allele by diluting the effect of
the nsSNP, but the 4-SNP haplotypes analysis here indi-
cates that the rs880395 effect is tends to a risk factor.

Relationship of the 4-SNP haplotypes with previous
haplotype-tagging SNPs involved in nicotine dependence
Numerous GWAS have identified the CHRNA5/
CHRNA3/CHRNB4 gene cluster as the region harbor-
ing the strongest association with nicotine dependence.
In a large-scale meta-analysis of GWAS, Liu et al. [10]
have identified three highly significant haplotype
tagging SNPs, namely rs16969968 (haplotype A),
rs588765 (haplotype B), and rs6495308 (haplotype C,
protective), of which haplotype A and C yielded the
strongest signals. Our LD analysis identifies 4 LD bins,
with bin 1 identical to haplotype A (rs16969968), bin 2
with haplotype B (rs880395 and rs1948, which both
appear to have independent effects) [11], bin 3 with
rs4887074 that is not represented by top GWAS tag-
ging SNPs in the three haplotypes of Liu et al. [10],
and bin 4 from which we had not selected a lead

Table 4 Comparison of odd ratio means among the diplotypes
that share the same allele of rs16969968 (A) GG and (B) AG,
along with predicted effects on CHRNA5, CHRNA3, CHRNB4
mRNA expression

Diplotype Percent OR CHRNA5 CHRNA3 CHRNB4

A. Diplotype with rs16969968 = GG

AGGC-GGGG 2 0.82 medium low medium

AGAC-GGGG 8 1.00 medium medium medium

GGGC-GGGG 2 1.04 low low medium

GGGG-GGGG 2 1.07 low low low

AGAC-GGGC 4 1.08 medium medium high

AGAC-AGGC* 5 1.18 high medium high

AGAC-AGAC*# 8 1.63 high high high

B. Diplotype with rs16969968 = AG

AGAC-GAGG 5 0.86 medium medium medium

GAGC-GGGC 4 1.05 low low high

GAGC-GGGG 8 1.32 low low medium

AGAC-GAGC+ 18 1.62 medium medium high

AGGG-GAGC+ 3 1.62 medium high medium

AGGC-GAGC+ 5 1.68 medium low high

Expression level was defined as follows; homozygous minor alleles of the
enhancer (rs880395 and rs1948) (or repressor, rs4887074) of each gene = ‘high’
(or ‘low’ with repressor), heterozygous genotype = ‘medium’; homozygous minor
of enhancer (or repressor) = ‘low’ expression (or ‘high’ when a repressor)
*p < .05, Tukey test, pairwise comparison with AGGC-GGGG
#p < .05, Tukey test, pairwise comparison with AGAC-GGGG
+p < .05, Tukey test, pairwise comparison with AGAC-GAGG
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tagging SNP, where however the strong tagging SNP
rs6495308 is located (haplotype C). To determine
whether rs6495308 represents a region with yet
another regulatory variant or is tagging select 4-SNP
haplotypes, we estimated the distribution of rs6495308
among the assignable 4-SNP haplotypes (rs880395-
rs16969968-rs1948-rs4887074) (Additional file 1:
Table S5). The results show that the minor C allele of
rs6495308 is preferentially embedded in two haplo-
types with the lowest risk profile (GGGG and GGGC).
This finding indicates that the minor C allele of
rs6495308 shows a protective effect resulting from its
LD with these two protective 4-SNP haplotypes, a
relationship that fails to be revealed from pairwise
2-SNP LD analysis alone. While rs6495308 also serves
as an eQTL (GTEx) for CHRNA3 in multiple tissues,
with p = 0.0001 and NES = − 0.55 in nucleus accum-
bens, rs2869546 located next to rs6495308 is a stron-
ger eQTL with p = 1.7e-13 and NES = − 0.72. On the
other hand, the CHRNA3 SNP rs1948 included in our
4-SNP haplotype has an eQTL with p = 6e-15 and NES = −

0.81. These data raise doubt whether rs6495308 represents
a regulatory variant but rather fortuitously tags two protect-
ive haplotypes. However, additional regulatory variants
could exist and show independent effects in non-European
populations with distinct LD patterns.

Interactions of four SNPs affecting nicotine dependence
We propose that the 4-SNP haplotype reflect combined
additive effects, but also integrates epistatic non-linear
interactions not captured by conventional methods. The
four selected SNP in the CHRNA5/A3/B4 gene locus
can interact with each other in multiple ways. Because
of the extensive LD structure, the presence of one allele
affects the allele frequency of all other alleles in a given
individual. For example, presence of the rs16969968 A
allele excludes the rs880395 A allele in the same haplo-
type. To search for dynamic interactions between the 4
SNPs, a variance QTL analysis revealed that rs16969968
and rs4887074 appear to interact with each other (Fig. 4).
Increased variance is observed only for the minor
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Fig. 4 Distribution of the residuals probabilities of nicotine dependence score (FTND 0 or 4~ 10) associated with each of rs880395 (a),
rs16969968 (b), rs1948 (c) and rs4887074 (d) alleles. To test heteroskedasticity of the residuals, the Breusch-Pagan test was performed. Among
four SNPs, rs16969968 and rs4887074 are significantly associated with the variability of the residuals (**p < .01, ***p < .001)
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rs4887074 and the major rs16969968 alleles, consistent
with the finding that rs4887074 is present only on
rs16969968 G allele haplotypes with widely varying ORs
(Fig. 3). We propose that rs4887074 has robust effects
contingent on rs16969968 genotype.

Odd ratios vs. AUC in machine learning
We here compare two different approaches - estimation
of disease probability (odd ratios) and classification of
subjects with their risk (AUC, machine learning) in the
present study. Homozygous rs16969968 AA genotype
and select diplotypes display robust association mea-
sured by ORs but are not strong classifiers. Considering
the relationship between risk estimation (OR) and clas-
sification (sens; sensitivity, spec: specificity) with OR =
sens/(1-sens)*spec/(1-spec), a SNP can indeed show a
strong association (large odd ratios) but be a poor clas-
sifier [32, 33]. As nicotine dependence is a complex
phenotype, future studies with machine learning algo-
rithms addressing interactions between variants from
multiple loci and with environmental factors are needed
to improve model predictions.

The relevance of distinct nicotine receptor configurations
and genetic effects between brain regions
Composition of nicotinic receptors and tissue selective
genetic effects of CHRNA5/A3/B4 regulatory variants
impinged on nicotine addiction in the reward circuit
[34]. The medial habenula (MHb) is regarded as the key
component regulating nicotine dependence via the α5,
α3, and β4 subunits [35–37]. Elevated β4 expression in
MHb decreases nicotine consumption by regulating
nicotine aversion [38], while elevated expression in other
regions may be risk factors. The genetic influence of
rs4887074 or a regulatory variant in high LD needs to be
studied in relevant brain regions before the clinical asso-
ciation observed here can be understood in functional
terms. An example of region-selective genetic effects,
rs880395 is associated with both CHRNA3 and CHRNA5
expression in most tissues, whereas in nucleus accum-
bens and putamen, rs1948 is the strongest eQTL.
Thereby, regional differences in receptor subunit com-
position and genetic effects can lead to opposing effects
and variable associations with distinct phenotypes.

Conclusions
We have assessed the genetic influence of four variants
in the CHRNA5/A3/B4 gene cluster, employing a 4-SNP
haplotype/diplotype analysis, adding the lead regulatory
CHRNB4 SNP rs4887074 to the 3-SNP haplotypes char-
acterized previously [11]. Our approach further refines

the cluster’s genetic influence on nicotine dependence,
an important step if one considers evaluating the inter-
action between this gene cluster with other gene loci im-
plicated in nicotine dependence. When attempting to
detect dynamic non-linear interactions between loci,
even small misrepresentations of the true genetic impact
of each can lead to failure of detecting such dynamic ef-
fects [12, 17]. More broadly, our approach is generally
applicable for studying integrated gene clusters and their
genetic influence on any trait.
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