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Abstract

Intrinsically disordered proteins and regions (IDP/IDRs) are widespread in living organisms

and perform various essential molecular functions. These functions are summarized as six

general categories, including entropic chain, assembler, scavenger, effector, display site,

and chaperone. The alteration of IDP functions is responsible for many human diseases.

Therefore, identifying the function of disordered proteins is helpful for the studies of drug tar-

get discovery and rational drug design. Experimental identification of the molecular func-

tions of IDP in the wet lab is an expensive and laborious procedure that is not applicable on

a large scale. Some computational methods have been proposed and mainly focus on pre-

dicting the entropic chain function of IDRs, while the computational predictive methods for

the remaining five important categories of disordered molecular functions are desired. Moti-

vated by the growing numbers of experimental annotated functional sequences and the

need to expand the coverage of disordered protein function predictors, we proposed

DMFpred for disordered molecular functions prediction, covering disordered assembler,

scavenger, effector, display site and chaperone. DMFpred employs the Protein Cubic Lan-

guage Model (PCLM), which incorporates three protein language models for characterizing

sequences, structural and functional features of proteins, and attention-based alignment for

understanding the relationship among three captured features and generating a joint repre-

sentation of proteins. The PCLM was pre-trained with large-scaled IDR sequences and fine-

tuned with functional annotation sequences for molecular function prediction. The predictive

performance evaluation on five categories of functional and multi-functional residues sug-

gested that DMFpred provides high-quality predictions. The web-server of DMFpred can be

freely accessed from http://bliulab.net/DMFpred/.

Author summary

Intrinsically disordered proteins (IDPs) are proteins that are without stable three-dimen-

sional (3D) structures in native physiologic conditions. The discovery of IDPs has dis-

proved the idea that proteins must fold into 3D structures to accomplish their biological
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functions. They are prevalent in eukaryotic organisms and carry out many critical func-

tions in cellular regulation, signaling networks, and disease pathways. These functions of

IDPs can be summarized into six general categories, including entropic chain, assembler,

scavenger, effector, display site, and chaperone. Experimental identification of the molec-

ular functions of IDP in the wet lab is an expensive and laborious procedure that is not

applicable on a large scale. Some computational methods have been proposed to identify

the entropic chain function of IDPs, while the predictive methods for the remaining but

important functions of IDPs are desired. In this study, we proposed a disordered molecu-

lar function computational predictor of proteins, namely DMFpred. The DMFpred sup-

ports high-throughput sequences as input and computationally predicts five molecular

functions of IDPs, including assembler, scavenger, effector, display site, and chaperone.

The evaluation results suggested that DMFpred provides high-quality predictions, and the

corresponding web server of DMFpred can be freely accessed from http://bliulab.net/

DMFpred/.

This is a PLOS Computational Biology Methods paper.

Introduction

Proteins or regions that lack stable 3D-structures under the native physiologic conditions are

known as intrinsically disordered proteins and regions (IDP/IDRs). Recent studies have sug-

gested that IDP/IDRs are common in nature, with more than 30% of proteins in eukaryotes

being disordered [1,2]. The widespread occurrence of IDP/IDRs alter the classical protein

structure-function paradigm [3–5]. IDP/IDRs play essential roles in living organisms, the

alteration of their functions are responsible for many human diseases such as cancer [6], Alz-

heimer’s [7] and Parkinson’s [8]. Exploring the molecular functional mechanism of IDP/IDRs

will be helpful for a complete understanding of protein structures and functions, and will be

also used to guide wet lab experiments and inform studies of rational drug design [9,10].

The functions of protein disordered regions arise from their native structural flexibility or

from their ability to bind to partner molecules [4]. These disorder functions can be summa-

rized as six categories: entropic chains, assembler, scavenger, effector, display site, and chaper-

one [4,11]. The disordered entropic chain benefits directly from its intrinsically disordered

conformation without becoming structured, which serves as the connector between domains

and structural elements making up domains [12]. Disordered assemblers bring together multi-

ple binding partners, and promote the formation of large protein complexes [4,5,13]. Scaven-

ger disordered regions in proteins store and neutralize small ligands, such as chromogranin,

salivary glycoproteins and calcium-binding phosphoproteins [11,14,15]. Effectors interact

with other partner proteins and modify their activity [16]. Some disordered regions serve as

display sites, facilitating easy access and recognition of the post-translational modifications

(PTMs) in proteins [17]. Disordered chaperone function makes the IDRs assisting RNA and

protein molecules to reach their functionally folded states [18].

The intrinsically disordered is encoded in the protein sequence, motivating the develop-

ment of computational sequence-based disorder predictors [19]. Currently, there are about

200 million disordered proteins have been identified experimentally and predictively [20]. In

contrast, only thousands of disordered proteins have functional annotations [21,22]. This data
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suggests that it is important to develop computational predictors for filling the deepening gap

between annotated and unannotated disordered sequences. In this regard, several sequence-

based computational predictors are proposed for predicting specific functions of disordered

proteins. For example, the DFLpred [23] and APOD [24] are computational methods devel-

oped for predicting disordered linkers that fulfill entropic chain function in proteins. Besides,

there are predictors for identifying disordered regions binding to specific types of molecular

partners, including protein binding predictors [25–32], DNAs and RNAs binding predictors

[33,34], and lipid binding predictors [35]. However, methods for predicting the other five clas-

ses (assembler, scavenger, effector, display site and chaperone) of molecular functions of IDRs

are required.

Protein representation is critical for the construction of computational predictors. Protein

sequence defines structure, which in turn dictates its function [4]. The intrinsically disordered

proteins reassessed the classical sequence-structure-function paradigm [36], the complex

sequence, structure, and functional properties of IDP/IDRs should be explored to fully repre-

sent the disordered proteins. By modelling the language’s generative rules, the language model

in natural language processing (NLP) comprehensively understands the language, and capture

the semantic features of text, which is an indispensable technology in NLP. Protein sequences

can be viewed as the language of genetics sharing high similarities with natural language sen-

tences [37]. For example, the natural language sentences composed of words express their

semantics, while proteins composed of residues perform various functions. Inspired by their

similarities, the proteins can be represented and modelled by the language models.

In this paper, we proposed DMFpred predictor, which predicts five molecular functions of

IDRs, including assembler, scavenger, effector, display site, and chaperone. DMFpred employs

the Protein Cubic Language Model (PCLM) to learn protein representations, consisting of

three types of protein language models and an attention-based language model alignment

(ALAN) module. Three protein language models were used to capture protein sequences,

structural, and functional features, respectively. The ALAN module extracts the relationship

among three captured features and encodes the complementarity information. The key chal-

lenge in functional prediction is that the number of disordered sequences with functional

annotations is relatively small. The transfer learning technology can transfer knowledge from

tasks with plentiful training data to improve the performance of similar other tasks, which is

especially useful for the task with limited training data [38]. Therefore, we first pre-trained

PCLM with large IDRs sequences to capture the disordered features of proteins. Then the gen-

eral disordered features were transferred separately to five different disorder functions predic-

tion via model fine-tuning. Benefited from pre-training and function-specific fine-tuning of

PCLM, DMFpred captures more relevant features of disorder molecular functions. The abla-

tion experiment results demonstrated that each module of PCLM contributes to the predictive

performance improvements. And further evaluation suggested that DMFpred provides high-

quality predictions on all five categories of functional residues and multi-functional residues,

whose residues carry more than one category of molecular functions. The corresponding web

server of DMFpred was established and can be freely accessed from http://bliulab.net/

DMFpred/.

Materials and methods

Benchmark datasets

The datasets used in this study were collected from DisProt [22], which is the major repository

of manually curated functional annotations of intrinsically disordered proteins from literature.

All sequences in the database are functionally annotated at the amino acid level. In this study,

PLOS COMPUTATIONAL BIOLOGY DMFpred

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010668 October 31, 2022 3 / 18

http://bliulab.net/DMFpred/
http://bliulab.net/DMFpred/
https://doi.org/10.1371/journal.pcbi.1010668


we focused on five general categories of disordered molecular functions (DMFs), including

assembler, scavenger, effector, display site and chaperone. Following the intrinsically Disor-

dered Proteins Ontology (IDPO) schema in the DisProt, each of the five categories of function

terms has one or two leaf terms (see S1 Fig). Here, we treat all the leaf terms as the same func-

tional class as their root terms. The sequences in the database are functionally annotated with

amino acids as the basic unit, and we collected a total of 590 sequences containing residues

assigned at least one class of DMFs. For each class of function, we treat the residues annotated

with the functional term class in the database as functional residues, and the others as non-

functional residues. Then we assign all the functional residues in the sequences as label ‘1’ and

non-functional residues as label ‘0’, leading to five lines of labels corresponding to five catego-

ries of DMFs annotations.

To avoid data redundancy, we performed the similarity clustering on the 590 sequences by

using PSI-BLAST [39] by setting the threshold of 25%, and filtered sequences with pairwise

sequence similarity >25%. This way ensured that the sequence similarity between any two

sequences in the collections was lower than 25%. The remaining 541 proteins were randomly

divided into training, evaluation, and test sets in a ratio of 6:2:2. Finally, 324 sequences were

used as the training set for model training, 106 sequences were used as the valuation set for

model selection, and 111 sequences were used as the independent test set (TEST-1) to evaluate

predictive performance (S1 Data). The number of functional residues for the five categories of

disordered molecular functions in the DMF benchmark datasets is given in Table 1.

Architecture of protein cubic language model

Sequence, structure and function language models. Sequence, structure, and function

are three important aspects of proteins. Only one language model cannot fully characterize the

three features. In this paper, we employed three types of language models for capturing the

sequences, structural, and functional features of proteins.

Sequence language model. The amino acid sequence contains the evolutionary informa-

tion of protein. Here, the bidirectional long short-term memory (Bi-LSTM) networks were

employed as the sequence language model to capture the global correlation features of evolu-

tionary information (see Fig 1A). By using the protein PSSM profile and HMM profile as the

inputs of the sequence language model, the sequence features Seq can be calculated by [40]:

Seq ¼ ½h1; h2; � � � ; hL� ð1Þ

hi ¼ Concat½LSTMf ðXL�40Þ; LSTMbðXL�40Þ� ð2Þ

where XL×40 is the combination of PSSM and HMM matrix generated by PSI-BLAST [39] and

HH-suits [41] respectively, and L is the length of the sequence. LSTMf and LSTMb indicate the

forward and backward recurrent neural unit respectively. Concat represents the combination

of vectors.

Table 1. The number of functional residues in the DMF benchmark datasets.

Dataset Number of Assembler

residue

Number of Chaperone

residue

Number of Display-site

residue

Number of Effector

residue

Number of Scavenger

residue

Training set 14177 2236 5041 12783 2202

Evaluation

set

7764 904 932 4102 1022

TEST-1 4412 836 1001 3980 545

https://doi.org/10.1371/journal.pcbi.1010668.t001
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Structure language model

Protein structure reflects the results of local interaction among residues. The structure lan-

guage model aims to capture structural features of the protein, and a convolutional-based

model is used to capture structural local pattern features from the residue-residue contact map

(CCM) (see Fig 1B). By taking CCMs as inputs, the structure features Stc can be calculated by

[42]:

Stc ¼ relu½ConvðYL�L; FilterstcÞ þ bstc� ð3Þ

where YL×L is the CCM profile generated by CCMpred [43,44], Filterstc and bstc are trainable

variables, Conv represents convolution operator, and relu is the Rectified Linear Unit activa-

tion function [45].

Function language model

Functional conservative sequence segments also known as functional motifs hold particular

functionality information of proteins. Previous researches [46–48] have shown that the motif-

based convolution (MotifConv) by embedding particular motifs into the convolution kernel

can learn the prior biological features. Inspired by MotifConv, the functional motif-based con-

volution was employed as the function language model to capture proteins’ functional features

(see Fig 1C). The 164 motifs used in this study were extracted from the Eukaryotic Linear

Motif (ELM) database [49]. The letter-probability matrix of each motif is used to build the con-

volution kernel formulated as:

M1 ¼

a1;1 � � � a1;20

..

. . .
. ..

.

al;1 � � � al;20

2

6
6
6
4

3

7
7
7
5

ð4Þ

Fig 1. The architecture of protein cubic language model (PCLM). The PCLM contains five main modules: three protein language models (A. sequence, B.

structure, and C. function language model), attention-based language model alignment module (D. ALAN), and the fusion and output layer (E). The input

protein sequence is converted to sequence profile X, structure profile Y, and function profile Z, which are then fed into three protein language models to

capture the sequence features Seq, the structure features Stc, and the function features Func. Next, three captured features are incorporated into the alignment

features (Fstc−func, Fseq−stc and Fseq−func) by ALAN modules. Finally, the fusion and output layers merge the outputs of ALAN to calculate the propensity score Pi
of disorder molecular function for each residue.

https://doi.org/10.1371/journal.pcbi.1010668.g001
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where l is the length of motif, ai,j represents the frequency of standard amino acid. Then the

function features Func can be calculated by:

Func ¼ relu½ConvðZL�20;MÞ þ bfunc� ð5Þ

where ZL×20 is the one-hot encoding matrix of protein sequence, M is the combination of 164

motif convolution kernel matrix, and bfunc is trainable variable.

Attention based language model alignment

The primary sequences encode the disordered states of IDP/IDRs, which in turn determine func-

tions. The potential correlations among sequence, structure and function are essential information

for the protein representations. In this study, attention alignment models the correlations between

protein features by calculating the attention alignment weights on two kinds of features (see Fig

1D). For example, given the sequence features Seq, structure features Stc, and function features

Func, the attention-alignment weights αseq−stc, αseq−func and αstc−func are calculated by:

αseq� stc ¼ softmaxðH1

seqSeq�H1

stcStcÞ ð6Þ

αseq� func ¼ softmaxðH1

seqSeq�H1

funcFuncÞ ð7Þ

αstc� func ¼ softmaxðH1

stcStc�H1

funcFuncÞ ð8Þ

where H1

seq, H
1

stc and H1

func are the trainable weight variables. The attention-alignment weights

between two kinds of features reflect matching patterns between different property aspects of the

proteins. Weighted by the attention-alignment weights, the sequence features Seq, structure fea-

tures Stc and function features Func captured by three language models can be enhanced and

fused into the complementary features Fseq−stc, Fseq−func and Fstc−func:

Fseq� stc ¼ ConcatðH2

seqα
T
seq� stcSeq

0;H2

stcαseq� stcStc
0Þ ð9Þ

Fseq� func ¼ ConcatðH2

seqα
T
seq� funcSeq

0;H2

funcαseq� funcFunc
0Þ ð10Þ

Fstc� func ¼ ConcatðH2

funcα
T
stc� funcStc

0;H2

stcαstc� funcFunc
0Þ ð11Þ

where H2

seq H
2

stc and H2

func are the trainable variables, Seq0, Stc0 and Func0 indicate the transformed

feature matrix of Seq, Stc and Func, respectively. The softmax is the activation function. The com-

plementary features Fseq−stc, Fseq−func and Fstc−func learn the correlations among sequence, structure,

and functional properties of proteins, and these features are fed into the cubic fusion and output

layers for calculating the predictive propensity score.

Cubic fusion and output layer

The cubic fusion module of PCLM merges the three alignment complementary features into

latent cubic space, and obtains a joint representation matrix Fseq−stc−func of protein sequences:

Fseq� stc� func ¼WxFseq� stc þWyFseq� func þWzFstc� func ð12Þ

Fseq� stc� func ¼ ½F1; � � � ; FL� 1; FL�; Fseq� stc� func 2 RL�n ð13Þ

where L denotes the length of the input sequence, n denotes the dimension of features, Wx,
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Wy, and Wz are the trainable weighted variables. Each vector Fi in the representation matrix

represents the features of each residue in the sequence. The fully connected (FC) layer captures

the global and local correlations between residues in the sequence so as to calculate the pro-

pensity score Pi for each residue:

P½P1; . . . ; Pi; . . . ; PL� ¼ SigmoidðWfFseq� stc� func þ bf Þ ð14Þ

where Wf and bf represent the weighted and bias variables, respectively.

Pre-training of protein cubic language model

The transfer learning involves a model training strategy, which transfers the knowledge

learned from the source domain to a new and different target domain. It is especially effective

when the target domain has insufficient training data [38]. In this study, although we have rel-

atively limited number of disorder functional annotation regions for PCLM model training,

the number of intrinsically disordered regions (IDRs) is sufficient. The large number of IDRs

will overcome the problem that model cannot be fully trained with insufficient disorder func-

tional data, and the generic disordered features learned from IDR dataset can be transferred to

facilitate the disorder molecular function prediction. Therefore, in this study, we employed the

widely used IDP/IDR prediction benchmark dataset [40] as the pre-training dataset to pre-

train PCLM model for predicting disordered regions in protein. To avoid data redundancy, we

excluded sequences with>25% sequence similarity to the disordered functional benchmark

datasets, and obtained 2639 sequences with 38134 IDRs and 1079 sequences with 16403 IDRs

for model pre-training and validation, respectively (S2 Data). The binary cross-entropy loss

function was used to calculate the loss score for model parameters optimizing [50]:

loss ¼ �
X

i
½yilog pi þ ð1 � yiÞlog ð1 � piÞ� ð15Þ

where pi denotes the predictive score for residue Ri being disordered calculated by Eq 14, and

yi represents the actual label of disordered residue. The Adam optimizer [51] with a learning

rate of 0.001 was employed to optimize the model parameters, and the model with the mini-

mized loss score on the IDR validation set was saved as the pre-trained model.

Fine-tuning PCLM for predicting disordered molecular functions

In the fine-tuning stage, the pre-trained PCLM model was fine-tuned with functional specific

data for predicting the disordered molecular functions in protein. Because of the differences

between the five molecular functions, we separately fine-tuned PCLM with assembler, chaper-

one, display site, effector, and scavenger functional annotations in the DMF benchmark data-

set, leading to five independent predicting PCLM models (see Fig 2). In the DMFpred

Fig 2. The functional specific fine-tuning of protein cubic language model (PCLM). The pretrained PCLM model was separately fine-tuned with five

categories of disordered molecular functions into five corresponding PCLM1-5 models for predicting assembler (A) chaperone (B) display site (C) effector (D)

and scavenger (E) functional residues from the input sequence. Prob1, Prob2, Prob3, Prob4, and Prob5 represent the predicted propensity scores for the five

functions of input sequence, respectively.

https://doi.org/10.1371/journal.pcbi.1010668.g002
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predictor, the five functional specific fine-tuned PCLM models work in parallel to produce

five disordered molecular functional predictions for each residue in the input proteins. Here,

we used the same loss function and optimizer as the ones used in the pre-training stage, but

different learning rates to fine-tune the model parameters for each function. Parameters of all

layers in PCLM were fine-tuned for achieving better performance, and this strategy has been

adopted by many transfer learning based studies [52,53]. More detailed hyper-parameters for

DMFpred are given in S1 Table.

Evaluation criteria

DMFpred generates two forms of outputs: the real-valued propensity score (the likelihood of resi-

due with the given function) and binary results (residue with or without the given function).

Binary predictions were converted from the propensities: one residue is predicted as functional

residue if its propensity score is greater than a given threshold. Otherwise, it is predicted as the

non-functional residue. The receiver operating characteristic curve (ROC) and AUC value (area

under ROC curve) were utilized to evaluate the predictive performance of the real-valued propen-

sity prediction. Sensitivity (Sn), specificity (Sp) and accuracy (ACC) were used for the evaluation

of the binary results. Since the dataset is imbalanced, i.e. there are many more non-functional resi-

dues than the functional residues. Therefore, two metrics, balanced accuracy (BACC) and the

Matthews Correlation Coefficient (MCC) were used to measure the predictive performance.

Disordered residues interact with multiple partners with more than one functions are called

the multi-functional residues. The residue-level functional prediction of these multi-functional

residues can be treated as a multi-label learning task, and five example-based metrics were uti-

lized to evaluate the performance of DMFpred on multi-functional residues [54]:

Hammingloss ¼
1

p

Xp

i¼1

1

q
jhðxiÞDYij

Accuracyexam ¼
1

p

Xp

i¼1

jhðxiÞ \ Yij

jhðxiÞ [ Yij

Precisionexam ¼
1

p

Xp

i¼1

jhðxiÞ \ Yij

jhðxiÞj

Recallexam ¼
1

p

Xp

i¼1

jhðxiÞ \ Yij

jYij

F1exam ¼
2� Precisionexam � Recallexam
Precisionexam þ Recallexam

ð16Þ

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

where p indicates the total number of samples, q indicates the number of labels, h(xi) is the pre-

dicted label set and Yi is the true label set. Δ represents the symmetric difference between two

sets.

Results and discussion

Functional specific fine-tuning achieves better performance

In order to investigate the differences among five categories of molecular functions, we per-

formed the cross-functional validation on the benchmark datasets. To avoid the overestima-

tion caused by the multi-functional residues, sequences that only belonging to one class

function in the training and validation sets are used to fine-tune and test the PCLM model.

The AUC evaluation results are shown in Fig 3. From Fig 3, we can see that model fine-tuned

and tested on the same function achieves the best performance, while cross-functional
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predictors achieve lower performances. These predictive results suggest that specialized pre-

dictors are required for each functional category, and function-specific fine-tuning is the key

to achieve better predictive performance of each disordered molecular function.

Ablation analysis of protein cubic language models

To verify the contribution of three language models to DMFpred, we performed an ablation

analysis. The PCLM models with different combinations of three language models were indi-

vidually fine-tuned on five molecular function training data, and the corresponding AUC val-

ues for each function evaluated on validation dataset are shown in Fig 4. We can see that (i)

predictors with the combination of three language models consistently achieve the best perfor-

mances for all five functions; (ii) the prediction performance of predictor decreased by drop-

ping the structural language model. Predictors with only sequence language model performed

the worst. These results are not surprising because three language models capture the

sequence, structural, and functional features of proteins, and these three features are comple-

mentary, and contribute to the functional prediction. As a result, predictors incorporating the

three protein language models achieve the best performance.

Attention based language model alignment learns the correlation patterns

In order to investigate the performance improvement of attention-based language model

alignment (ALAN) to the proposed predictor. We compared the performance of predictors for

Fig 3. Cross-functional validation results. Functions on the x-axis were used to fine-tune PCLM model, and

functions on the y-axis were used for model validation.

https://doi.org/10.1371/journal.pcbi.1010668.g003

PLOS COMPUTATIONAL BIOLOGY DMFpred

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010668 October 31, 2022 9 / 18

https://doi.org/10.1371/journal.pcbi.1010668.g003
https://doi.org/10.1371/journal.pcbi.1010668


predicting five disordered molecular functions by using PCLM model with and without the

ALAN module. The PCLM model without ALAN directly feed the features captured by the three

language models to the fusion and output layers (see Fig 1) to calculate prediction results. The

two types of models were independently fine-tuned with five different functions, and the results

evaluated on the validation dataset are shown in Fig 5. From this figure, we can see that predictors

with ALAN consistently outperform the predictors without ALAN on five classes of functions,

demonstrating the effectiveness of the ALAN module. Furthermore, we note that the predictor for

Scavenger function with an ALAN achieves better performance in terms of AUC value. These

results may be caused by the fact that the complementary features captured by the ALAN module

supplemented the inadequate sequence, structure and functional features learned from limited

annotated sequences. This improvement is especially manifested in the Scavenger function with a

relatively small number of annotated sequences. Benefitted from the features captured by ALAN,

predictor can make more accurate prediction leading to better performance.

To further analyse the information learned by the ALAN module, we visualized the atten-

tion-alignment weights between sequence and structure features. Two protein examples (Dis-

Prot ID: DP02925 and DP00284) selected from the independent test set (TEST-1) were

visualized in Fig 6, from which we can see that the specific segments in the sequences map

with the highest attention weights, and these sequence segments corresponding to the experi-

mentally determined functional motifs searched from the ELM database [49] by FIMO tools

(https://meme-suite.org/meme/tools/fimo). These results indicate that the ALAN can capture

critical correlation patterns by modelling the relationship between different protein features.

This prior biological knowledge captured by ALAN complements the original sequence, struc-

ture and functional attributes of proteins, providing a powerful protein representation.

Model pre-training facilitates feature correlation

In order to explore the contribution of model pre-trained with disordered proteins, we com-

pare the predictive power of features extracted between models directly trained with molecular

functional sequences (DT in Fig 7) and the fine-tuned model based on pre-training with IDRs

(PT in Fig 7). Following previous studies [23, 24], the absolute point-biserial correlation

Fig 4. The predictive results of PCLM model in DMFpred with different language models. Seq represents the

PCLM with only sequence language model, Seq-Func denotes the PCLM with the combination of sequence language

model and function language model, and Seq-Func-Stc stands for the PCLM model, which is the combination of

sequence language model, function language model and structure language model. The AUC values were calculated on

the validation data set.

https://doi.org/10.1371/journal.pcbi.1010668.g004
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(PBC) score is used to quantify the feature predictive qualities, which reflects the correlation

between numeric and binary variables:

PBC ¼
m1 � m0

sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 � n1

n� n

r

ð17Þ

where n0 and n1 indicate the number of functional and non-functional residues, m0 and m1

indicate the average values of features of functional and non-functional residues, sn is the stan-

dard deviation of all values of features, and n is the total number of residues. The PBC score

results for five functions on the TEST-1 independent test set are shown in Fig 7. From this fig-

ure, we observe that the features captured by the pre-trained model are consistently outper-

formed that directly trained model on all five functions. This is because model pre-trained

with IDR sequences captures more disordered features than directly trained on limited func-

tional sequences. As the functional residues are the sub-set of disordered regions, the common

disordered features captured by pre-trained model facilitate to distinguish disordered func-

tional residues from ordered residues, leading to a robust predictive quality.

Overall results

To our best knowledge, DMFpred is currently the only predictor for predicting the five general

molecular functions of disordered proteins. There are two forms of outputs of DMFpred: real-

valued propensity results and binary results. We used the ROC curve and AUC value for evalu-

ating the real-valued predictive results. Sn, Sp, ACC and two metrics for imbalanced datasets

Fig 5. The predictive results (AUC values) of DMFpred with and without attention-based language model alignment. The PCLM represents the entire

PCLM predictive model, while the Without attention denotes the PCLM model without the ALAN module. Both two models were independently fine-tuned

and evaluated for the five molecular functions on the training dataset and validation dataset, respectively.

https://doi.org/10.1371/journal.pcbi.1010668.g005
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(BACC and MCC) were used to assess binary results. The evaluation results on the TEST-1

independent test set are shown in Table 2 (the ROC curve and thresholds settings see S2 Fig,

S2 Table). From Table 2, we can see that DMFpred provides accurate predictive performance

for all five functional categories in terms of AUC values. The Sn, Sp and ACC results show the

ability of DMFpred to correctly predict functional and non-functional residues, demonstrating

the predictive performance.

In order to further evaluate the predictive performance of the predictor, we constructed a

new independent test set (TEST-2) with the sequences newly added into the DisProt database

during July 2021 to June 2022 by following the same dataset collection protocols. TEST-2 con-

tains 47 proteins with 5780 functional residues, including 3753 assemblers, 218 chaperones,

855 display sites, 682 effectors and 272 scavengers. The prediction results of DMFpred on

TEST-2 are shown in S3 Table. From these results, we can see that the predictive results

achieved by DMFpred on the new independent test set TEST-2 are highly comparable with

those on the independent test dataset TEST-1, indicating that the performance of DMFpred

predictor is stable.

Predictive results on the multi-functional residues

The disordered residues interacting with multiple partners with more than one functions are

called multi-functional residues. In order to investigate the performance of DMFpred

Fig 6. The attention alignment weight visualizations.

https://doi.org/10.1371/journal.pcbi.1010668.g006
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predictor for predicting these multi-functional residues, we collected all the residues with at

least two functional annotations from TEST-1 dataset, and obtained a total number of 1352

multi-functional residues for performance evaluation. We compare DMFpred with a random

baseline predictor generating the multi-functional labels for each residue with a probability of

0.5, and the evaluation results are shown in Table 3. From this table, we can see the followings:

(i) compared with the baseline predictor, DMFpred achieves lower Hamming loss, but higher

accuracy, which indicates DMFpred can accurately predict more multi-functional residues

than the baseline predictor. (ii) DMFpred achieves higher performance than the baseline

method in terms of precision, recall rate and F1 value. These results are not surprising because

DMFpred was fine-tuned with function-specific labels on the benchmark dataset so as to learn

the discriminative features of each function. Benefitting from the accurate prediction for five

functions, DMFpred achieves better performance for predicting multi-functional residues.

Fig 7. Absolute PBC score distributions on five functions. DT represents the PCLM models directly trained with molecular functional data, and PT

represents the PCLM models pre-trained with disordered proteins.

https://doi.org/10.1371/journal.pcbi.1010668.g007

Table 2. The predictive performance of DMFpred for five categories of molecular functions on TEST-1 independent test set.

Function AUC Sn Sp ACC BACC MCC

Assembler 0.682 0.428 0.804 0.778 0.616 0.143

Chaperone 0.716 0.379 0.919 0.912 0.650 0.120

Display-site 0.702 0.291 0.962 0.952 0.627 0.155

Effector 0.749 0.663 0.741 0.736 0.703 0.215

Scavenger 0.779 0.999 0.520 0.524 0.761 0.095

https://doi.org/10.1371/journal.pcbi.1010668.t002

Table 3. The predictive results for multi-functional residues on TEST-1 independent test set.

Predictor Hamming loss Accuracyexam Precisionexam Recallexam F1exam

DMFpred 0.413 0.404 0.504 0.671 0.576

Baseline 0.508 0.285 0.409 0.485 0.444

https://doi.org/10.1371/journal.pcbi.1010668.t003
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Conclusion

Intrinsically disordered proteins/regions perform various molecular functions in living organ-

isms. These functions of IDP/IDRs can be summarized as six general categories, including

entropic chains, assembler, scavenger, effector, display site and chaperone. Motivated by the

growing numbers of the annotated disordered sequences and the need to expand the coverage

of disordered protein function predictors, we introduce the disordered molecular functional

predictor called DMFpred, covering five important categories: disordered assembler, scaven-

ger, effector, display site and chaperone. It has the following advantages: 1) DMFpred

employed the protein cubic language model (PCLM) that incorporates three protein language

models for characterizing sequence, structure, and functional attributes of proteins. PCLM

employed attention-based language model alignment to capture the sequence-structure-func-

tion correlation and learn a joint representation of proteins. 2) Benefited from the pre-training

and function-specific fine-tuning of PCLM, DMFpred captures discriminative features for five

functional categories prediction. 3) The evaluation results on five categories of functional and

multi-functional residues suggest that DMFpred provides high quality predictions. 4) The

web-server of DMFpred is established and can be freely accessed from http://bliulab.net/

DMFpred/, which will be helpful to researchers working on the related fields.
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