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Preterm infants are especially susceptible to late-onset sepsis that is often due to Gram-positive bacterial infections resulting
in substantial morbidity and mortality. Herein, we will describe neonatal innate immunity to Staphylococcus spp. comparing
differences between preterm and full-term newborns with adults. Newborn innate immunity is distinct demonstrating diminished
skin integrity, impaired Thl-polarizing responses, low complement levels, and diminished expression of plasma antimicrobial
proteins and peptides, especially in preterm newborns. Characterization of distinct aspects of the neonatal immune response is
defining novel approaches to enhance host defense to prevent and/or treat staphylococcal infection in this vulnerable population.

1. Introduction

Over 30% of deaths in children under the age of 5 occur
within the first 4 weeks of life [1]. In this context, under-
standing the immunologic mechanisms underlying neona-
tal susceptibility is essential for the development of novel
approaches to prevent and/or treat bacterial infection. New-
borns in neonatal intensive care units (NICUs) are at risk
of infection. An improvement in practices regarding hand
washing, nutrition, skin, and respiratory care decreases
Staphylococcus spp. infections [2, 3]. Such NICU quality
improvements also significantly decrease costs per patient
[4]. Antibiotics are the primary treatment for staphylococcal
infections, but the use of these agents is also associated with
resistance and alteration of the host microbial flora. Herein,
we review innate host defense against Staphylococcus spp.
with an emphasis on S. epidermidis (SE) and S. aureus (SA).
Accordingly, we searched PubMed, a computer-based litera-
ture search engine, using the following terms: “newborn” OR
“neonate” OR “neonatal” AND “Staphylococcus” AND/OR
“sepsis” OR “innate” OR “cytokine” OR “Toll-like receptor”
OR “pattern recognition receptor” OR “antimicrobial pep-
tide” OR “neutrophil” OR “monocyte” We then organized

the resulting references grouping them into detector func-
tion, effector function, and translational efforts.

2. Neonatal Staphylococci Infections

SE colonizes newborns [5] and remains a part of the human
normal flora [6, 7]. SE-induced sepsis in preterm new-
borns has been associated with an increased risk of adverse
common outcomes, prolonged hospital stay, and increased
costs [8-17]. SE is the most frequently isolated strain of
coagulase-negative staphylococci (CoNS) and is identified
diagnostically from SA because of its inability to produce
coagulase [18, 19]. SE forms a biofilm on catheters and
commonly infects immunocompromised patients [6, 20-22].

Invasive infections due to extracellular pathogens such as
CoNS are largely restricted to premature infants. At the Uni-
versity Hospital of Patras in Greece, between 2006 and 2007,
8.5% of all NICU admissions had late-onset CoNS sepsis. SE
was the most prevalent organism found, and biofilm produc-
tion was identified as a determinant for persistent infection
[23]. The majority of late-onset sepses (defined as 1 or more
positive blood cultures obtained after 72h of life) in very
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low birth weight (VLBW) newborns were caused by Gram-
positive organisms [19, 24-26]. CoNS were responsible for
48% of infections in a study that examined over 6000 NICU
infants in the USA [24]. Risk factors identified included low
gestational age, low birth weight, an increased duration of
ventilator support, central vascular catheter, and prolonged
parenteral nutrition [24]. Close to half of the newborns
that were <25 weeks of gestation developed late-onset sepsis
and had a longer length of hospital stay [24]. Although
CoNS infections often rapidly resolve with a few days of
intravenous antibiotics, they are responsible for significant
healthcare costs and also induce inflammatory responses that
can sometimes result in long-term harm to the newborn,
including potential cerebral injury [8-13, 27].

SA is the second leading cause of late onset sepsis in
neonates [24]. SA leads to more prolonged bacteremia, dis-
semination to additional anatomic sites (e.g., osteomyelitis),
and substantially more sepsis-related deaths than CoNS
infections [28, 29]. SA-associated neonatal sepsis is associated
with increased antibiotic resistance [28, 30, 31]. Newborns are
often colonized with SA from their mothers via horizontal
rather than a vertical transfer [32]. Accordingly, a study exam-
ining over 400 mothers admitted for preterm labor and the
newborns subsequently admitted to the NICU in the USA
found that vertical transmission of methicillin-resistant SA
(MRSA) at the time of delivery was unlikely [33]. These find-
ings suggested that there was a horizontal transfer of MRSA
from health care workers or from parents while taking care of
their infants [33]. Indeed, community-based MRSA strains
have been identified in some NICU infections in the USA
[28].

3. Innate Immune System in Neonates

Given the “in-born” nature of the innate immune response, it
has been surprising that the innate immune response actually
develops with age [34]. As has been recently reviewed, the
innate immune response in neonates is distinct from that
of older individuals [35, 36]. Multiple cells mediate innate
immune responses, including skin and mucosal epithelia,
neutrophils, monocytes/macrophages, and dendritic cells
[35, 36]. The innate immune system also influences the
adaptive immune response, and therefore understanding
neonatal innate immunity may also inform development of
age-specific vaccines.

3.1 Soluble Factors That Modulate Neonatal Immune
Responses. Newborn plasma contains multiple factors that
modulate the immune response [37]. Neonatal cord blood
plasma has significantly more adenosine, an endogenous
purine metabolite that inhibits Toll-like receptor (TLR)-
mediated Thl responses, than adult plasma [38]. The neonatal
adenosine system inhibits TLR2-induced tumor necrosis
factor (TNF) production but not interleukin (IL)-6 [38].
Serum of human newborns in the first week of life demon-
strates a higher basal IL-6/TNF ratio than that of adults [39].
Moreover, when compared to monocytes of adults, neonatal
cord blood monocytes produce a high ratio of IL-6 to TNF in
response to TLR stimulation [39]. IL-6 can impair neutrophil
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production, migration, and function during sepsis [39-42]
possibly contributing to the susceptibility of newborns to
bacterial infection.

3.2. Antimicrobial Proteins and Peptides. A key mechanism
by which the innate immune systems kill microbes and
neutralize microbial toxins is via expression and mobilization
of antimicrobial proteins and peptides (APPs) [43-45]. APPs
are typically cationic molecules that have membrane-active
effects on bacteria. Some APPs have additional function such
as lactoferrin, which binds iron, a key nutrient for many
bacteria [46], and lysozyme, which has enzymatic activity by
muramidase that damages bacterial cell walls [47]. Defens-
ins are small cationic antimicrobial peptides produced by
leukocytes and epithelial cells in humans [48, 49]. Of note,
preterm human neonates demonstrate deficient expression of
plasma APPs that may contribute to the ability of bacteria to
proliferate rapidly in preterm bloodstream. Moreover, new-
born neutrophils demonstrate impairment in production of
nucleic acid-based neutrophil extracellular traps (NETs) that
serve as scaffolds for APPs and are important for host defense
[50]. Overall, reduced plasma levels of complement and APPs
as well as impaired deployment of APPs on NETs may, in
part, explain why neonates are more susceptible to infection
[51, 52].

3.3. Quantitative Differences in Phagocytes. Premature neo-
nates admitted to the NICU have a relatively high frequency
of neutropenia that can reach up to 8% [53]. In full-
term newborns, impaired function of phagocytes has been
described at birth [54]. Newborn neutrophils demonstrate
impaired chemotaxis, phagocytosis, and impaired respiratory
burst [54-57] and an impaired ability to form extracellular
traps important for capture and killing extracellular bacteria
[50].

3.4. Qualitative Differences in Leukocytes. The neonatal
immune response is skewed towards Th2 and anti-inflam-
matory cytokine production. This may be important for
protection of the fetus in utero and to avoid excessive inflam-
mation during colonization with normal flora during the first
days of life. Preterm newborns demonstrate mostly an anti-
inflammatory response characterized by high IL-10 produc-
tion while production of other cytokines is relatively low [58].

Inhibitory immune receptors antagonize cell-activating
signals. Several of these inhibitory immune receptors func-
tion through immunoreceptor tyrosine-based inhibitory
motifs (ITIMs). Newborn immune cells express a distinct
pattern of inhibitory receptors compared to adult immune
cells. Cord blood and I-month-old newborn neutrophils
express higher levels of the inhibitory receptors, leukocyte-
associated immunoglobulin- (Ig-) like receptor-1 (LAIR-1),
and siglec-9 than adults [59]. However, cord blood mono-
cytes exhibited decreased expression of the immune receptor
expressed on myeloid cells (IREM)-1, and 1-month-old new-
born monocytes expressed lower levels of LAIR-1 compared
to adults [59]. These observations suggest that neonatal
neutrophils and monocytes are at a different basal set point
from adult leukocytes.
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4. Toll-Like Receptors (TLRs)

TLRs are pattern-recognition receptors (PRRs) of the innate
immune system essential for early recognition of pathogen
and also guide the adaptive immune response. There have
been 10 TLRs identified in humans that signal through
adaptor molecules such as myeloid differentiation factor-88
(MyD88) to activate transcription of immune mediators such
as cytokines that direct the response to infection [60, 61].
While basal expression of TLRs is similar on full-term
human newborn and adult monocytes [62-64], it can change
with gestational age. Extremely low birth weight newborns
(ELBW), <28 weeks of gestation, demonstrated lower expres-
sion of innate immune receptors TLR2, TLR4, CD14, and
MD-2 on neutrophils [65]. Monocyte TLR4 mRNA and pro-
tein expression increase with gestational age [66]. In contrast,
TLR2 expression is constitutively expressed on monocytes
across gestational age and is therefore at similar levels in
monocytes of preterms, full-term neonates, and adult mono-
cytes [64]. Interestingly, Gram-positive bacteremia appar-
ently induces increases in neonatal peripheral blood mono-
cyte and granulocyte TLR2 expression in infected human
newborns [67, 68].

Protein expression of MyD88, a cytosolic adaptor mole-
cule essential TLR signaling, was decreased in newborn cord
blood neutrophils [69] and monocytes [70] compared to
those of adults. MyD88 mRNA levels increase in preterm
infants cord blood mononuclear cells along gestational age.
Preterm infants demonstrate lower MyD88 mRNA levels, but
term infants are comparable to adults [64]; see Figure 1. Thus,
there may be an inherent defect in newborns ability to make
cytokine in response to infection due to a deficiency in this
important signaling molecule.

A longitudinal study that examined TLR responses of
individuals from birth to 2 years of age suggests that there
is not a linear progression from an “immature” to “mature”
innate immune response from newborns to adults [71]. The
percentage of blood monocytes was higher in adults and new-
borns than 1- and 2-year-olds [71]. 2-year-olds demonstrated
greater PAM;CSK,-(TLR2/1 agonist-) induced levels of intra-
cellular cytokines than adults [71]. There was a higher per-
centage of 1- and 2-year-old classical (c)DCs making cytokine
than adult ¢cDCs [71]. Cytokines secreted from monocytes
increased from birth to 2 years old for TNF and IL-1f; how-
ever, IL-6, IL-23, and IL-10 secretion decreased [71]. Preterm
infants cord blood mononuclear cells have a significant
defect in IL-12/IL-23p40 production in comparison to term
infants after stimulation with TLR2/1 agonist PAM;CSK,,
TLR2/6 agonist Fibroblast-stimulating lipopeptide (FSL), and
TLR4 agonist LPS [58].

Micro- (mi-)RNAs involved in inhibiting the TLR4
signaling pathway are increased in newborn monocytes
compared to adults and may contribute to decreased cytokine
production [72]. Further investigation into the role miRNAs
play into TLR2-signaling is warranted to gain further under-
standing of the potential role of miRNA in the neonatal
innate immune response. Further research into other pattern-
recognition receptors such as the NOD-like receptors and

regulation of those receptors is warranted in the newborn to
further understand neonatal staphylococcal-induced sepsis.

5. Staphylococcal Infections and Neonatal
Host Immune Responses

TLR2 mediates innate immune responses to SE and is
essential for clearance of SE in mice [73]. TLR2 also mediates
the innate immune response to SA infection [74, 75]. Pre-
treatment of microglial cells with a TLR2 agonist decreased
the inflammatory response to S. aureus but enhanced the
microglial phagocytosis of this bacterium. Thus, TLR-mod-
ulation may be a useful treatment strategy to minimize
inflammation in the eye [76].

When interpreting the literature of in vitro responses
to staphylococci it is important to note that the immune
response varies accordingly to whether the bacteria are
heat-killed, ethanol-killed, or live [77]. Live SE induced
significantly higher levels of cytokines compared to killed SE,
including robust activation of the inflammasome for IL-18
production, induction of type I interferon production,
nuclear factor (NF)xB, and signal transducers and activators
of transcription (STAT)1 activation. In contrast, killed SE
activated NF«B but did not activate the other innate immune
pathways [77].

In a novel model of intrajugular infection in mice less
than 24 hours of life, newborn mice demonstrate impaired
weight gain when injected intravenously with SE compared
to saline-injected controls [78]. Similar to the pattern noted
in the peripheral blood mononuclear cells of preterm human
newborns during Gram-positive bacteremia [67, 68], TLR2
and MyD88 mRNA levels in the liver were significantly
increased by injection of SE that induced inocula-dependent
serum IL-6 and TNF concentrations [78].

SE-induced cytokine production from human neonatal
mononuclear cells (MCs) in vitro is dependent on gestational
age [79-82]. Monocytes of preterm newborns demonstrate
reduced IL-1f3, IL-6, IL-8, and TNF production in response
to SE despite adult-level TLR2 expression [83]. Impaired TNF
production may contribute to impaired neutrophil responses
to Staphylococcus spp. as TNF activates neutrophils. SE-
induced phosphorylation of cell-signaling molecules (e.g.,
phospho-p65, phospho-p38 and phospho-JNK) was similar
between newborns and adults [83]. In contrast, treatment
of preterm neonatal monocytes demonstrated decreased SA
lipoteichoic-acid- (LTA-) induced/TLR-mediated phospho-
rylation of p38 and ERK in whole blood [64]. LTA-induced
production of IL-1f3, IL-6, and IL-8 increased with gestational
age [64].

Staphylococci spp. evade clearance by the immune system in
part by generating adenosine, an endogenous purine metabo-
lite that acts via cognate seven-transmembrane receptors
to induce immunomodulatory intracellular cyclic adenosine
monophosphate (cAMP; Figure 1), and therefore modulate
the immune response [84]. Among the effects of adenosine
is to boost production of IL-6, which can inhibit neutrophil
migration [41, 42, 85-88] while inhibiting production of
TNF important to neutrophil activation [38, 89-91]. Neonatal



Clinical and Developmental Immunology

O @) Staphylococa

TLR1/6
TLR2 \
Adenosine
receptor

MyD88

Plasma

o

Adenosine

APP Respiratory burg

phil

FIGURE 1: Sensor and effector function of neonatal innate immune system to Staphylococci spp. (1) Monocytes detect Staphylococci through
TLR2 and (2) result in TLR-mediated production of proinflammatory cytokines such as TNE and (3) TNF activates neutrophils to produce
oxygen radicals and release APPs. (4) Both endogenous plasma and Staphylococcus-derived adenosine inhibit pro-inflammatory innate
immune responses. Newborn monocytes are deficient in MyD88, activation of MAP kinases, and in TLR-mediated TNF but do produce
robust amounts of IL-6, a proresolution cytokine that inhibits neutrophil migration. Overall, this pattern of response impairs neutrophil
activation and migration and secretion of APPs. Deficiencies in neonatal responses to staphylococci are depicted by smaller font size, whereas
agents that are elevated in newborns are indicated with a larger and bolded font.

mononuclear cells are particularly sensitive to the effects
of adenosine [38]. Accordingly, this adenosine generating
effect of Staphylococci spp. may be particularly effective at
disarming neonatal innate defense.

Opsonophagocytic Mechanisms. Human newborn and adult
monocytes demonstrate similar phagocytic capacity and
intracellular killing of SE [83]. However, preterm neonatal
neutrophils demonstrate impaired SE-induced neutrophil
oxidative burst compared to term newborns [57]. The plasma
of premature neonates, especially extremely low birth weight
(ELBW) newborns, had a lower opsonophagocytic capacity
than term neonates and adults for SA [65].

The impact of these differences on the innate immune
responses depending on age to SE and SA is that lower
gestational age has a significant impact on the susceptibility
of the individual to infection (Table 1). Since neonates have
impaired sepsis-induced cytokine production, replenishing
cytokines or APPs in neonates may be particularly helpful
in the treatment of the preterm newborn. Knowing the
deficiencies in the innate immune response may provide
specific avenues for developing new treatments.

6. Potential Therapeutics

Although SE infections are often cleared from the newborn
bloodstream within a few days of intravenous antibiotics (e.g.,
vancomycin), these infections can recur and are associated
with substantial morbidity and healthcare costs [92-94].
Moreover, vancomycin resistance may be emerging [95].
Accordingly, additional preventative and therapeutic strate-
gies are needed.

Injection of the S. simulans-derived metalloendopep-
tidase lysostaphin that cleaves crosslinking pentaglycine
bridges in staphylococcal cell walls to MRSA-infected 2-day-
old mice reduced bacterial load, improved neonatal weight
gain, and enhanced survival similarly to vancomycin [96].

Another approach to addressing staphylococcal infec-
tion is to boost host defense by enhancing the quality of
phagocytic responses in early life. In a study examining
leukocytes from extremely premature infants (24-32 weeks
of gestation), treating their leukocytes ex vivo with inter-
feron (IFN)-y reversed their innate immune deficiency [65].
Plasma from whole blood of ELBW newborns treated with
IFN-y significantly increased the phagocytosis of SA and
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TaBLE 1: Differences in the innate immune response between
preterm newborns, full-term newborns, infants, and adults in
response to SE and SA.

Preterm Full-term

Adults
newborns newborns

Monocyte TLR2 expression + + +
Monocyte MyD88 expression ? + ++
Ph . N

osphorxlat1on of signaling . . .
molecules in response to G+
Thl cytokine expression + ++ +++
Neutrophil oxidative burst + ++ ++
Plasma opsonophagocytic capacity + ++ ++
Plasma antimicrobial proteins and

+ ++ +++

peptides

SE by HL-60 cells [65]. This suggests that further studies
are warranted to explore any potential therapeutic benefits
for newborns. Administration of granulocyte-macrophage
colony-stimulating factor (GM-CSF) to human newborns
increased neutrophil production but had no impact on sepsis
[97]. Treating septic very low birth weight infants with granu-
locyte (G)-CSF increased neutrophil phagocytic activity and
oxidative burst but had no reported impact on sepsis due to
the low number of sepsis patients in the study [98].

Since newborns have an increased susceptibility to sepsis,
treating newborns with antibodies specific for SE and/or
SA was examined. However, giving immunoglobulin intra-
venously from donors that had high titers of antibodies
to SE and/or SA failed to significantly impact sepsis in
preterm newborns [99-101]. However, the authors report a
trend towards a decreased incidence ratio for SA infection
in patients treated with antistaphylococcal antibodies sug-
gesting that a higher-powered study would be required to
examine efficacy more accurately [101].

7. Future Directions/Prospects

Many studies have documented late-onset sepsis in neonates
due to staphylococcal infection. Current knowledge of the
distinct immune system of preterm newborns provides at
least three approaches to prevent and/or treat Staphylococcus
spp. infections.

(1) PRR Activation to Enhance Innate Antibacterial
Defense. Activation of PRRs can change the set point
of the innate immune system resulting in enhanced
host defense in response to subsequent challenge
with a range of pathogens. This phenomenon is a
form of innate memory, that is, demonstrable in
many life forms, including plants and insects and has
been called “trained immunity” [102]. For example,
intraperitoneal administration of a TLR agonist 24
hours prior to a polymicrobial peritonitis challenge
markedly enhances neonatal defense and survival
after subsequent polymicrobial sepsis by boosting
bacteria-induced cytokine production and phago-
cytic function [103].

(2) Use of TLR Antagonists as Adjunctive Anti-infective
Therapy. In contrast to preexposure to TLR ago-
nists to boost innate defense prior to an infection,
a different strategy may be beneficial during an
established infection. Antibiotic-killed bacteria are
no longer viable but do continue to activate PRRs
thereby inducing inflammation that can be harmful
to multiple organ systems, including the brain [27].
Accordingly, adjunctive treatment with a TLR antag-
onist together with conventional antibiotics may help
resolve infection-associated inflammation and reduce
consequent morbidity of infection as has been
demonstrated in vivo in other models and clinical
settings [104, 105].

(3) Use of APPs as Novel Anti-infective Agents. APPs
with activity against Gram-positive bacteria include
defensins, cathelicidins, lactoferrin and secretory
phospholipase A2 [106, 107]. Biopharmaceutical
development of APPs as novel anti-infective agents
is proceeding, and replenishing deficient levels in
preterm newborns either by direct infusion of APPs
or by administration of agents that induce their
expression may represent a promising approach to
reduce infection.

Opverall, further research on unique aspects of the neona-
tal host/staphylococcal pathogen interaction is warranted
to assess the safety and efficacy of the aforementioned
approaches and to identify new ones.

8. Discussion

This review has summarized recent studies of the innate
immune response in preterm and full-term neonates com-
pared to adults in response to SE or SA infection. We
highlight important progress in defining the distinct innate
immune response of newborns to Staphylococci spp. As there
are currently limited strategies to address disease caused by
these pathogens, it is hoped that recent progress in defining
relevant host defense and pathogenic factors [108, 109] will
inform new approaches to prevent and treat late onset sepsis
due to Staphylococci spp.
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