Grund-Groschke et al. Cell Communication and Signaling
https://doi.org/10.1186/s12964-019-0459-7

(2019)17:172 Cell Communication

and Signaling

REVIEW Open Access

Check for
updates

Hedgehog/GLlI signaling in tumor immunity
- new therapeutic opportunities and clinical
implications

Sandra Grund-Gréschke, Georg Stockmaier and Fritz Aberger”

Abstract

Uncontrolled activation of the Hedgehog/Glioma-associated oncogene (HH/GLI) pathway is a potent oncogenic
driver signal promoting numerous cancer hallmarks such as proliferation, survival, angiogenesis, metastasis and
metabolic rewiring. Several HH pathway inhibitors have already been approved for medical therapy of advanced
and metastatic basal cell carcinoma and acute myeloid leukemia with partially impressive therapeutic activity.
However, de novo and acquired resistance as well as severe side effects and unexplained lack of therapeutic
efficacy are major challenges that urgently call for improved treatment options with more durable responses. The
recent breakthroughs in cancer immunotherapy have changed our current understanding of targeted therapy and
opened up promising therapeutic opportunities including combinations of selective cancer pathway and immune
checkpoint inhibitors. Although HH/GLI signaling has been intensely studied with respect to the classical hallmarks
of cancer, its role in the modulation of the anti-tumoral immune response has only become evident in recent
studies. These have uncovered HH/GLI regulated immunosuppressive mechanisms such as enhanced regulatory T-
cell formation and production of immunosuppressive cytokines. In light of these exciting novel data on oncogenic
HH/GLI signaling in immune cross-talk and modulation, we summarize and connect in this review the existing
knowledge from different HH-related cancers and chronic inflammatory diseases. This is to provide a basis for the
investigation and evaluation of novel treatments combining immunotherapeutic strategies with approved as well
as next-generation HH/GLI inhibitors. Further, we also critically discuss recent studies demonstrating a possible
negative impact of current HH/GLI pathway inhibitors on the anti-tumoral immune response, which may explain
some of the disappointing results of several oncological trials with anti-HH drugs.
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Background

Since its discovery in the 1980s by Christiane Niisslein-
Vollhard and Eric Wieschaus the Hedgehog/Glioma-as-
sociated oncogene (HH/GLI) signaling pathway has been
studied in great detail [1]. HH/GLI signaling can orches-
trate several central developmental processes, including
pattern and limb formation in the embryonic develop-
ment or cell proliferation and differentiation. In the
adult organisms the pathway is mostly inactive but reac-
tivated during tissue homeostasis and regeneration as
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well as in the process of wound healing by controlling
stem cell activation and self-renewal.

Unlike most classical signaling cascades, HH/GLI signal-
ing is actively repressed in the absence of ligand and initi-
ated by binding of HH ligand protein to its receptor and
pathway repressor Patched (PTCH1). In addition to mere
receptor binding, this step also apparently inactivates the
catalytic activity of PTCH1, thereby changing the choles-
terol composition within the leaflets of the lipid bilayer of
the cell membrane close to the primary cilium, an
antenna-like compartment critical for the coordination of
HH/GLI signal strength and duration. HH ligand binding
relieves the repressive function of PTCHI, thereby allow-
ing the translocation of the G-protein coupled receptor-
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like protein Smoothened (SMO) into the primary cilium,
where its activation results in the conversion of transcrip-
tionally repressive GLI zinc-finger transcription factors
into transcriptional activator forms [2—-11].

While the exquisite and precise quantitative control of
HH/GLI signaling in space and time is mandatory for nor-
mal development and health of mammals, irreversible and
uncontrolled activation of the HH/GLI pathway is detri-
mental and has been shown to cause or contribute to the
development of a variety of cancer entities. For instance,
HH/GLI represents a key molecular driver signal in basal
cell carcinoma (BCC), medulloblastoma (MB) and rhabdo-
myosarcoma and has been implicated in the malignant
progression of for instance gastrointestinal, pancreatic,
ovarian, breast, prostate and lung cancers, melanoma, gli-
oma, and several leukemia including chronic lymphocytic
leukemia (CLL), chronic myeloid leukemia (CML), diffuse
large B-cell lymphoma (DLBCL) and acute myeloid
leukemia (AML) (for reviews see [2, 4, 12—22] and refer-
ences therein).

In light of the critical role of HH/GLI in various malig-
nancies and oncogenic processes, several clinically suitable
HH pathway inhibitors have been successfully developed.
This is reflected by the approval of the first SMO inhibitor
vismodegib (GDC-0449, ERIVEDGE™) in 2012 for the
treatment of locally advanced and metastatic BCC [23—
27], followed by the approval of sonidegib (LDE225,
ODOMZO™) after having shown therapeutic efficacy in
BCC patients [28—31]. Only recently, the SMO antagonist
glasdegib (PF-04449913, DAURISMO™) has been ap-
proved in combination with low-dose chemotherapy for
the treatment of acute myeloid leukemia patients after
clinical studies have shown nearly a doubling of the overall
survival of AML patients if glasdegib is included in the
low-dose chemotherapy regimen [32, 33]. Furthermore,
the clinically approved chemotherapeutic agent arsenic
trioxide (ATO) (TRISENOX™) has been identified as po-
tent inhibitor of GLI activity, adding another promising
compound to the growing drug armamentarium against
HH-driven cancers [34, 35].

Despite the impressive therapeutic efficacy of HH
pathway inhibitors, de novo and acquired drug resist-
ance as well as severe side effects are major limitations
to the successful use of SMO antagonists [29, 36-38].
Of note, 50% of the BCC patients that show resistance
to the SMO inhibitors express mutant SMO variants
and show maintained high-level HH/GLI pathway activ-
ity. Mutations occur either directly in the ligand binding
pocket (LBP) of SMO or outside the LBP in pivotal re-
gions of the transmembrane-helices that ensure receptor
auto-inhibition. Further resistance mechanisms comprise
GLI2 gene amplifications, loss of the GLI repressor Sup-
pressor of Fused (SUFU), or a signaling shift towards
protein kinase C (PKC), phosphatidyl inositol-3 kinase
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(PI3K) and/or mitogen activated protein kinase (MAPK)
activity [39-44].

Such therapeutic challenges call for improved treatment
strategies for the patients” benefit. The recent break-
throughs in cancer immunology and immunotherapy have
highlighted the necessity for a precise understanding of
the immune-modulatory function of oncogenic signaling
pathways and their actual role in tumor immunity. Such
precise and context-dependent knowledge is mandatory
for the development of rational combination treatments
targeting for instance oncogenic and immunosuppressive
signals. Along the same line, it is equally important to
understand the role of HH/GLI in tumor immunity in
both the tumor itself as well as in the immune microenvir-
onment of the cancer to guide and select the most effi-
cient drug combination with more durable responses and
increased response rates.

As for HH/GLI signaling, recent studies have linked
HH/GLI pathway activation with concomitant anti-
inflammatory signals [45, 46] and revealed a significant
downregulation of the pathway in a set of chronic in-
flammatory diseases such as inflammatory bowel disease
[47], colitis [48, 49] and Helicobacter pylori associated
gastric inflammation [21, 50]. Notably, there is also in-
creasing evidence, showing that oncogenic HH/GLI sig-
naling regulates immunosuppressive mechanisms such
as enhanced regulatory T-cell (Treg) formation and pro-
duction of immunosuppressive cytokines, which can
open new avenues for combination treatments and im-
munotherapy [49, 51-56].

In light of these recent insights, we here summarize
and reconcile the existing knowledge from different HH/
GLI-related cancers and chronic inflammatory diseases
and discuss the relevance of HH/GLI signaling in modu-
lating the immune response, which should provide a
basis for the future evaluation of novel treatment options
and may also help explaining the failure of HH pathway
inhibitors in several clinical trials [57].

HH signaling and tumor immunity

The adaptive as well as innate immune system forms a
highly proficient immune surveillance machinery that
recognizes and destroys genetically altered cells to pre-
vent the development of malignant diseases. Cancer de-
velopment driven by genetic and epigenetic evolution
and clonal selection, therefore, involves a plethora of
molecular mechanisms that eventually lead to the sup-
pression of the anti-tumoral response and immune eva-
sion of malignant cells, respectively [58]. Notably, the
administration of for instance immune checkpoint inhib-
itors that efficiently re-instate the anti-tumoral immune
response have shown unprecedented therapeutic efficacy
in several metastatic diseases [59-61], suggesting that ra-
tional combination treatments targeting oncogenic HH/
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GLI and immunosuppressive mechanisms may synergis-
tically improve the efficacy and durability of the thera-
peutic response of patients suffering from HH/GLI-
associated cancers. In the following chapter we
summarize recent findings about the implication of HH/
GLI signaling in the context of immunosuppression and
immune evasion (summarized in Fig. 1).

Mutational activation of HH/GLI signaling plays a
causal role in the development and growth of BCC. In-
triguingly, systematic genome sequencing of several hun-
dreds of sporadic human BCC revealed a surprisingly
high mutational burden with an average of 65 mutations
per megabase [62]. Although these sequencing data have
not yet been analyzed with respect to the immunogen-
icity of the mutations, it is highly likely that BCC express
tumor-specific neoantigens rendering BCC lesions im-
munogenic. We, therefore, hypothesize that HH/GLI sig-
naling — in addition to tumor-intrinsic proliferative and
pro-survival cues — also induces an immunosuppressive
microenvironment to hamper an effective anti-tumoral
immune response.

First evidence for such immunosuppressive mecha-
nisms in BCC came from studies of murine BCC models
showing that transforming growth factor beta (TGEFp)
secreted by oncogenic SMO-expressing keratinocytes is
able to reduce the number of effector lymphocytes in
the tumor tissue. In addition, TGFp signaling in bone
marrow cells of BCC mice appears to support tumor
growth by recruiting immunosuppressive myeloid de-
rived suppressor cells (MDSC) to BCC lesions in a C-C

(2019) 17:172

Page 3 of 9

motif chemokine ligand 2 (CCL2) dependent manner
(Fig. 1). In agreement, pharmacologic inhibition of the
CCL2 receptor expressed by MDSCs not only interfered
with the recruitment of these cells but also reduced
tumor growth. However, the detailed anti-tumoral
mechanisms in response to CCL2 receptor inhibition re-
main elusive [53, 63].

Further evidence that HH signaling induces immuno-
suppressive mechanisms such as MDSC recruitment and
M2 polarization of macrophages was provided by the
analysis of an immunocompetent breast cancer xeno-
graft mouse model. Treatment of engrafted mice with
the SMO inhibitor vismodegib reduced immunosuppres-
sive immune cell populations such as MDSCs, M2 mac-
rophages and Treg cells in the tumor lesions, while it
increased the number of cytotoxic CD8" T-cells and M1
macrophages, resulting in less metastasis. Notably,
macrophage depletion in combination with HH pathway
inhibition further improved the therapeutic effect of HH
blockade alone [64].

Analysis of human UV-exposed facial BCC revealed
that Treg cells accumulate in high amount within intra-
and peritumoral regions. This is accompanied by a
strong increase of immunosuppressive TGEP in the peri-
tumoral skin [54]. In this context, it is intriguing to
mention that the HH effector and zinc finger transcrip-
tion factor GLI2 can directly activate the expression of
TGEP in human Treg cells [55] (Fig. 1). This immune
modulatory role of HH/GLI signaling in T-cells is fur-
ther underlined by a study showing that GLI2 can
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attenuate T-cell activation and function by altering gene
expression profiles in T-cells. GLI2 activation results in
impaired TCR-induced calcium influx and differential
expression of major components of the TCR signaling
pathway such as nuclear factor kappa B (NFxB) and acti-
vator protein-1 (AP-1) factors [65]. Furthermore, HH/
GLI signaling is able to polarize Th2 differentiation of
T-cells by inducing interleukin-4 (IL4) production,
thereby promoting allergic responses and reducing cyto-
toxic T-cell function in the context of tumor immunity
[66, 67]. In addition to T-cell polarization, activation of
HH/GLI in naive CD4" T-cells in the context of atopic
dermatitis development has been shown to induce the
differentiation of immunosuppressive Treg cells express-
ing elevated FOXP3 and TGEP levels [68] (Fig. 1). Des-
pite convincing evidence for a cell-autonomous role of
HH/GLI in Treg formation, it remains unclear of
whether T-cell intrinsic activation of HH/GLI also plays
an immunosuppressive role in the microenvironment of
HH-driven cancers such as BCC.

Further evidence for a role of HH/GLI in Treg forma-
tion comes from the analysis of patients infected with
Mpycobacterium tuberculosis. In this study, mycobacteria-
infected human DCs upregulated SHH signaling, which
in turn was able to induce programmed death ligand 1
(PD-L1) expression (Fig. 1). This resulted in Treg forma-
tion and expansion, thereby favoring immune evasion of
the pathogen [51]. In addition to this, using human-
derived gastric cancer organoids it was demonstrated
that GANT-61 could reduce PD-L1 expression and
tumor cell proliferation in vitro and in vivo. Of note,
treatment with anti-PD-L1 antibodies induced apoptosis
of tumor cells derived from GLI2-expressing mouse
organoids. The results identify GLI2 as tumor-cell in-
trinsic regulator of PD-L1 expression in gastric cancer,
promoting cancer growth via suppression of anti-
tumoral responses [56].

Aside from the effects of HH/GLI on immunosuppres-
sion in malignant settings, Sonic HH (SHH)-induced Treg
formation can also constrain inflammation driven diseases
[49, 52]. For instance, in colitis, activation of HH/GLI sig-
naling dampens the inflammation, thereby preventing in-
flammatory intestinal damage. In this context Lee et al.
showed increased interleukin-10 (I1110) expression by Glil-
positive stromal cells upon chemical HH pathway activa-
tion together with an increased number of Treg cells [49]
(Fig. 1). A similar mechanism was discovered in a mouse
acute pancreatitis model, where autocrine Shh signaling
induced I110 production resulting in reduced inflamma-
tion [52]. Notably, inhibition of Hh/Gli signaling worsened
the progression of the inflammatory disease and promoted
colitis-associated cancer development [49, 52]. It is, there-
fore, conceivable that pro-inflammatory responses to
SMO-targeting contributed to the failure of colon cancer
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trials, where drug targeting of HH signaling accelerated
cancer progression, which forced the termination of the
clinical studies.

The immunosuppressive activity of HH/GLI in the in-
testine is further supported by a study of Westendrop
et al. showing that epithelial-derived Indian hedgehog
(Thh) is able to maintain immune tolerance in the intes-
tine. Loss of Thh from the intestinal epithelium led to in-
creased expression of inflammation-related genes and an
influx of immune cells. Mechanistically, Ihh can inhibit
the release of the chemokine CXCL12 by fibroblasts and
thereby, reduce the recruitment of immune cells. In
agreement with its immunosuppressive function, loss of
Thh resulted in increased colitis [69].

In the context of Helicobacter pylori-induced gastric in-
flammation and carcinogenesis, the bacterial infection has
been shown to induce SHH signaling via activation of
NF«B signaling [70] (Fig. 1). During chronic gastric in-
flammation, HH/GLI signaling can support polarization of
myeloid cells towards granulocytic-MDSCs (GrMDSCs)
(Fig. 1) [71, 72]. SHH secreted from parietal cells has been
shown to attract Schlafen 4 (SLEN4)-positive myeloid cells
from the bone marrow. SLFN4-positive myeloid cells can
further polarize by IFNa to GrMDSCs, which then are
able to inhibit tumor infiltrating lymphocytes, favoring
neoplastic transformation and cancer growth [21, 71, 73].
Interestingly, El-Zaatari et al. provided additional evidence
for a critical role of HH/GLI in immune suppression and
malignant transformation, since Glil deletion in mice pre-
vented both Helicobacter pylori-induced expansion of
MDSCs and metaplasia [50].

As already mentioned above in the context of HH/
GLI-dependent Treg formation, HH/GLI is likely to
cause immunosuppression also by inducing the expres-
sion of immune checkpoint molecules. For instance, in
BCC with tumoral PD-L1 expression, two patients with
metastatic disease responded well to aPD-1 single treat-
ment with nivolumab or pembrolizumab [74, 75]. Lipson
et al. further analyzed 40 BCC specimens and found PD-
L1 expression on tumor cells to be upregulated in 22%
of all analyzed samples with an additional 82% of speci-
men demonstrating PD-L1 expression on tumor infil-
trating lymphocytes and associated macrophages (Fig. 1)
[76]. Intriguingly, PD-L1 upregulation was also observed
in some medulloblastoma patients, were the highest PD-
L1 expression was found in a patient with SHH subtype
MB [77]. Together with the results of a study with
GLI2-expressing PD-L1-positive gastric organoids [56],
these data together suggest a direct regulatory function
of HH/GLI in the control of immune checkpoint
expression.

Finally, another mechanism how cancer cells can
evade the immune system is by downregulating MHC-I
expression, whereby tumor antigen-specific T-cells are
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then no longer capable of recognizing and destroying
these abnormal cells [58, 78]. Recently, inhibition of the
HH pathway in BCC patients with the SMO Inhibitors
vismodegib or sonidegib led to increased levels of MHC-
I expression on tumor cells together with an increase of
CD4 and CD8 positive T-cells in the peri- and intra-
tumoral regions. These findings indicate that MHC-I
downregulation occurs in HH-driven BCC to evade the
recognition and destruction by the immune system [79].
In summary, there is increasing evidence from mul-
tiple studies that demonstrate an important and multi-
facetted immune-modulatory role of HH/GLI in various
inflammatory and malignant settings. Active HH/GLI
signaling can induce an immunosuppressive microenvir-
onment via multiple routes, including the activation of
immunosuppressive cytokines, upregulation of immune
checkpoints, or expansion and chemotactic recruitment
of immunosuppressive cells including Treg and MDSCs.
The immune-modulatory activity of HH/GLI in cancer
settings thus opens up new therapeutic avenues for fu-
ture treatment strategies of HH/GLI associated cancers.

Oncogenic HH/GLI signaling and inflammation

The immune system plays a decisive and at least dual role
in the initiation and progression of malignant diseases.
While the immune system is critical for preventing and/or
fighting cancer via processes referred to as immune sur-
veillance and anti-tumoral immunity, the persistent and
inappropriate activation of the immune system manifested
as (chronic) inflammation has been identified as potent
promoter and enabler of malignant development [80, 81].
The persistent production of pro-inflammatory cytokines
such as IL6, tumor necrosis factor (TNF) and IL1 within
the tumor and its microenvironment plays a key role in
mediating the tumor-promoting effect of inflammation
(reviewed in [58, 82, 83]).

Several recent studies have provided evidence for recipro-
cal regulatory interactions of HH/GLI signaling and pro-
inflammatory cues during malignant development, including
tumor-promoting synergistic signal integration processes.
For instance, in pancreatic cancer, stromal HH/GLI signaling
has been shown to induce IL6 expression (Fig. 1), which in
turn results in paracrine activation of STAT3 in the tumor
cell compartment, thereby supporting cancer growth and
survival [84]. Another study of pancreatic cancer provided
evidence for HH/GLI activation in response to inflammatory
TNF and IL1 signaling. Mechanistically, the activation of
NF«B by pro-inflammatory signals can induce the expression
of GLI1 in a HH-dependent and non-canonical, HH/SMO-
independent manner [85]. Similarly, Nakashima et al. investi-
gated the interplay of NFkB and HH pathway activation in
human pancreatic cancer, linking IL1, TNF and LPS medi-
ated induction of NFkB signaling with elevated SHH levels
and accelerated cancer cell proliferation (Fig. 1) [86].
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In BCC, the interaction of HH/GLI and pro-
inflammatory IL6/signal transducer and activator of
transcription-3 (STAT3) signaling synergistically regu-
lates common GLI-STAT3 target genes and promotes
cancer proliferation (Fig. 1) [87, 88]. Furthermore,
aberrant regulation of HH/GLI signaling has been im-
plicated in Helicobacter induced stomach cancer,
where GLI1 function in myeloid cells recruited to the
metaplastic area is required for a pro-inflammatory
signaling network including IL1 in the myeloid and as
a consequence IL6/STAT3 expression in the epithelial
compartment [50].

These findings altogether suggest an intricate interplay
of HH/GLI signaling and pro-inflammatory effectors
generating a tumor-promoting environment and it will
be pivotal to decipher these reciprocal interactions in a
cancer entity- and context-dependent manner for the
development of future combination therapies interfering
with HH/GLI itself together with cooperative pro-
inflammatory pathways (Fig. 2).

Conclusions

Although the field of tumor immunology in the context
of oncogenic HH/GLI signaling is relatively young, it has
already become evident that HH/GLI signaling exerts
complex and diverse effects on the immune microenvir-
onment of malignant and non-malignant tissues. Dysreg-
ulation of HH/GLI signaling plays fundamental vyet
distinct roles both in cancer and chronic inflammatory
diseases. For instance, in colitis or pancreatitis, lack of
HH expression has been shown to foster chronic inflam-
mation, which is likely to promote tumor formation [45,
49, 52, 69]. By contrast, in several cancer entities, aber-
rantly activated HH/GLI signaling drives tumor prolifer-
ation and growth, while simultaneously dampening
inflammation and favoring immunosuppression [53, 54,
64]. Understanding the molecular rationale of how de-
regulation of the HH/GLI signaling axis precisely alters
anti-tumor immunity and tumor-promoting inflamma-
tion will support the development of more sophisticated
tumor therapies.

Given the immunosuppressive function of HH/GLI, HH
antagonists may synergize with immune checkpoint
blockers such as anti-PD-1 antibodies in fighting cancer.
Notably, single case studies with BCC patients receiving
nivolumab or pembrolizumab (two clinically approved
anti-PD-1 antibodies) have already yielded promising re-
sults, suggesting that the use of immune checkpoint inhib-
itors can provide a therapeutic benefit in HH/GLI-driven
non-melanoma skin cancer [74, 76, 89, 90]. The outcome
of recent and ongoing clinical trials with immune check-
point inhibitors for the treatment of metastatic or unre-
sectable BCC alone or in combination with HH/SMO
inhibitors will inform about whether immunotherapy or
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combinatorial treatments can increase the efficacy and
durability of the response of BCC patients (see https://
www.clinicaltrials.gov/ trials identifiers: NCT03132636;
NCT03521830; NCT02690948). The results of these trials
will also have important consequences for the treatment
of other HH-associated cancer entities [85, 91].

The patients” response to immune checkpoint inhibi-
tors correlates with the tumor mutational burden [92].
Given the extraordinary high mutation rate of BCC [62],
chances are high that rational combination treatments
involving HH pathway inhibitors together with immuno-
therapeutics (summarized in Fig. 2) will increase the effi-
cacy of current medical therapies of unresectable
advanced and metastatic BCC, and possibly also of other
HH-associated malignancies with high medical need. In
this context it is noteworthy that the immune-
modulatory drug imiquimod is already successfully used
for the treatment of superficial BCC [58, 93] by boosting
T-cell effector function, although there are other reports
suggesting an additional therapeutic role of imiquimod
such as by directly blunting oncogenic HH/GLI via acti-
vation of adenosine receptor/protein kinase A (PKA) sig-
naling and by activating tumor-killing plasmacytoid
dendritic cells [94-97].

Despite the promising outlook for the use of HH
pathway inhibitors in combination with immunother-
apy, there are also challenges and concerns for the
use of HH inhibitors as immune modulators. For in-
stance, a study of de la Roche and colleagues has un-
raveled a role of SMO in the immunological synapse
during T-cell activation. Administration of SMO

inhibitors led to the functional disruption of the im-
munological synapse and consequently, to the loss of
T-cell effector activity [98]. Although it is unclear
whether the administration of SMO inhibitors im-
pedes cytotoxic T-cell functions in patients - which
could to some extent explain the failure of several
clinical trials with SMO inhibitors [57, 99] - the pos-
sible negative impact of HH targeting on the anti-
tumoral response needs to be considered in future
studies, particularly in those that involve immune
checkpoint inhibitors. A better understanding of the
effect of HH/GLI pathway modulators and cancer
drugs on the immune response is therefore pivotal
and will pave the way towards the next generation of
combination therapies involving HH/GLI inhibitors
and immunotherapeutic drugs.
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