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The Flory-Stockmayer theory for the polycondensation of branched polymers, modified for finite systems beyond the gel point, is
applied to the connection (synapses) of neurons, which can be considered highly branched “monomeric” units. Initially, the process
is a linear growth and tree-like branching between dendrites and axons of nonself-neurons. After the gel point and at the maximum
“tree” size, the tree-like model prescribes, on average, one pair of twin synapses per neuron. About 13% of neurons, “unconnected”
to the maximum tree, migrate to the surface to form cortical layers. The number of synapses in each neuron may reach 10000,
indicating a tremendous amount of flexible, redundant, and neuroplastic loop-forming linkages which can be preserved or pruned
by experience and learning.

1. Introduction

The molecular weight distribution (MWD) of polyconden-
sation of branched-chain monomers of the type RA𝑓 has
been derived classically by Flory [1] and generalized by
Stockmayer [2]. Here, 𝑓 is the number of functional groups,
or “functionality” of group A. Mathematically, this widely
quoted distribution function has been treated as power-
series distribution and compound distribution that provides
a simple concept; that is, single-parameter expressions of
number- and weight-average “degrees of polymerization”
(DP) are sufficient to generate the entire MWD for branched
polymers [3]. Moreover, using a cascade formulation involv-
ing functionals and probability generating functions (PGF),
this distribution can be extended to finite systems [4].

Here, the previously derived properties of this finite
distribution are applied to synapse formation in the brain.
A neuron has multiple dendritic processes and an axon,
which can also be branched. Neurons are generally three
or more orders of magnitude greater in size than molecular
units. However, the functionality of a neuron may be 103
times larger than that of typical branched molecules (𝑓 =
10000). This large functionality also means there is great
accessibility to the connection sites, and the long flexible
axons offer a favorable condition for connection between

neurons. The “tree-like,” or “ring-free,” assumption in the
Flory-Stockmayer theory can be satisfied by the initial link-
age of head-to-tail linear chains and followed by a “tree-
like branching.” A neuron itself can be considered a small
tree. Similarly, the peripheral nervous system (PNS) also
resembles a tree made of the nerve bundles, which can be
as large as 1.5 meters. The Finite Flory-Stockmayer theory
(FFST) deals with numbers of highly branched repeat units
and their association-dissociation mechanism. Therefore it
is applicable to the statistical treatment of brain growth,
neuronal connectivity, and information transmission. Linear
growth and subsequent tree-like branching allow two simple
equations to be applied up to a maximum tree size con-
strained by the FFST.

In practical, real and natural systems, lignin in wood is a
tree-like molecule [5], and a major class of corals is also tree-
like [6]. Thus the applicability of the F-S theory in molecular,
cellular or animal size scales is equally sound if the repeating
branched units can be properly identified.

Early brain growth is very robust and rapid. In the human
brain the crosslinking between neurons and the growth
of the linked neurons (polyneurons) proceed with a rapid
rate. Because of their highly branched dendrites and axons,
there are three types of crosslinking: axodendritic (A-D),
axosomatic (A-S), and axoaxonic (A-A) synapses, in the order
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of decreasing abundance. In addition, there are at least three
forms of crosslinks. The first are end-links which are links
between the tips of an axon and a dendritic spine.The second
form is a split-end link, which is shaped like the Greek letter
Ω on top of 𝑉 (the shape of a pair of dendritic spines),
designated Ω/𝑉-linking. The latter conformation represents
a pair of twin synapses. The third form is the most abundant
“𝑋” shaped, mostly A-D linkages.

Structural and functional features of neurons set the
limits and modes of various crosslinks. For example, there
is no dendrite to dendrite (D-D) synapse because dendrites
have been shown to demonstrate self-avoidance even in fruit
fly brains [7]. With respect to a growing polyneuron tree,
the “ring-free” assumption is also a self-avoidance rule. A
conceptual illustration furnishes a visual model of a pair of
Ω/𝑉-twin synapses by removing the axonic “spaghetti maze”
for a clearer view [8].

The rate of growth and rate of crosslinking in the brain
occur exponentially in the months before and after birth in
the human brain [9] and in the cortex of laboratory animals
[10]. Initial linear growth and tree-like branching appear to
be the most efficient path-way to grow and expand rapidly in
a confined or open space [11].

The following is an ideal human brain model with
neurons assumed to be homogeneous, with identical size,
shape, and number of crosslinking sites.

There are two basic assumptions in the FFST. First, all
linkages (synapses) are formed with equal probability, or
the same “extent of reaction.” Second, no ring is formed
between branches of a growing chain.The second assumption
is also termed the “tree-like model” [4]. The brain growth
process is discussed with limiting forms of equations derived
previously, and upper bounds of the variables and parameters
are strictly constrained.

2. Limiting Equations and Numerical
Examples

Symbols and abbreviations derived previously [4].

𝑁 = system size = number of neurons (in a brain or a
“module”).
𝑓 = functionality = number of connection sites per
monomer (neuron) = 10000 or in thousands [11].
𝑘 = number of generations in the “transformer”
probability generating functions (PGF) in the cascade
formulation [4].
DP = degree of polymerization = number of con-
nected neurons in a growing chain = 𝑥 = 1, 2, 3,
. . . , 𝑁.
𝛼 = extent of reaction or fraction of connected
synapse sites.
𝛽 = (𝑓 − 1)𝛼 which is approximately 𝑓𝛼 for large 𝑓 =
crosslinking index.
⟨𝑥𝑛⟩ = number-average DP.
⟨𝑥𝑤⟩ = weight-average DP.

𝛽𝑐 = 1 is value of 𝛽 at gel point.
𝛽𝑚 = 2, maximum value of 𝛽 allowed in tree-like
model.
𝑔𝑚 = gel fraction at 𝛽𝑚.

At large 𝑓 values, most of the finite system equations
derived previously [4] become independent of 𝑓. The FFST
is represented by the two averages:

⟨𝑥𝑛⟩ = (1 −
𝑓𝛼

2
)
−1

(1a)

= (1 −
𝛽

2
)
−1

for large 𝑓, (1b)

⟨𝑥𝑤⟩ (𝛽) = 1 + 𝑓𝛼 (1 + 𝛽 + 𝛽2 + ⋅ ⋅ ⋅ + 𝛽𝑘) . (2a)

The last equation is derived and proven in Supplementa-
ry Material session available online at http://dx.doi.org/
10.1155/2013/241612. In its application, (2a) can be written in
a more compact form:

⟨𝑥𝑤⟩ (𝛽) = 1 +
𝛽 (1 − 𝛽𝑘+1)

1 − 𝛽
, 𝛽 > 1 or 𝛽 < 1. (2b)

In particular,

⟨𝑥𝑤⟩ (𝛽𝑐) = 1 + (𝑘 + 1) , 𝛽𝑐 = 1. (3)

The maximum value for ⟨𝑥𝑤⟩ is 𝑁, that is, a giant gel
particle with 𝑁 neurons all connected in this “polyneuron”
tree. With this value for ⟨𝑥𝑤⟩ at 𝛽𝑚 = 2 in (2b), the result is
simply

𝑁 = 2𝑘+2. (4a)

Equation (4a) expresses the system (brain) size in terms
of the number of cell division, as powers of 2. The maximum
value of ⟨𝑥𝑛⟩ is also𝑁, when using a precise value [4] of 𝛽𝑚 =

2(1 − 𝑁−1).
The unconnected monomer neurons have a weight frac-

tion of 𝑤(1) which can be approximated with the weight
fraction in an infinite system [4] as

𝑤 (1) = (1 − 𝛼)
𝑓 = 𝑒−𝛽 for large 𝑓. (5)

Equation (5) provides a physically measurable definition for
𝛽. Since this monomer fraction does not join the tree growth
scheme, the maximum “tree-like” value for 𝛽 is 2 and the
attainable DP for the gel particle is (1 − 𝑒−2)𝑁, which may be
applied to the left-hand side of (4a)

(1 − 𝑒−2)𝑁 = 2𝑘+2, (6)

which serves as a correction for computing 𝑘. But this is only
a minor correction; for example, for 𝑁 = 1011, 𝑒−2 = 0.135,
(4a) gives 𝑘 = 34.54 and (6) yields 𝑘 = 34.33 (Cf. Table 1).The
gel fraction 1 − 𝑒−2 = 0.865 is denoted as 𝑔𝑚.
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The case of 𝑁 = 1011 and 𝑓 = 10000 in Table 1 is
the high-functionality system of the human brain [11]. The
pregel distribution or the distribution in the sol fraction in
Table 1 is narrow, with a dispersion ratio or dispersity 𝑟 (ratio
of weight-average DP to number-average DP) very close to
1, even for a system of 1011 neurons. Equation (5) indicates
that the sol fraction contains mainly unconnected monomer
neurons. These free, unconnected mononeurons may form
other classes of aggregate structures, such as cortex layers
(horizontal sheets) and minicolumns (vertical sheets) [11],
or they may join the gel in a nontree fashion, as 𝛽 reaches
hundreds or even thousands.

3. Postgel Relations with Extensive
Ring Formation

As 𝛽 > 2, ring formation in the gel particle cannot be avoided
[1]. Indeed when 𝛽 = ln(1011) = 25, only 1 in 1011 neurons
remains in the sol fraction. In a human neuron with 𝑓 = 104

available connection sites, 𝛽may reach a large value of 8000.
In this case, there is a near-zero chance of finding a free
neuron that remains unconnected.The large values of 𝛽 are a
measure of excessive numbers of rings or loops. Information
transfer is efficient when it takes a tree-like path in such a sea
of ring structures.

This theory thus provides a statistical, nongeometrical
model for brain growth, neuron packing, and neuron firing.
Geometrical description such as calculation with cell and
branch volumes tends to ignore the fact that in chemical solu-
tions or cellular suspensions, volumes of cellular components
are not additive [11].

In the postgel range of 1 < 𝛽 < 2, tree-like growth reaches
a maximum size determined by (6). At 𝛽 > 2, monomer
neuron fraction can be considered as the sol fraction 𝑠. Thus
the approximation

𝑠 = 𝑤 (1) = 𝑒−𝛽 (7)

or the gel fraction

𝑔 = 1 − 𝑒−𝛽 (7∗)

is a good approximation for large 𝛽. Indeed the plot of 𝑔
versus 𝛽, in the entire range of 0 < 𝛽 < 𝑓, is remarkably
similar to a “brain growth” curve [12]. This kind of “growth
curves” can also be depicted as developmental curves of spine
densities in the cortex of rat, mouse, and guinea-pig [13].

The fractions of free and unconnected neurons, 𝑤(1),
being 𝑒−1(= 0.368), and 𝑒−2(= 0.135) at 𝛽 = 1 and 2,
respectively, are in exact agreement with those obtained by
using a simple binomial distribution for the probability of
connecting neighboring cortical neurons at the binomial
averages [10] of 1 and 2. This agreement is not surprising
since the PGFs of the originating “root” (zero generation) and
subsequent generations of 𝑘-fold compounding all take the
binomial form (Supplementary Material).

The asterisk on (7∗) denotes that it is a relation that holds
well beyond gelation in the presence of excessive rings. In fact,
denoting the sol and gel properties by and after the gel point,

the size distribution becomes heterogeneous and splits into
two very narrow peaks at 𝑤(1) and around𝑁, with [4]

1

⟨𝑥𝑛⟩
=

𝑠

⟨𝑥𝑛⟩
+

𝑔

⟨𝑥𝑛 ⟩
, (8∗)

⟨𝑥𝑤⟩ = 𝑠 ⟨𝑥𝑤⟩ + 𝑔⟨𝑥𝑤⟩ , (9∗)

𝛽 = 𝑠𝛽 + 𝑔𝛽. (10∗)

The FFST defines an 𝑥-mer as having (𝑥 − 1) linkages
without any loop structure. The maximum tree size has a DP
of 𝑁 neurons with 𝑁, or precisely (𝑁 − 1), linkages. At this
maximum size, 𝛽 = 2, and (2a) reduces to (4a) as a constraint
set by the system size. In the entire range 0 < 𝛽 < 𝑓; however,
𝛽 is also the number of linkages per neuron.

If 𝑁 pairs of twin synapses are uniformly distributed
along a linear 𝑁-meric chain, it would then serve as a back-
bone for the entire system of connected neurons.This scheme
leaves all the loop-forming 𝑋-linked connections in the
branched, nonlinear chains. However, uniform distribution
appears unlikely because at𝛽 = 2, there is still a fraction of 𝑒−2
or 13.5% (by weight) of neurons remained unconnected at the
maximum tree size. This is approximately the same fraction
as that of human cortex [14].

In a given neuron, there may be 10000 synapses that are
formed by 10000 incoming post-synapses and 10000 outgoing
presynapses [11]. The total number of linkages is𝑁𝛽, and the
total redundancy is defined as

𝐷 = 𝑁(𝛽 − 1) for 𝛽 > 2. (11)

For 𝛽 = 2, there is a redundancy of 𝐷 = 𝑁 linkages. Of
these 2𝑁 linkages at the maximum tree size, there are𝑁 tree-
like linkages paired by exactly𝑁 loop-forming linkages. This
seems contradictory, because in a strict sense of the ring-
free assumption in FFST, a Ω/𝑉-linkage, or a pair of split-
end linkages, is a smallest loop. Such a pair of twin synapses
stabilizes a crosslink or the entire network. For 𝛽 = 8000,
almost all 8000𝑁 redundant linkages provide not only greater
redundant security, but also greater neuroplasticity to the gel-
like network structure of the brain. At the early explosive
growth stage of synaptogenesis [9], end-linking or specially
theΩ/𝑉-linkingmay be a preferredmode for linear and tree-
like branching chain growth (Table 1). In this sense, each tree-
like linkage is considered as having a pair of twin synapses.

Redundant, loop-forming linkages do not contribute to
the DP of a growing chain. Thus the maximum-sized gel
remains at a DP of 𝑔𝑚𝑁, instead of the 𝑁 discussed above.
The maximum number-average DP is also 𝑔𝑚𝑁, rendering
the dispersity at 1. Finally the unconnected or cortical fraction
of neurons should also join this growing gel, approaching a
final DP of 𝑁, where the tree-like equations (1a), (1b), and
(2a) no longer hold, but (8∗)–(10∗) are still valid as 𝛽 →

𝛽 → 𝑓. This is a state in which neurons in sol-sol, sol-
gel, and gel-gel are all linked. This is the complete gelation
scheme proposed by Flory [1, 4], which differs from that of
Stockmayer and others [4].
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Table 1: Properties calculated from a tree-like model for branched
“polyneurons” with low (𝑓 = 3) and high (𝑓 = 104) functionalities.
At a pregel stage, 𝛽 = 0.1 and at the gel point, 𝛽 = 1. For 𝑓 = 3, the
accurate relation 𝛽 = (𝑓− 1)𝛼 is used, as in (1a) and other equations
in [4].

𝛽 = 0.1 𝛽 = 1

𝑓 𝑁 𝑘 ⟨𝑥𝑛⟩ ⟨𝑥𝑤⟩ 𝑟 ⟨𝑥𝑛⟩ ⟨𝑥𝑤⟩ 𝑟

3 104 25 1.111 1.167 1.05 4 40 10
104 1011 34 1.053 1.111 1.05 2 36 18

4. Neuron Wiring in the Brain

The simplest strategy for neuron wiring is a snake-like
strategy as depicted in Figure 1(a) of [11], in which a long wire
(axon fiber) is connected to all 209 neurons in that figure.
In a “10000 nearest neighbors” model, the long wire makes a
single connection to each of the 10000 light bulbs tangentially,
meaning only 1 point of contact at each bulb.

Since a snake does not bite its own tail, the snaking
scheme is ring-free.

The wiring model proposed here for the connection of
non-cortical neuronsmay be called concentric “hardball” and
“softball” model, obtained by invoking the above tree-like
definitions, numbers, and equations, plus 3 types and 3 forms
of synapses, and at least 2 self-avoidance rules.

4.1. The Hardball Is Where Most of the Neuron Mass Con-
centrated. It is centered at the soma of a given neuron, with
a radius 𝑅1 encompassing the entire soma, plus axon and
dendrite branches near the soma. All 3 cell components (S, A,
and D) can provide postsynapses to an incoming presynaptic
axon. All 3 types (A-S, A-A, and A-D) of synapses may be
present inside or on the surface of this hardball. The hardball
is a (relatively) solid, rigid, and stationary target for the
incoming straight-shooting pre-synaptic axon tip [10].

Incoming axons can be envisioned as straight arrows,
each with a long string attached to its end [10]. In the early
stage of synaptogenesis, an axon arrow is shot toward the
hardball target, most likely with 0 or 1 hit [10].

The random hits to the hardball can be described with a
binomial distribution:

𝑏 (𝑦; 𝑛𝑝) = (
𝑛!

𝑦! (𝑛 − 𝑦)!
)𝑝𝑦(1 − 𝑝)

𝑛−𝑦
, 𝑦 = 0, 1, 2, . . . ,

(12)

where 𝑏(𝑦; 𝑛𝑝) is a binomial distribution function, with
randomvariable𝑦 and parameter𝑝. But 𝑛, the available target
sites, is a large constant. The PGF and the mean are

𝜙 (𝜃) = (1 − 𝑝 + 𝑝𝜃)
𝑛
,

𝜙 (1) = 𝑛𝑝.
(13)

Note that the random variable 𝑦 starts with 0, and 𝜃 is the
dummy variable [4] of the PGF. At low 𝑛𝑝 values, for example,
𝑛𝑝 = 1, the distribution is broad, with twin peaks at𝑦 = 0 and
𝑦 = 1. This means the most probable outcome is 0 or only 1

hit [10].The cases for 𝑛𝑝 = 1 and 2, with 𝑏(0; 𝑝) = 𝑒−1 and 𝑒−2,
have been discussed above as the fractions of “unconnected
neurons” at these averages.

The simple binomial PGF in (13) and its distribution are
different from FFST size distribution in other aspects, besides
the similarity in fractions 𝑒−1 and 𝑒−2. The simple binomial
distribution is for the random hits because it has nothing to
do with size of aggregates or polyneurons since there is no
gelation. This “zero-or-one” scheme, proposed for random
hits on linking of mouse cortical neurons [10], actually fits
the principle of cascade formulation on tree-like connection
of non-cortical neurons [4], which is also employed in the
present treatment of ring-free assumption up to the limit of
maximum tree size.

A more recent estimate is a narrow peak at 𝑛𝑝 = 5 for
linking two neighboring cortical neurons [14]. This means
the distribution is peaked around 𝑦 = 5, but the 𝑦 = 0
peak is no longer significant. That is, with an expected 5
linkages between two cortical neurons, there is practically no
chance for a “no hit.” These probabilistic arguments suggest
that the connection of cortical neurons is much more orderly
or structured than that in the initial bulk phase of tree-like
connection.

Contrary to the simple binomial probability distribution,
the branched-chain size distributions in Table 1, for 𝑓 = 3
or more, are narrow at low 𝛽, broadening with increasing 𝛽
values and reaching a maximum at gel point [4] when 𝛽 = 1.

It can be further simplified by assuming that synapses
formed onto the hardball are entirely of the twin synapses
of the Ω/𝑉 form, for the following reasons. Firstly, the
rough, spiny, and more abundant dendrite branches provide
conditions required for twin synapse formation. Secondly,
even with a smooth and less active surface on the soma,
the A-S connections may stabilize themselves with such twin
linkages. All Ω/𝑉-linkages in the hardball are designed to
provide a “skeleton” for a brain lasting for a life-time of the
host animal [9].

4.2.The Softball Layer. In addition to the long, thin axons, the
thick layer outside the hardball, of radius 𝑅2 from the central
soma, is mainly composed of flexible and distal portions of
dendrite branches. Incoming axons shot through this flexible,
ribbon-like cloud have nonstationary targets for contact.
Connections to this softball region are made with nontree,
redundant 𝑋-links. A given neuron has up to 10000 contact
sites for 10000 axonic presynapses from other neurons. If the
synaptic density (in numbers of synapses per unit volume) is
uniform in both hardball and softball regions, then

(𝑅32 − 𝑅31)

𝑅31
=

(𝑓 − 2)

2
, (14)

where 𝑓 = 10000. And 2 is the number of synapses, of the
Ω/𝑉-form, connected to the smaller hardball. The result is
simply 𝑅2 > 17𝑅1, which is easily achievable to satisfy this
large number [11] of 𝑓.
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5. Conclusions

For comparison with other statistical models, the FFST
provides tree-like parameters such as 𝑘 (an abstract concept
of 𝑘-fold compounding in PGF), and 𝑘 + 2 (as weight-
average DP and as number of generations in cell divisions)
at various crosslinking stages. Crosslinking index is 𝛽 ≪ 1
for pregel linear growth; 𝛽 = 1 at the gel point, and 𝛽 = 2
at the maximum tree size. When 2 < 𝛽 < 𝑓 extensive
ring formation occurs, as the observed range of number of
synapses per neuron.

Human cortical neurons are more homogeneous, less
dense in synapses, and more ordered in their connection
than the well-studied much smaller mouse cortex [10, 11]. In
the human cortex, these advantages translate into a greater
neuroplasticity andmuch greater freedom in the information
transmission process. Low synapse density in non-cortical
regions means an early onset of tree-like branching, so that
the massive, late-occurring 𝑋-links can have sufficient space
for high neuroplasticity. In this sense, the tree-like model
proposed here is behaving as a “supporting” system—much
like that animal skeletons providing support, with muscles
and organs filling in, for their host bodies.

The medium for neurons is well dispersed with glia cells
and other mixture components. The brain growth in terms
of brain volume or synapse density follows a general curve
shape of gel development in (7∗). Another developmental 𝛽
versus time curve, in months before and after birth, surges
with a rapid rate to a maximum 𝑓 at 8 postnatal months.
Thereafter, it declines and levels off at 𝑓/2 and continues to
a very mature age of 70 years [9]. These surge and decline do
not affect the shape of a growth curve because the values of 𝛽
are in thousands.

The statistical model for a maximum tree gel leads
to a physical model wherein all neuron units are con-
nected entirely byΩ/𝑉-twin synapses in the hardball region,
accounting for 3 types and 3 forms of observed synapses. In
the outer softball region highly redundant, flexible, accessi-
ble, and neuroplasticity are the characters of the 𝑋-linked
synapses. In a brain, twin synapses are present in a much
smaller amount than the𝑋-links, but the twins are obviously
more visible and easily identified [8, 11, 13].

Perhaps the simplest brain is that of C. elegans [15], in
which a large sensory neuron has only one pair of “horse-
shoe” shaped dendrite branches. Thus, the prediction of
“one linkage, twin synapses” from FFST holds even for this
primitive animal. In higher animals, the observation of twin
synapses [8, 15] indicates that they are relics of tree-like
structure.
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