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Abstract

Introduction: Accelerometry-based activity counting for measuring arm use is prone to overestimation due to non-

functional movements. In this paper, we used an inertial measurement unit (IMU)-based gross movement (GM) score to

quantify arm use.

Methods: In this two-part study, we first characterized the GM by comparing it to annotated video recordings of 5

hemiparetic patients and 10 control subjects performing a set of activities. In the second part, we tracked the arm use of

5 patients and 5 controls using two wrist-worn IMUs for 7 and 3 days, respectively. The IMU data was used to develop

quantitative measures (total and relative arm use) and a visualization method for arm use.

Results: From the characterization study, we found that GM detects functional activities with 50–60% accuracy and

eliminates non-functional activities with >90% accuracy. Continuous monitoring of arm use showed that the arm use

was biased towards the dominant limb and less paretic limb for controls and patients, respectively.

Conclusions: The gross movement score has good specificity but low sensitivity in identifying functional activity. The

at-home study showed that it is feasible to use two IMU-watches to monitor relative arm use and provided design

considerations for improving the assessment method.
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Introduction

Impairment reduction following rehabilitation of hemi-
paretic patients often does not translate to an equiva-
lent increase in functional arm use.1–4 This results in
poor recovery in activity and participation levels of
International Classification of Functioning, Disability
and Health (ICF).5 Studies have shown that monitor-
ing real-world arm use and motivating patients through
feedback can improve actual arm use.6 The convention-
al method for tracking daily arm use is through
descriptive diary entries by the patient/caregiver, struc-
tured questionnaires (e.g., Motor Activity Log
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(MAL)7) or in-clinic observation of spontaneous arm
use during selected activities (e.g., Actual Amount of
Use Test- AAUT8) However, these approaches have
several limitations: (i) the questionnaires and diary
logs have reporter bias and high variability in self-
judgment of movements;9 (ii) the tests administered in
a clinic for a short duration do not necessarily measure
arm use during activities of daily living (e.g., bilateral
arm use test10) and (iii) AAUT can only be adminis-
tered once and cannot be used for longitudinal tracking
of arm use. Therefore, there is a lack of an ecologically
valid and objective method to quantify arm use in
patients’ homes. The increasing availability of low-
cost wearable movement sensors and advancements in
data analysis algorithms can be leveraged for carrying
out quantitative assessment of arm use inside and out-
side the clinics. This would address the shortcomings of
existing assessment approaches and can provide deeper
insights into arm use behavior in natural settings.

Wearable sensors help in the continuous, uninter-
rupted, and objective measurement of arm movements
in natural settings.11–14 Popular wearable sensors like
inertial measurement units are attached to the fore-
arm,15,16 upper arm,17,18 or fingers19,20 of the participant
to record its linear acceleration and angular velocity.
The recorded sensor data is generated from both func-
tional movements like activities of daily living, and
non-functional movements like arm swing during
ambulation. Measurement of activity level improve-
ments in upper limb neurorehabilitation should focus
on functional arm use or goal-directed movement of
the upper limb. Thus, a necessary first step in the appro-
priate analysis of this sensor data is to detect periods of
functional movements, which can then be used for fur-
ther detailed analysis. Any qualitative analysis of the
sensor data (e.g., estimates of arm range of motion,
velocity, duration etc.) without considering the func-
tional utility of a movement will result in overestimating
arm use through the inclusion of non-functional move-
ments (e.g., walking). Accelerometery-based activity
counts are currently the most popular method for mea-
suring arm use.21–25 Activity counts detect all types of
movements failing to isolate functional movements
from non-functional ones due to their high sensitivity
and low specificity.26,27 Activity counts assume that the
effect of ambulation is negligible because most patients
with upper limb impairments due to neurological con-
ditions have accompanying lower limb, posture, and
balance impairments. This assumption can lead to over-
estimation of arm use, especially in patients with good
mobility.28–30 Some accelerometry based data-driven
approaches using machine learning algorithms to clas-
sify functional or non-functional movements yield
higher classification accuracy but are restricted to spe-
cific tasks used in the laboratory setting.31–33

Other methods to accurately measure arm use require
multiple sensors which can lower patient compliance, or
optical tracking which are impractical for the natural
settings. Hence, there is a need for wearable devices
with high sensitivity and specificity to detect functional
and non-functional movements, along with good gener-
alisability to estimate arm use in natural settings using
minimum number of sensors.

A simple, elegant, and general algorithm to detect the
upper limb’s functional use using single inertial mea-
surement unit (IMU) on the wrist was proposed by
Leuenberger et al.15 Previous studies have shown that
most functional movements like object manipulation on
a table-top, grasping, and moving objects around
happen in the sagittal plane at around the waist and
above.34 On the other hand, the forearm’s orientation
is perpendicular to the ground during non-functional
movements like arm swing during ambulation.28 A
single wrist-worn IMU can estimate the pitch and yaw
of the forearm in an earth-fixed reference frame.
Leuenberger et al. developed a binary score – gross
movement score – which is computed as 1 for a 2 s
long window if the total change in forearm yaw and
pitch angles is more than 30� and the absolute pitch of
forearm is less than 30�. This score is shown to be robust
to arm movements due to ambulation and correlates
well with functional clinical tests such as the Box and
Blocks Test. Leuenberger et al. chose the different
parameter values of the gross movement score algo-
rithm based on their observations of different reaching
and object manipulation movements. Though the gross
movement score correlates well with the functional tests,
the exact nature of the movements identified by the
score remains unavailable in the original paper.

In this paper, we present a two-part study on the
quantification of arm use of hemiparetic patients in
the natural setting using a pair of IMU-based wearable
sensors and the gross movement score algorithm. In the
first part, we characterized the gross movement score
algorithm by investigating the types of functional
movements detected by this algorithm. For this, two
human assessors identified functional movements
from the video recordings of a group of healthy and
hemiparetic participants performing a set of activities
of daily living. The functional movements identified by
the human assessors were compared to the gross move-
ment score from the IMU sensors. In the second part,
we explored the feasibility of using two wrist-worn
IMUs for tracking relative arm use at home in hemi-
paretic patients through a week-long pilot study.

Methods

The study aimed to develop, characterize, and evaluate
the feasibility of IMU-based arm use assessment of
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hemiparetic patients in the natural setting using the

gross movement score algorithm. The institutional

review board of Christian Medical College Vellore

(CMC) approved this study. The study has two parts:

(a) an in-clinic characterization of the gross movement

score with a video recording of the patients performing

various activities of daily living while wearing the IMU

sensors (IRB Min. No. 12321 dated 30.10.2019), and

(b) pilot feasibility evaluation of seven-day monitoring

of arm use at home using IMUs (CTRI/2018/09/

015648, IRB Min. No. 11,303 dated 18.04.2018).
IMU-watch: We designed an “IMU-watch” – a

wrist-worn device housing an SEN-14001 board

(Spark Fun Inc.) with a SAMD21 microprocessor, a

real-time clock, a 9-DOF IMU (MPU9250,

InvenSense-TDK Co.), MicroSD card slot, and a bat-

tery charging circuit (Figure 1). The IMU data and the

real-time clock’s timestamp were logged at 50Hz to an

8GB microSD card. Each subject wore two IMU-

watches – one on each arm – whose real-time clocks

were synchronized to GMTþ 5.5 hours. An 800mAh

rechargeable Li-Po battery powered the device for
12–15 hours after a full charge. The enclosures for the
watches were 3D printed with R and L marked for the
right and left IMU-watches, respectively.

Gross Movement Score (GMÞ: Figure 2(a) shows the
processing pipeline for extracting the gross movement
score time series GM½n� from the raw IMU data (n is
the discrete-time index). The accelerometer and gyro-
scope data recorded by the IMU-watches were
resampled at 50Hz, and missing values (0.02%) were
filled using linear interpolation. A duration of at least
10 s for which the variance in angular velocity is less
than 0.15�/s on each axis of the gyroscope (i.e., watches
are stationary) is called a rest period. The mean angular
velocity in each axis during a rest period is computed as
a gyroscope offset value. This offset value is subtracted
from the raw gyroscope data, starting from the current
rest period until the next rest period to reduce gyro-
scopic drift. A fifth-order median filter was applied to
the accelerometer data to remove sharp jumps and out-
liers. The Madgwick algorithm35 was used to estimate
the yaw að Þ and pitch bð Þ angles of the forearm with
respect to an earth-fixed reference frame. These angles
were used to compute GM using a 2 s long moving
window with 75% overlap (sampling time of GM is
500ms).

GM n½ � ¼ 1; if ðR að Þ þ R bð ÞÞ > 30� and bj j < 30�

0; otherwise

(

(1)
Figure 1. IMU watch.

Figure 2. Data processing pipeline, and demonstration of the computation of gross movement score (GM) and mean arm-use A
from raw IMU data. a) The yaw (a) and pitch (b) angles are computed from raw acceleration (araw) and gyroscope (graw) values at
50Hz. Changes in a and b within the functional range is summarised as the GM at 2Hz and A at 1.6mHz (every 10 mins). b) In the left
panel, changes in a and b in the red box is less than 30� so, GM¼ 0 (red dot b) but for the green box, the total change in a and b is
greater than 30� and a is within the functional range, hence GM¼ 1, (green dot). In the right panel, A is computed as the percentage
of total GM in a 10min window. Red and green boxes of width 10min in the GM plots are used to compute A at red and green dots,
respectively.
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where the function R �ð Þ computes the range of the

input argument in a 2 s window. Since GM is computed
based on the change in yaw and pitch in a 2 s window,
the effect of gyroscopic drift is negligible. The threshold

of GM’s forearm pitch angle (�30�) to detect function-
al movements is referred to as the functional range from
here on. These parameter values for the gross move-

ment score algorithm are the same as those used in the
original article by Leuenberger et al.15

Mean Arm use (A): To obtain a summary of activi-
ties carried out by the subject over time, we computed

the moving average of GM in non-overlapping 10-
minute time windows. Here, we use the definition of
activity defined by Schambra et al. as “a sequence of

motions that achieves several goals to accomplish one
overarching purpose. These are complicated motion
events on an extended time scale, occurring over minutes

to hours, examples: dressing, cooking dinner, bath-
ing. . .”.36 A window size of 10-minute was chosen as
we assumed it to be a reasonable duration for complet-

ing an activity. Because GM is a binary signal, mean
arm use can also be interpreted as the percentage of
time during which gross movement is 1 in a non-

overlapping 10-minute window (sampling time of
A k½ � is 10-minute; k is the time index for A). For exam-
ple, A of 40% at 9:00 AM implies that that the gross

movement score was 1 for a total of 4-minutes between
8:50 – 9:00 AM. For each subject, A was computed
separately for the left and right arms.

A scatterplot between the mean arm use time-series
of the two arms over an observation period (e.g.,

12 hours of data from a day) was used to visualize rel-
ative arm use as shown in the left panel of Figure 3.

The x-axis Ax k½ �Þ�
and y-axis Ay k½ �Þ�

correspond to the
less- and more-impaired arm, respectively, for patients,

and the dominant and non-dominant arm, respectively,
for healthy controls. The points (0, 0) (i.e., zero activity

for both arms) were excluded from the visualization or
any analysis carried out on the scatterplot. The spread
of the points in this scatterplot allows us to quickly
gauge the nature of arm use. The distance of a

point Ax k½ �;Ay k½ �� �
from the origin r k½ � ¼ðffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ax k½ �� �2 þ Ay k½ �� �2q
Þ indicate the intensity of arm

use, which is a measure of how active the two arms
were in a given 10-minute time window. The angle sub-

tended by this point h k½ � ¼ tan�1 Ay k½ �
Ax k½ �
� �

is a measure of

the proportion of the use of the two arms in this time

window. The space occupied by the arm use scatterplot
is a square with sides of length 100 units. All straight
lines of the form y ¼ mx in this space correspond to
points with a fixed ratio mð Þ between the mean arm use

of the upper limbs on the y-axis Ay

� �
to the one on the

x-axis Axð Þ; i.e., Ay

Ax
¼ m. The line with m ¼ 1 corre-

sponds to points where there is equal use of both
upper limbs, while both smaller and larger slopes cor-
respond to biased use of one of the upper limbs. The
two special cases, m ¼ 0 and m ¼ 1 correspond to

unilateral arm use, i.e., only one of the upper limbs is
used during a 10-minute window.

To visualize the intensity of arm use r k½ � as a func-

tion of the relative proportion of use between the arms
h k½ �, a 1-dimensional curve q /ð Þ was generated from an
arm use scatterplot, as shown in the right panel of
Figure 3.

q /ð Þ ¼ n/
N

median r k½ � j h k½ � 2 /; /þ 5½ �; 8k� �� �
(2)

Figure 3. The left panel shows the scatter plot of the mean arm use of the two arms; the mean arm use of the right hand is plot along
X-axis, and the left hand long the Y-axis. The first quadrant of the plot is partitioned into sectors of width 5� (/) and the median value
of the sector is calculated as q(/). The points in sector /¼ 35� are shown in violet. The grey contours in the background refer to the
kernel density estimate of all points on the graph. The right panel shows the plot of q(/) against /. q(/¼ 35�) is computed as the
median distance of points from the origin (marked in red).
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where N is the total number of points in the scatterplot,
n/ is the number of scatter points in the sector
/; /þ 5½ �, and / 2 {5,10,15,. . .85}. In the left panel
of Figure 3, the scatter points for
/ ¼ 35� ði:e; h k½ � 2 35; 40½ �Þ is highlighted in red,
the corresponding q 35ð Þ is marked as a red point in
the right panel of Figure 3.

The area under the curve q /ð Þ is defined as the total
arm use, which was computed using the trapezoidal
rule. The overall preference between the two arms
defined as the relative arm use (RAU) was computed
as the following,

RAU ¼ tan�1

XN

i¼0
Ax i½ �PN

i¼0
Ay i½ �

 !
(3)

Part 1: Characterization of the gross movement
score

This is an in-clinic study designed to characterize the
gross movement score algorithm by investigating the
types of functional movements detected by this
algorithm.

Participants: The characterization of GM was car-
ried out on healthy controls and hemiparetic patients.
The inclusion criteria for the patients with hemiparesis
were: they should have (i) no severe cognitive deficits
(Mini-Mental State Examination score (MMSE) higher
than 25); (ii) Manual Muscle Test (MMT) grade higher
than 2; (iii) age between 25–70 years; (iv) at least 30�

pitch of the shoulder joint with the elbow extended; (v)
20� wrist extension against gravity; (vi) 10� finger
extension (proximal metacarpophalangeal and inter-
phalangeal) of at least one finger against gravity; (vii)
ability to open the hand in any position to accommo-
date a small ball (diameter of 1.8 cm) in the palm; and
(viii) willingness to give informed consent. Patients who
had pain while moving the upper limb or allergy to the
plastic material used for the IMU-watch casing and
straps were excluded from the study. Patients were
recruited through the inpatient Occupational Therapy
unit of CMC Vellore. The inclusion criteria for healthy
controls were: (i) no prior history of upper limb move-
ment problems due to neurological conditions; (ii) no
current difficulty in upper limb movements; (iii) age
between 25 and 70 years; and (iv) willingness to give
informed consent.

Data collection: After providing informed consent,
all participants were instructed to carry out a set of
15 activities (see supplementary materials) while
wearing two IMU-watches. If a particular task was
challenging to execute, then the patient was exempted
from performing it. This included fine finger

manipulation tasks like writing, using a mobile

phone’s touchscreen, walking for patients in wheel-

chairs, etc. The movements performed by these sub-

jects were simultaneously recorded using a video

camera connected to a PC that was time-

synchronized with the IMU-watches.
Video annotation: To identify how well GM detects

clinically significant functional activities, videos from

the participants (10 healthy controls and 5 hemiparetic

patients) were annotated independently by two occupa-

tional therapists (GS, RJS) using a custom-made

graphical user interface. Using this software, the anno-

tator played and reviewed the videos to select the

frames using a scrollbar and mark the functional/

non-functional left/right arm use. The software also

allowed the annotators to replay, review, and edit

their annotations. The human assessors were instructed

to follow the Functional Arm Activity Behavioural

Observation System (FAABOS) for annotating the

videos.37 FAABOS has 4 categories: task-related func-

tional activity (drinking), non-task-related functional
activity (holding an object but not moving it), non-

functional activity (tremors), and no activity or move-

ment. Since the gross movement score is a binary

signal, we assigned 1 to task-related and non-task-

related functional activity and 0 to non-functional or

no activity. This analysis produced the functional activ-

ity (FA) score – a binary time-series signal indicating

the presence of a functional activity at each time

instant. The detailed instruction set given to the anno-

tators is available in the supplementary material. The

video annotation was repeated after ten days by the

same assessors to estimate the intrarater reliability of

the FA scores.
To characterize the quality of the detection of dif-

ferent types of functional activities identified by the

gross movement score algorithm, the annotators fur-

ther classified functional activities into three categories.

The first category, called the hand activities, consists of

functional activities primarily carried out by the hand,

including typing, writing, etc., where the arm is mostly

maintaining a posture. The second category, called

armþ hand activities, includes folding a towel, opening

a water bottle, drinking from a cup, etc. These activities

involve both gross arm movements and fine finger

manipulations. The final category includes non-

functional or no activity like arm-swing while walking,

resting one arm on the table while drinking water from
a cup, etc. A detailed description of the three categories

is given in the supplementary material. We analyzed the

overall and category-wise agreement between GM

and FA.
Data analysis: The FA score from the videos was

down sampled from 30Hz to 2Hz to compare it with

David et al. 5



GM from the IMU-watches. Two measures of agree-

ment were used in the study:

(i) Accuracy is defined as the percentage of data

points in the agreement between the two scores,

i.e., both GM and FA are 0 or 1.
(ii) Gwet’s AC1 was the second agreement measure

used as it accounts for chance agreement between

two scores.38

AC1 ¼ Pa � Pe

1 � Pe
(4)

Pe ¼ 2
P1: þ P:1

2

	 

1� P1: þ P:1

2

	 
	 

(5)

where, Pa is the sum of true positive and true negatives

divided by the total number of observations. Pe is the

expected agreement by chance or chance agreement. P1:

and P:1 are the marginal probabilities of GM and FA

being true, respectively (refer to the supplementary

material for details).

Part 2: in-home arm use assessment of hemiparetic

patients

This is a home-based study designed to evaluate the

feasibility of tracking arm use for up to 7 days in

patients with hemiparesis.
Participants: The inclusion/exclusion criteria for the

healthy controls and hemiparetic patients were the

same as those in the characterization study described

earlier. Additionally, patients residing outside 30 km

radius of CMC Vellore were excluded from the study.
Data collection: The patients were recruited through

the stroke clinic of CMC Vellore. Patients made a one-

time visit to the Occupational Therapy unit for initial

assessments. After obtaining informed consent, a mod-

ified AAUT39 was administered, followed by the Fugl-

Meyer Assessment for upper extremity (FMA-UE) and

the MAL. Each subject was given a pair of time-

synchronized IMU-watches and a charger to take

home. Participants were directed to wear the watch

marked R and L on the right and left wrist, respective-

ly. They were instructed to wear the watches through-

out their waking hours except when there was a risk of

the watches coming in contact with water. Patients and

healthy controls used the watches for 7 and 3 days,

respectively. These durations were chosen based on

the work by Trost et al., which recommends a mini-

mum of 3 to 5 days for activity monitoring using accel-

erometers.40 At the end of this period, the watches were

collected back for analysis.

Results

Part 1: Characterization of gross movement score

Five patients with mild-to-moderate hemiparesis

undergoing therapy at CMC Vellore (Table 1) and 10

healthy right-handed controls participated in the study.

The average age of hemiparetic patients was 35.4 �
13.21 years, while that of healthy controls was 23.2 �
3.21 years. One of the subjects (V1) had traumatic brain

injury as a teenager. Since the patient satisfied the

inclusion/exclusion criteria at the time of recruitment,

he was included in the study. No peculiarities which

required further consideration were observed in his

movement behaviour. Healthy controls performed all

15 activities while patients completed the first 10 activ-

ities (see supplementary material for more details).
Figure 4 shows four activities, the time plots of their

corresponding GM scores (blue trace), and FA scores

(orange trace) for the two arms. The time instant of the

video frames is shown at the bottom-right corner of

each frame; these time instants are also marked by a

vertical red band in the accompanying graphs below

these frames. The following observations can be made

from this figure:

(i) GM does not identify functional activities involving

fine finger movements and object stabilization, e.g.,

writing (Figure 4(a)), typing on a keyboard, etc. In

such cases, FA is 1, while GM is 0.
(ii) GM identifies functional activities involving gross

arm movements, e.g., folding a towel (Figure 4

Table 1. Demographic details of hemiparetic patients in the in-clinic study.

ID Age (yr.), Sex Months since injury Paretic side Pre-morbid handedness Cause of injury

V1 <30, M 204 Right Right TBI

V2 40–50, M 3 Left Right CVA

V3 30–40, M 12 Right Right TBI

V4 <30, F 7 Left Right TBI

V5 50–60, M 3 Right Right CVA

TBI: traumatic brain injury; CVA: cerebrovascular accident.
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(b)), wiping a table-top, etc. This is seen as 1 in

both FA and GM.
(iii) Some functional activities are identified in frag-

ments because the arm moves in and out of the
functional range (�30� of forearm pitch). For
example, when turning on a switch, the entire
activity is not detected. The instances when the
arm is within functional range are identified and

marked as GM¼ 1, while GM is marked as 0 when
the pitch of the forearm increases beyond þ30�

(Figure 4(c)).
(iv) GM does not detect non-functional movements like

arm swing during ambulation (Figure 4(c)); GM is
uniformly 0 during this activity.

The FA score had good consistency between and
within the two assessors, with an inter-and intra-rater
mean AC1 agreement of 0.91� 0.02 and 0.94� 0.02,
respectively.

For control subjects, the median accuracy of the GM
is 58.67% and 76% for the left and right arm, respec-
tively. The top panel of Figure 5 shows the category-

wise agreement analysis of GM with the FA scores for
the control subjects. GM score identifies hand activities
with 16% accuracy while the accuracy is 63% for activ-
ities involving both arm and hand. However, the

IMU-watch eliminates non-functional activities with
an accuracy of 95%. The overall median value of

false negative and false positive rates are 29% and

3%, respectively. This shows that GM is conservative

but specific in classifying functional activities.
For hemiparetic patients, the median accuracy for

the GM is 15%, 37%, and 90% for hand, armþ hand,

and non-functional activity, respectively. The median

accuracy values of armþhand activities of the more

and less-impaired arms are 30% and 44%, respectively.

These values are lower than the accuracy of control

subjects because of the high false-negative rate (57%)

in hemiparetic patients. Most of the patients recruited

for the study had slow movements that were not

detected by the IMU-watch. The false-positive rate

for non-functional movements in patients (5.26%)

was also higher than control subjects (3%) because

one of the patients had dystonic movements, which

were misclassified as functional activity.

Part 2: In-home arm use assessment of

hemiparetic patients

Five patients with hemiparesis due to stroke and five

control subjects participated in this study. The patient

demographics are given in Table 2. All patients were at

least 3months post-stroke, mild-to-moderately

impaired as measured by the FMA-UE, with MAL

scores that appeared to be related to their impairment

level. For the AAUT, patients could complete all

Figure 4. Video frames with FA (orange) and GM (blue) score during activity execution. The red vertical lines correspond to the
time at which the frame was captured for (a) writing, (b) folding a towel, (c) walking, (d) Eat from a bowl using spoon activity. The GM
identifies gross movements of the arm while removing non-functional movements.

David et al. 7



activities in the no-choice condition, but all patients

except P1 showed some level of arm non-use during

the spontaneous condition.
All patients, except P2, completed 7 days of data

recording at home. On average, subjects wore the

watch for about 11.91� 3.96 hours each day. If there

was a technical issue with the watches (e.g., improper

time synchronization between the watches due to loss

of power), patients informed the investigators. The

watches were replaced on the same day. In such

cases, the days with incomplete recordings were not

considered for analysis, and an additional day of

recording was performed to complete 7 days of record-

ing, when possible.
Figure 6 shows the time-series plot of the mean arm

use of the left (red) and right (blue) arms for a single

day for two subjects. Patient P1 (Figure 6(a)) who

showed high overall arm use for the two arms had

high FMA-UE, high MAL, and low AAUT scores.

For P1, despite the non-dominant side being more

affected, his overall arm use was comparable to the

dominant arm. In contrast, for patient P4, the overall

arm use of the more-affected dominant right arm was

much lower than the other arm; P4 had lower FMA-

UE and MAL and higher AAUT. We also observed an

overall reduction in the mean arm use graphs in P4

compared to P1.
Figure 7(a) to (f) depict the arm use scatterplots for

healthy controls and patients. Figure 7(a) shows the

pooled scatterplot of arm use data for the entire record-

ing duration from all five healthy controls. Figure 7(b)

to (f) shows the scatterplot for the five patients individ-

ually, where each plot displays the entire data collected

from a patient during the 5 to 7-day in-home assess-

ment. In these plots, the background (in blue) is the

kernel density estimate of the controls’ scatterplot in

Figure 5. Agreement analysis (Accuracy, and Gwet’s AC1 scores) of GM with FA score for all subjects. In each plot, the y-axis
represents the agreement score, while the x-axis represents the different categories of activity. (NF refers to non-functional activity).

Table 2. Demographic details of hemiparetic patients in the in-home study.

ID Age (yr.), Sex

Months

since injury

More

affected

side

Pre-morbid

handedness

MMSE

(30)

FMA-UE

(66)

MAL

(30) AAUT

RAU

(deg)

Total arm

use (AUC)

No. of

days watch

was useda

P1 30–40, M 10 Left Right 30 64 30 0/15 42.38 157.40 7(2)

P2 50–60, M 10 Left Right 29 63 25 2/15 47.16 73.87 5(1)

P3 >60, M 3 Right Right 30 60 21 4/15 36.21 126.40 7(1)

P4 50–60, M 84 Right Right 26 55 7 1/15 15.17 61.16 7(0)

P5 50–60, M 12 Left Right 28/29 60 20 2/15 31.51 118.05 7(0)

aNumber of additional incomplete days of recording is given in the brackets.

MMSE: Mini-mental State Examination; FMA-UE: Fugl-Meyer Assessment – Upper Extremity; MAL: Motor Activity Log; AAUT: Actual Amount of Use

Test; RAU: Relative Arm use; AUC: Area Under Curve.
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Figure 7(a), which serves as an indicator of the

expected normative behavior. This allows one to quick-

ly identify deviations from normal arm use behavior in

a patient’s data. An asymmetry/bias in arm use results

in points clustering towards the x-axis (less affected

side). A reduction in overall arm use leads to higher

density clusters closer to the origin.
Figure 7(a) to (f) also display the corresponding

q /ð Þ curves plotted as a function of /. The thin red

curves in Figure 7(a) correspond to data from each

control subject, and the green curve is mean q /ð Þ com-

puted from all control subjects pooled together. The

red curves in Figure 7(b) to (f) are the q /ð Þ correspond-
ing to each patient, while the green curve in the back-

ground is q /ð Þ for all controls (same as the one in

Figure 7(a)). Two trends can be observed in the patient

data compared to healthy controls:

(i) Patients have reduced total arm use: The total arm

use (area under q /ð Þ) for patients is lower than that

of healthy controls, which indicates that patients

use their arms less than age-matched controls

(right box-plot of Figure 7(g)).
(ii) Some patients have asymmetric arm use. The q /ð Þ

curves of patients P3, P4, and P5 are skewed to the

right, indicating a bias towards using the less-

affected arm. The relative arm use for these three

patients is lower than that of healthy controls
(bottom three points of the left box-plot of
Figure 7(g)).

Discussion

The current work presented: (a) a characterization
study to examine the nature of the information gath-
ered by the gross movement score, and (b) the feasibil-
ity of using two wearable IMUs to track relative arm
use in hemiparetic patients at home. Unlike previous
work that had used acceleration thresholding24 or
activity counting,29 the current work used the gross
movement score algorithm to track functional arm
use. The study provides an independent characteriza-
tion of the gross movement score algorithm proposed
by Leuenberger et al.,15 identified issues in using wear-
able technology to track arm use at home, and pro-
posed new analysis and visualization methods to
assess relative arm use.

What does the gross movement score measure?

The GM score forms the basis of the current work on
assessing relative arm use. Activity counting, employed
in previous studies,16,29 is highly sensitive to a wide
range of movements but is agnostic to a movement’s
functional utility.26 On the other hand, the GM is a

Figure 6. Change in arm use during a day. The red and blue colors represent left and right arm-use, respectively (a) Data from P1
(left impaired) (b) Data from P4 (right impaired). A near-normal overall activity with balanced use of both arms is seen in P1. The total
activity level is less for P4 with relatively more use of the less-affected side. (RAU: Relative arm use, AUC: Area under the curve which
represents total arm use.).
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systematic approach to detecting functional arm use, as
it exploits a common structure in functional activities –
most such activities are performed at the level of the
torso, which can be detected through orientation esti-
mation of a wrist-worn IMU.

For control subjects, the accuracy of GM when com-
pared with FA for left and right armþ hand activities
are 51% and 73%, respectively. This is because all the
subjects were right dominant, and in such individuals,

the left arm is primarily involved in stabilizing objects
while the right arm moves and manipulates.41 The GM
score was found to miss more functional movements of
interest (false-negative rate: 30–32%) rather than detect
non-functional ones (false-positive rate: 3–5%). Some
of the potential reasons for these discrepancies include:

(i) GM only detects movements in a pre-defined func-
tional range (�30� of pitch). Thus, arm movements

Figure 7. The graph shows the distribution of arm-use between the left and right arm and the q(/) for (a) control subjects and (b-f)
patients. The control data is shown as background for reference in the scatterplots. Note that the kernel density background is
mirrored about the x¼ y line for patients with left-hemiparesis. (g) Box plot of relative arm use and total arm-use of patients and
controls.
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in and out of this range during a functional activity

will result in fragmented GM, e.g., turning on a

switch (Figure 4(c)), grooming, etc.
(ii) It uses a velocity threshold of 15�/s to detect move-

ments. Hence very slow arm movements or pos-

tures are not detected, e.g., arm postures used for

object stabilization or supporting the body, very

slow movements of patients with high disability

(Figure 4(d)), etc.
(iii) Some of the erroneous detections by GM could be

due to involuntary or passive movements which

are not of functional significance.

The GM score’s overall accuracy was found to be

around 50–60%, which is not very reassuring. A

detailed analysis revealed that its accuracy was highly

variable between the three categories of tasks analyzed

in this study. It is accurate (>90%) in rejecting non-

functional movements, has poor sensitivity (<20%) to

hand movements, and detects armþ hand movements

with 30–70% accuracy. The overall accuracy of 50–

60% results from both the GM score’s accuracy for

these individual movement categories and the propor-

tion of the number of tasks from these categories used

in the validation study. Although the everyday activi-

ties of recovering patients are likely to be dominated by

non-functional or no movements,4 the GM score’s low

sensitivity means that it would most likely underesti-

mate the amount of arm use, which contrasts with the

activity count-based algorithms that tend to overesti-

mate arm use.

Pointers for improving arm use detection

Though the gross movement score rejects non-

functional movements and detects many gross func-

tional movements, it performs poorly in detecting fine

motor activities. There are some possible improve-

ments to the gross movement score algorithm and

other possible approaches which can address some of

its shortcomings:

(i) The functional range can be increased from �30�

to between –30� to þ90�, provided the watches are

designed to ensure patients wear them with the

correct orientation. This can improve the detec-

tion of activities like drinking water, turning on

a switch, etc.
(ii) The threshold for angular velocity (15�/s) can be

lowered for patients with lower FMA scores.

However, this should be done with care as it

could lead to overestimation of arm use in high

functioning patients and compromise its superior

specificity.

(iii) Dedicated algorithms could be used for identifying
and eliminating periods of non-functional move-
ments like ambulation and tremor.

(iv) The activity counting and gross movement score
algorithms could be combined to improve the
overall accuracy of arm use detection. For
instance, activity counting could be used to
detect arm use when the arm is in the functional
range of gross movement score algorithm.

(v) The use of patient-specific parameters (e.g., range,
velocity, etc.) for the algorithms can improve
performance.

We suspect that the aforementioned changes will
only lead to moderate gains in the overall detection
accuracy for arm use, which is likely to be lower than
detection performances achieved in other fields
employing cutting-edge machine learning
approaches.42,43 Recent work using supervised machine
learning algorithms, have shown promising results in
detecting arm use.27,31–33 Although the performance of
these machine learning approaches in patients are not
as good as those in healthy subjects, they still perform
better than activity counting or the gross movement
score algorithms. Thus, these approaches are likely to
gain traction in the coming years with an increasing
focus on patient-specific models. The development
and use of such individualized models have several
challenges that need to be overcome, including (i) gen-
erating enough annotated training dataset for each
patient, (ii) including sufficient variety of ADLs for
training machine learning models, and (iii) the choice
of appropriate algorithm for detecting arm use and dif-
ferent types of activities.

Measuring, visualizing, and interpreting relative
arm use measures

The arm use scatterplot approach for visualizing rela-
tive arm use of the two upper limbs has a similar flavor
to the one proposed by Bailey et al.29 The scatterplot
provides a measure of the overall relative arm use in a
given observation period devoid of temporal informa-
tion. However, care must be taken when trying to infer
bilateral arm use from this plot. We define bilateral
arm use as the simultaneous, coordinated use of the
two upper limbs to accomplish either a common goal
or independent goals.44 Thus, bilateral arm use requires
both arms’ gross movement scores to be 1, simulta-
neously. For example, a point Ax k½ � ¼ 20 and Ay k½ � ¼
20 implies that the two upper limbs were used for
2minutes during a particular 10-minute window, but
it does not necessarily mean they were used together
to perform a bilateral activity, i.e., the nature of use
(uni-vs. bilateral) cannot always be ascertained from

David et al. 11



mean arm use data. This issue is similar to that of the
bilateral magnitude proposed by Bailey et al.,29 where
bilateral magnitude is computed as the sum of the
activity counts of the two arms. The individual contri-
butions of the arms cannot be determined from this
sum, which was the reason for computing the magni-
tude ratio in their work.25

The scatterplots and their accompanying q /ð Þ plots
allow a qualitative comparison of the arm use behavior
of patients with controls. Healthy controls used both
upper limbs almost equally, as seen from the scatter of
points about the y ¼ x line (Figure 7(a)). The RAU was
40.52�, which indicates a slight bias towards the dom-
inant (right) side. Similar observations were made by
Bailey et al.29 The preference for the non-dominant
arm for stabilization tasks41 could be one of the rea-
sons for this bias.

Patients had lower total arm use than healthy con-
trols, similar to the observations made in the Bailey
et al. study.29 One possible contributor to the difference
in motor ability and actual arm use is a behavioral
phenomenon called learned non-use.45,46 A common
manifestation of learned non-use is through the over-
use of the less-affected arm. Patients P3, P4, and P5
showed a bias towards the less-affected arm as seen in
the scatterplot and their corresponding q /ð Þ curves
(Figure 7(d) to (f)); these three patients had the
lowest scores on the MAL. Since they only had mod-
erate levels of impairment, this shift in RAU could
indicate learned non-use in these patients. It should
also be noted that all patients in this study had good
balance and mobility, which means that a measure with
poor specificity will be insensitive to this form of bias in
arm use. Patients P4 and P5 had low AAUT scores of 1
and 2 respectively, which indicate good spontaneous
use of the paretic upper limb. However, this was not
reflected in the strong bias towards the less-affected
side seen in their MAL or RAU scores (Table 2).
This discrepancy between the findings from MAL
and RAU with that of the AAUT is most likely because
the hospital environment encourages patients to choose
their paretic side in the free choice condition of AAUT,
leading to overestimation of arm use.3 Relative arm use
of the high functioning patient P1 (RAU¼ 42.38�) was
very similar to that of healthy controls (RAU¼ 40.52�)
in terms of arm use symmetry, but the total arm use was
still smaller than healthy. The trends in arm use sym-
metry observed in this study have similarities to the
results in Bailey et al.,29 where arm use symmetry was
slightly correlated with the ARAT score.

In addition to measures and visualization of overall
arm use and its symmetry, we firmly believe that tem-
poral plots of arm use, as shown in Figure 6, are essen-
tial for understanding how the patients incorporate
their upper limbs in daily life over time. Such plots

can help identify periods of high and low upper limb
usage and provide clues about the nature of arm use,
e.g., the arm use pattern for eating during usual meal-
times. Most previous studies have removed temporal
dependence when obtaining an overall measure of
arm use16 and visualizing arm use data.16,29

Practical considerations for tracking arm use at
home

The current study identified several areas to improve
the feasibility of using IMU-watches at home for track-
ing arm use. The following are some of the design con-
siderations identified based on the feedback from the
study participants:

(i) Cosmetics of wearing two watch-like devices on
their wrists was one of the concerns raised by sub-
jects. A design where one of the devices looks like
a watch while the other looks like a band might
help address this issue. This feature will also
reduce the chances of patients accidentally swap-
ping the watches corresponding to the two arms.

(ii) Automatic time re-synchronization between the
watches is essential to prevent loss of time infor-
mation following a power reset. Sometimes when
subjects forgot to recharge the watches on time,
the watches would reset and lose their time syn-
chronization. In such circumstances, the experi-
menters had to visit the subject at home to
resynchronize the real-time clocks on the IMU-
watches. One patient used the watches for 5 days
because he was unhappy with this technical glitch
of the IMU-watches.

(iii) Immediate feedback of arm use. The arm use
assessment results with the watches were given to
patients after analyzing the data at the end of the
seven-day recording. Unanimous feedback from
patients was that they would have preferred to
receive daily feedback about the use of their
more-impaired arm. This would also encourage
patients to self-monitor their progress and increase
their compliance with using the watch.

(iv) Waterproofing the watch casing meant patients
need not remove the watch when there is a risk
of coming in contact with water.

(v) Cloud storage and processing of raw data will
reduce the need for large onboard memory storage
devices and increase power efficiency. This will
also help generate quicker feedback, which can
be remotely accessed through the smartphone or
computer of patients and clinicians.

Limitations. The gross movement score detects function-
al movements with approximately 50%–60% accuracy
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while it is robust to non-functional movements. The
characterization study revealed three main limitations
of gross movement score in its current form. Firstly, it is
insensitive to activities involving only hand movements.
This issue can be solved by either increasing the sensi-
tivity of the algorithm or by using additional sensors
like IMUs on fingers and electrophysiological record-
ings. The former method may lead to high false posi-
tives, while the latter might lower patient compliance.
Secondly, the GM algorithm has relatively high accura-
cy for detecting arm activities of control subjects but
has poor sensitivity to the slow movements in the
patient data. Thirdly, the algorithm inaccurately classi-
fies non-functional movements like dystonia in the
functional range as functional movements.
Furthermore, this study only focused on the amount
or quantity of arm use and did not explore the analysis
of movement quality during arm use. True motor recov-
ery is expected to lead to an increase in both the quan-
tity and quality of arm use.47 The analysis of movement
quality is a more challenging problem that often
requires information about the task/activity being per-
formed. For example, the smoothness of movement will
be different for pencil sketching versus writing; without
context, the first might get classified as poor quality of
movement. Future work must investigate the use of
advanced methods for identifying different tasks
during arm use and evaluate movement quality.

One limitation of this in-home feasibility study is the
small sample size of patients used for tracking arm
behavior during daily life which does not allow us to
draw general conclusions from the results. However,
the study did serve its purpose of evaluating the feasi-
bility of home-based tracking and has provided impor-
tant technical modifications required for conducting a
more extensive study for assessing arm use. Finally, we
note that the measures and visualization methods pro-
posed in the study are preliminary ideas, and the cur-
rent work did not carry out a direct comparison with
existing methods.16,24,25 All these will be the focus of
our future work in developing objective, robust, and
practical tools for assessing upper limb movement
behavior in natural settings.

Conclusion

The current work proposed an approach for relative
arm use assessment based on detecting functional
movements different from the common activity count-
ing approach. The characterization study provides a
qualitative and quantitative analysis of functional
movements identified by GM. Although the GM
score is robust to non-functional movements, its overall
accuracy in detecting functional movements is only
50–60%. Thus, there is a need for better methods for

accurate arm use detection. The work also explored the

feasibility of using wearable wrist-worn IMUs to mea-

sure relative arm use of community-dwelling hemipa-

retic patients. The work also presented new measures

and visualization methods to analyze arm use data

obtained from IMUs, which we believe is easier to

interpret than the bilateral-magnitude and magnitude-

ratio plot proposed by Bailey et al.29 The ability to

distinguish between functional versus non-functional

movements allows one to analyze these components

individually and gain a deeper understanding of a

patient’s arm use pattern.
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28. Vega-González A and Granat MH. Continuous monitor-

ing of upper-limb activity in a free-living environment.

Arch Phys Med Rehabil 2005; 86: 541–548.
29. Bailey RR, Klaesner JW and Lang CE. Quantifying real-

world upper-limb activity in nondisabled adults and

14 Journal of Rehabilitation and Assistive Technologies Engineering

https://books.google.com/books?hl=en&lr=&id=SWFQDXyU-rcC&oi=fnd&pg=PR5&ots=G9JMpzw-Jw&sig=mzrYA5lung-DLSGQhB0H_zh8Z_Y
https://books.google.com/books?hl=en&lr=&id=SWFQDXyU-rcC&oi=fnd&pg=PR5&ots=G9JMpzw-Jw&sig=mzrYA5lung-DLSGQhB0H_zh8Z_Y
https://books.google.com/books?hl=en&lr=&id=SWFQDXyU-rcC&oi=fnd&pg=PR5&ots=G9JMpzw-Jw&sig=mzrYA5lung-DLSGQhB0H_zh8Z_Y
https://books.google.com/books?hl=en&lr=&id=SWFQDXyU-rcC&oi=fnd&pg=PR5&ots=G9JMpzw-Jw&sig=mzrYA5lung-DLSGQhB0H_zh8Z_Y
https://books.google.com/books?hl=en&lr=&id=SWFQDXyU-rcC&oi=fnd&pg=PR5&ots=G9JMpzw-Jw&sig=mzrYA5lung-DLSGQhB0H_zh8Z_Y
https://books.google.com/books?hl=en&lr=&id=SWFQDXyU-rcC&oi=fnd&pg=PR5&ots=G9JMpzw-Jw&sig=mzrYA5lung-DLSGQhB0H_zh8Z_Y
https://books.google.com/books?hl=en&lr=&id=SWFQDXyU-rcC&oi=fnd&pg=PR5&ots=G9JMpzw-Jw&sig=mzrYA5lung-DLSGQhB0H_zh8Z_Y
https://books.google.com/books?hl=en&lr=&id=SWFQDXyU-rcC&oi=fnd&pg=PR5&ots=G9JMpzw-Jw&sig=mzrYA5lung-DLSGQhB0H_zh8Z_Y
https://books.google.com/books?hl=en&lr=&id=SWFQDXyU-rcC&oi=fnd&pg=PR5&ots=G9JMpzw-Jw&sig=mzrYA5lung-DLSGQhB0H_zh8Z_Y
https://books.google.com/books?hl=en&lr=&id=SWFQDXyU-rcC&oi=fnd&pg=PR5&ots=G9JMpzw-Jw&sig=mzrYA5lung-DLSGQhB0H_zh8Z_Y


adults with chronic stroke. Neurorehabil Neural Repair

2015; 29: 969–978.
30. Uswatte G, Foo WL, Olmstead H, et al. Ambulatory

monitoring of arm movement using accelerometry: an
objective measure of upper-extremity rehabilitation in
persons with chronic stroke. Arch Phys Med Rehabil

2005; 86: 1498–1501.
31. Tran T, Chang LC, Almubark I, et al. Robust classifica-

tion of functional and nonfunctional arm movement after
stroke using a single wrist-worn sensor device. In:
Proceedings of the 2018 IEEE International Conference

on Big Data. Piscataway, NJ: IEEE, pp. 5457–5459.
32. Almubark I, Chang LC, Holley R, et al. Machine learn-

ing approaches to predict functional upper extremity use
in individuals with stroke. In: Proceedings of the 2018

IEEE International Conference on Big Data. Piscataway,
NJ: IEEE, pp. 5291–5294.

33. Bochniewicz EM, Emmer G, McLeod A, et al.
Measuring functional arm movement after stroke using

a single wrist-worn sensor and machine learning. J Stroke
Cerebrovasc Dis 2017; 26: 2880–2887.

34. Howard IS, Ingram JN, K€ording KP, et al. Statistics of
natural movements are reflected in motor errors.
J Neurophysiol 2009; 102: 1902–1910.

35. Madgwick SOH, Harrison AJL and Vaidyanathan R.
Estimation of IMU and MARG orientation using a gra-
dient descent algorithm. In: 2011 IEEE international con-

ference on rehabilitation robotics (ICORR). Epub ahead
of print 2011. DOI: 10.1109/ICORR.2011.5975346.

36. Schambra HM, Parnandi A, Pandit NG, et al. Taxonomy
of functional upper extremity motion. Front Neurol 2019;
10: 857.

37. Uswatte G and Qadri LH. A behavioral observation
system for quantifying arm activity in daily life after
stroke. Rehabil Psychol 2009; 54: 398–403.

38. Xie Q. Agree or disagree? A demonstration of an alter-

native statistic to Cohen’s kappa for measuring the extent

and reliability of agreement between observers. In:

Proceedings of the Federal Committee on Statistical

Methodology Research Conference 2013 4 November.
39. Sterr A, Freivogel S and Schmalohr D. Neurobehavioral

aspects of recovery: assessment of the learned nonuse

phenomenon in hemiparetic adolescents. Arch Phys

Med Rehabil 2002; 83: 1726–1731.
40. Trost SG, McIver KL and Pate RR. Conducting

accelerometer-based activity assessments in field-based

research. Med Sci Sports Exerc 2005; 37: S531–S543.
41. Sainburg RL. Convergent models of handedness and

brain lateralization. Front Psychol 2014; 5: 1092.
42. Krizhevsky A, Sutskever I and Hinton GE. ImageNet

classification with deep convolutional neural networks,

http://code.google.com/p/cuda-convnet/ (accessed

8 April 2021).

43. Graving JM, Chae D, Naik H, et al. DeepPoseKit, a

software toolkit for fast and robust animal pose estima-

tion using deep learning. eLife 2019; 8: e.47994.
44. Kantak S, Jax S and Wittenberg G. Bimanual coordina-

tion: a missing piece of arm rehabilitation after stroke.

Restor Neurol Neurosci 2017; 35: 347–364.
45. Raghavan P. Upper limb motor impairment after stroke.

Phys Med Rehabil Clin N Am 2015; 26: 599–610.
46. Taub E, Uswatte G and Elbert T. New treatments in

neurorehabilitation founded on basic research. Nat Rev

Neurosci 2002; 3: 228–236.
47. Kwakkel G, Van Wegen EEH, Burridge JH, et al.

Standardized measurement of quality of upper limb

movement after stroke: consensus-based core recommen-

dations from the second stroke recovery and rehabilita-

tion roundtable. Int J Stroke 2019; 14: 783–791.

David et al. 15

http://code.google.com/p/cuda-convnet/

	table-fn1-20556683211019694
	table-fn2-20556683211019694
	table-fn3-20556683211019694

