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Due to many adverse effects of gestational diabetes mellitus (GDM) on the mother and
fetus, its diagnosis is crucial. The presence of GDM can be confirmed by an abnormal
fasting plasma glucose level (aFPG) and/or oral glucose tolerance test (OGTT) performed
mostly between 24 and 28 gestational week. Both aFPG and abnormal glucose tolerance
(aGT) are used to diagnose GDM. In comparison to measurement of FPG, OGTT is time-
consuming, usually inconvenient for the patient, and very often needs to be repeated.
Therefore, it is necessary to seek tests that will be helpful and convenient to diagnose
GDM. For this reason, we investigated the differences in fasting serum metabolites
between GDM women with abnGM and normal FPG (aGT-GDM group), with aFPG
and normal glucose metabolism (aFPG-GDM group) as well as pregnant women with
normal glucose tolerance (NGT) being a control group. Serummetabolites were measured
by an untargeted approach using gas chromatography–mass spectrometry (GC–MS). In
the discovery phase, fasting serum samples collected from 79 pregnant women (aFPG-
GDM, n � 24; aGT-GDM, n � 26; NGT, n � 29) between 24 and 28 weeks of gestation
(gwk) were fingerprinted. A set of metabolites (α–hydroxybutyric acid (α–HB),
β–hydroxybutyric acid (β–HB), and several fatty acids) significant in aGT-GDM vs NGT
but not significant in aFPG-GDM vs NGT comparison in the discovery phase was selected
for validation. These metabolites were quantified by a targeted GC–MS method in a
validation cohort consisted of 163 pregnant women (aFPG-GDM, n � 51; aGT-GDM, n �
44; and NGT, n � 68). Targeted analyses were also performed on the serum collected from
92 healthy women in the first trimester (8–14 gwk) who were NGT at this time, but in the
second trimester (24–28 gwk) they were diagnosed with GDM. It was found that α–HB,
β–HB, and several fatty acids were associated with aGT-GDM. A combination of α–HB,
β–HB, and myristic acid was found highly specific and sensitive for the diagnosis of GDM
manifested by aGT-GDM (AUC � 0.828) or to select women at a risk of aGT-GDM in the
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first trimester (AUC � 0.791). Our findings provide new potential markers of GDM and may
have implications for its early diagnosis.

Keywords: gestational diabetes mellitus, biomarkers, metabolomics, serum, quantitative analysis, gas
chromatography, mass spectrometry

INTRODUCTION

Gestational diabetes mellitus (GDM), the most common form of
metabolic complication in pregnancy (Tenenbaum-Gavish et al.,
2020), is defined as any degree of glucose intolerance with the
onset or first recognition during pregnancy (Sweeting et al.,
2019). GDM affects from 2 to 38% of pregnancies, depending
on the diagnostic criteria and population studied (Alesi et al.,
2021). Additionally, its prevalence worldwide is rising (Mdoe
et al., 2021). In 2017, GDM affected about 204 million women
worldwide, with a projection to increase to 308 million by 2045,
mostly in developing countries (Yahaya et al., 2020). Several
factors can impact the onset of GDM, including immune function
disorder, heredity, gene mutations, and especially the effect of
hormones (Mdoe et al., 2021). Women who had GDM have an
elevated risk to develop diabetes mellitus type 2 (T2DM) or
cardiovascular diseases, as well as obesity or hyperlipidemia in
later life (Plows et al., 2018). Consequently, the early diagnosis of
GDM could be crucial to prevent abovementioned disorders
(Buchanan et al., 2012).

Both conditions, abnormal fasting plasma glucose (aFPG) or
abnormal results of oral glucose tolerance test (OGTT), which is
an indicator of abnormal glucose tolerance (aGT), are used to
diagnose GDM. According to Smirnakis et al. (2005) and Riskin-
Mashiah et al. (2009), evaluation of fasting plasma glucose (FPG)
in the early pregnancy can be used to indicate women at risk for
GDM before the 24th week of gestation (gwk). However, recent
studies have shown that FPG in early pregnancy was a poor
predictor of GDM (Benhalima et al., 2021; Cosson et al., 2021).
On the other side, OGTT, in comparison to the single fasting
blood collection needed for an FPG measurement, is time-
consuming, inconvenient, and may induce nausea and
vomiting in some patients (Cosson et al., 2017). However, it is
still a “gold standard” for GDM diagnosis (Bogdanet et al., 2020).
Finally, even if an abnormal result for FPG is observed in early
pregnancy, the OGTT procedure very often needs to be repeated
at 24 gwk, which can be refused by some women (Cosson et al.,
2017). Consequently, markers allowing for the diagnosis of GDM
manifested solely by aGT, without performing OGTT, are
needed. Currently an OGTT screening procedure, according to
the International Association of Diabetes and Pregnancy Study
Groups (IADPSG) criteria (Gupta et al., 2015), should take place
between 24 and 28 gwk. Diagnostic or prognostic markers to
indicate GDM presence or risk of future development in the early
pregnancy are urgently needed. Early diagnosis may allow
introduction of effective prevention and care strategies, which
may ultimately reduce complications associated with GDM
(Brink et al., 2016).

Recent findings have highlighted metabolomics as a prime
candidate for evaluating potential markers for GDM (Mao et al.,

2017) because of its capacity to detect early deregulations and
disruptions in metabolism associated with different diseases
(Mojsak et al., 2021). Therefore, it can be used as a potential
tool to determine a metabolite or a set of metabolites allowing
diagnosis or prediction of GDM (Sakurai et al., 2019). According
to reviewed literature reports, several predictive biomarkers of
GDM have been suggested, e.g., specific micro-RNAs, amino
acids, fatty acids, triglycerides, phosphatidylcholines, or
carbohydrates, pyroglutamic, glutamic, phenylacetic and
pantothenic acids, xanthine or proteins such as adiponectin,
visfatin, omentin-1, fatty acid–binding protein-4, retinol-
binding protein-4, globulin, afamin, or fetuin-A (Enquobahrie
et al., 2015; Lu et al., 2016; Zhao et al., 2018; Lorenzo-Almorós
et al., 2019; Tenenbaum-Gavish et al., 2020; Tian et al., 2021).
Numerous serum or plasma metabolites such as
α–hydroxybutyric acid (α–HB) (Dudzik et al., 2017),
β–hydroxybutyric acid (β–HB) (Scholtens et al., 2014; Dudzik
et al., 2017), amino acids (Scholtens et al., 2014; Enquobahrie
et al., 2015), sugars (Enquobahrie et al., 2015), and fatty acids
(Enquobahrie et al., 2015; Dudzik et al., 2017) have shown to be
associated with this disease using various approaches such as gas
chromatography–mass spectrometry (GC–MS) (Dudzik et al.,
2017; Scholtens et al., 2014; Rahman et al., 2018; O’Neill et al.,
2018), liquid chromatography–mass spectrometry (LC–MS) (Liu
et al., 2016; Hou et al., 2018; Tian et al., 2021), and nuclear
magnetic resonance (NMR) spectroscopy (Pinto et al., 2015; Hou
et al., 2018). GC-MS is adequately sensitive to detect subtle
differences in the level of serum/plasma metabolites (Dudzik
et al., 2017) and was used in the present study.

However, until now, metabolomics studies on GDM were
focused on case-control studies, in which the case group
comprised women diagnosed with GDM (Pinto et al., 2015;
Liu et al., 2016; Hou et al., 2018). There is a lack of studies in
which GDM women were divided into separate subgroups
depending on the diagnostic scenario, i.e., women with aGT
and normal FPG (aGT-GDM group) and women with aFPG
and normal glucose tolerance (aFPG-GDM group). To the best of
our knowledge, this is the first study conducted to seek differences
in metabolic profiles between the abovementioned GDM
subgroups of patients and a control group with normal FPG
and glucose metabolism. Such an approach has the potential to
find the relevance of metabolomics in diagnosis of GDM.

MATERIALS AND METHODS

Study Group
Pregnant women (662) were screened for GDM at the
Department of Endocrinology, Diabetology, and Internal
Medicine (Medical University of Bialystok, Poland) between
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2015 and 2017. For all participants between 24 and 28 gwk,
OGTT (75 g) was performed after an overnight fast, with
blood samples collected at fasting, 1, and 2 h time points.
After clotting at room temperature, fasting serum samples
were centrifuged and then separated and frozen at –80°C until
the metabolomics assays.

Women were diagnosed with GDM if one of the following
criteria was met: fasting glucose ≥92 mg/dl, 1 h glucose ≥180 mg/
dl, or 2 h glucose ≥153 mg/dl (Metzger et al., 2010). Women were
classified as the aGT-GDM group if they met the following
criteria: fasting glucose <92 mg/dl, 1 h glucose ≥180 mg/dl,
and/or 2 h glucose ≥153 mg/dl, whilst women were classified
as the aFPG-GDM group if they met the following criteria: fasting
glucose ≥92 mg/dl, 1 h glucose <180 mg/dl, and 2 h glucose
<153 mg/dl. The control group (NGT) comprised participants
with the following criteria: fasting glucose <92 mg/dl, 1 h glucose
<180 mg/dl, and 2 h glucose <153 mg/dl. All women were
characterized by a normal (<5.7%) (Bozkurt et al., 2020)
glycated hemoglobin (HbA1c) level.

From the total number of 662 participants, 99 women were
diagnosed with GDM between 24–28 gwk; among them, 44
individuals were classified as aGT-GDM, 51 as aFPG-GDM,
and only four (excluded from this study) met the criteria to be
classified to both–GDM groups. Women from an aGT-GDM
group (n � 44) and aFPG-GDM group (n � 51) together with 68
women selected from the NGT group formed a study group (n �
163) which was also a validation cohort. From each subgroup of
the validation cohort age- and BMI-matched women were
selected for the discovery cohort. A discovery cohort
comprised 24 women with aFPG-GDM, 26 with aGT-GDM,
and 29 with NGT. Moreover, for the limited set of women
(n � 92) fasting serum samples in the first trimester
(8–14 gwk) were collected. At that period, all of the selected
subjects were characterized by the normal fasting glucose level.
However, between 24–28 gwk, some of these women were
diagnosed with aGT-GDM (n � 13), others with aFPG–GDM
(n � 12), and the rest remained NGT (n � 67). These subjects (n �
92) were included in the present study as the additional

independent validation cohort (Supplementary Table S1). A
flow chart showing classification of participants into specific
study groups is presented on Figure 1, while the detailed
anthropometric and metabolic characteristics of the groups are
listed in Table 1.

GC–MS-Based Metabolomics
Untargeted and targeted metabolomics analyses were performed
on the GC system (Agilent Technologies 7890B) consisting of an
autosampler (MultiPurpose Sampler, Gerstel, Germany) and an
accurate-mass Q-TOF (Agilent Technologies 7200) detector.
Derivative samples (1 μL) were injected into a GC column
DB5–MS (30 m length, 0.250 mm i.d., 0.25 μm film 95%
dimethyl/5% diphenylpolysiloxane) with a pre–column (10 m
J&W integrated with Agilent 122–5532G). The temperature
gradient was programmed at 60 °C (held for 1 min), with a
ramping increase rate of 10 °C/min up to 325°C (held for
10 min). The total analysis time was 37.5 min. The EI source
was operated at 70 eV. The method was RT locked at 19.663 min
(elution time of the internal standard–methyl stearate). The mass
spectrometer was operated in the scan mode over a mass range of
m/z 45–600 at a rate of 10.00 spectra/s. A detailed description of
used reagents and applied analytical conditions is available in the
Supplementary Materials File.

Extraction of serum metabolites was performed as
described previously (Mojsak et al., 2021). The
derivatization procedure was carried out in two steps. For
methoximation, 10 μL of O–methoxyamine hydrochloride
(15 mg/ml) in pyridine was added to each vial and vortexed
vigorously. The vials were incubated in darkness at room
temperature for 16 h. Then, 10 μL of BSTFA with 1% TMCS
(v/v) was added, and samples were vortexed for 5 min;
silylation was carried out for 1 h at 70°C, and finally, 100 μL
of C18:0 methyl ester (10 mg/L in heptane) was added as an
internal standard. Samples were mixed again by vortexing
gently.

The description of untargeted and targeted GC–MS data
treatment is available in the Supplementary Materials File.

FIGURE 1 | Flow chart presenting participants’ selection. Samples selected for the discovery phase are presented in blue rectangles, while those for the validation
stage, in green rectangles.
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STATISTICAL ANALYSIS

Multivariate methods such as principal component analysis
(PCA) and partial least squares–discriminant analysis
(PLS–DA) were used for data visualization. PCA and
PLS–DA models were built using SIMCA–P+ software
(13.0.3.0 Umetrics). Statistical significance of the PLS–DA
model was validated with permutation testing.

Distribution of the data was assessed by the Shapiro–Wilk test.
Student’s t–test was used for normally distributed data, whilst the
Mann–Whitney U test was used for nonparametric data.
Benjamini–Hochberg post hoc corrections were performed. The
threshold for statistical significance was 0.05. Statistical analysis
was performed by in-house built scripts for MATLAB (7.10.0.499,
MathWorks, Natick, MA, United States). Considering the criteria
of the Metabolomics Standards Initiative (Fiehn et al., 2007; Salek
et al., 2013), all statistically significant metabolites were identified
with the highest confidence level (grade 1). Discovery cohort and
both validation cohorts were analyzed independently.

Receiver operating characteristic (ROC) analysis was performed
using MedCalc ver. 18 (MedCalc Software, Ostend, Belgium). The
performance of the models was compared by applying the
nonparametric method of Delong et al. (1988). The specificity and
sensitivity were determined according to the sample class prediction
using the 7-fold cross-validation predicted values of the fittedY–predcv
(implemented in SIMCA–P+ software) for observations in the model.

RESULTS

First, we used GC–MS in an untargeted approach (metabolic
fingerprinting) to investigate the differences between aGT-GDM,

aFPG-GDM, and NGT groups in the second trimester. Metabolic
fingerprinting resulted in a total number of 96 compounds. After
data filtering, the matrix was reduced to 50 compounds. As it can
be seen in Supplementary Figure S1, quality control samples are
tightly clustered on the PCA model (panel A), whereas between-
group discrimination is displayed (panel B) on the validated
(panels C and D) PLS-DAmodel. In order to evaluate statistically
significant differences between the groups aGT-GDM vs NGT,
aFPG-GDM vs NGT, and aGT-GDM vs aFPG-GDM, the
univariate statistics was performed. The list of 31 statistically
significant metabolites is displayed in Supplementary Table S2.
Metabolites significantly discriminating study groups mainly
belong to fatty acids, hydroxy acids, and organooxygen
compounds. Only four metabolites (mannitol, cetyl alcohol,
arabitol, and p-cresol) were found significantly different in the
aFPG-GDM vs NGT comparison. Considering the comparison of
aGT-GDM and NGT groups, a great number of compounds was
represented by increased saturated fatty acids (caprylic 1.46–fold,
capric 2.5–fold, lauric 2.04–fold, myristic 1.81–fold, palmitic
1.46–fold, stearic 1.62–fold, heptadecanoic 1.82–fold, and
nonanoic 1.68–fold) and increased unsaturated fatty acids
(palmitoleic 1.6–fold, oleic 1.73–fold, and linoleic 1.81–fold) in
the aGT-GDM group. Another noticeable group of compounds
increased in the subjects with aGT-GDM compared to NGT
consisted of hydroxy acids and derivatives, with α–HB and β–HB
as the most represented (1.28–fold and 1.76–fold change,
respectively).

Fourteen of the most promising metabolites, according to the
experimental data and literature (Scholtens et al., 2014; Cobb
et al., 2015; Dudzik et al., 2017), significantly discriminating an
aGT-GDM group from the NGT group, were chosen for
quantification in both validation cohorts. Metabolites found as

TABLE 1 | Anthropometric and metabolic characteristics of the subgroups–discovery and validation cohort–second trimester (24–28 weeks of gestation).

Participants’
characteristics

Discovery cohort Validation cohort

NGT aGT-GDM aFPG-GDM NGT aGT-GDM aFPG-GDM

N 29 26 24 68 44 51
Age [years] 29 (5) 33 (6)*,a 28 (7) 28 (4) 32 (6)**,a 29 (7)
Maternal prepregnancy BMI [kg/m2] 23.4 (3.7) 23.9 (5.7) 22.4 (7.7) 22.2 (3.2) 22.8 (6.7) 23.2 (5.3)
Maternal pregnancy BMI [kg/m2] 27 (5) 26.4 (5.4) 26.2 (6.9) 25.6 (3.2) 25.65 (6.4) 26.2 (5)
BMI gain 2.7 (1.6) 2.8 (2.3) 3.4 (1.6) 2.9 (1.8) 2.6 (2.2) 2.8 (2.2)
Total cholesterol [mg/dL] 232 (81) 245.5 (72) 238.5 (54) 231 (48.5) 243 (57) 236 (62)
LDL cholesterol [mg/dL] 130.4 (71) 123 (70.1) 127.7 (48) 111.8 (53.6) 132 (39.6)* 129 (66.2)a

Triglycerides [mg/dL] 183 (68) 173 (60.8) 197.5 (105) 146.5 (55) 185 (89)* 163.5 (79.3)
HDL cholesterol [mg/dL] 73 (21.4) 72.5 (29) 68.5 (23) 90 (28) 77.5 (26.5)a 72.5 (23.8)**
HbA1c (%) 4.7 [0.4] 4.8 [0.4] 4.9 [0.5] 4.7 [0.3] 4.9 [0.3]* 4.9 [0.4]*
HbA1c (mmol/mol) 28 [4.4] 29 [4.4] 30 [5.5] 28 [3.3] 30 [3.3]* 30 [4.4]*
Fasting plasma glucose [mg/dL] 75 (8) 84 (7)*,b 94 (4.2)** 81 (5.5) 84 (6.3)*,b 94 (4)**
Glucose 1 h [mg/dL] 133 (39) 187 (16.3)**,b 138 (24) 114.5 (41.3) 184 (18.8)**,b 131 (26.5)*
Glucose 2 h [mg/dL] 109.5 [19.6] 154 [21.5]**,b 116 [22.8] 104.5 [19.4] 156.6 [22]**,b 111.5 [20.6]
Fasting insulin [μIU/mL] 10.5 (6.4) 14.3 (7.1)* 16.4 (13)* 10.9 (4.3) 13.2 (7.8)* 15.5 (10.7)**
HOMA–IR 2 (1.1) 2.9 (1.6)*,a 3.7 (3.1)** 2.2 (0.9) 2.73 (1.9)* 3.5 (2.7)**
HOMA%β 297.7 (201.5) 279.9 (112.1)a 193.6 (144.5)* 211.4 (103.6) 253.6 (109)a 169 (116.5)*
QUICKI 0.3 (0.03) 0.3 (0.02)*,a 0.3 (0.03)** 0.3 (0.02) 0.3 (0.03)*,a 0.3 (0.03)**

Data are presented as mean [SD] or median (interquartile range). Abbreviations: NGT, normal glucose tolerance; aGT–GDM, group with diagnosed GDM, based on abnormal OGTT,
aFPG–GDM–group with abnormal fasting plasma glucose, HOMA, homeostatic model assessment; IR, insulin resistance; QUICKI, quantitative insulin–sensitivity check index. Statistical
significance for NGT vs aGT-GDM, and NGT vs aFPG-GDM, comparisons: * ƿ < 0.05, ** ƿ < 0.0001. Statistical significance for aGT-GDM vs aFPG-GDM, comparison: a ƿ < 0.05,b ƿ <
0.0001. Continuous data of clinical characteristics were analyzed by Student’s t–test for normally distributed data or by the Mann–Whitney U test for the data without the normal
distribution.
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significant in the validation study for NGT vs aGT-GDM
comparison in any of validation cohorts are presented in Table 2.

We observed an increased level for all of the metabolites in the
subjects with the aGT-GDM group in comparison to NGT
individuals, which also confirms the results of fingerprinting
analysis. Interestingly, the majority of compounds (i.e., α–HB,
β–HB, myristic, lauric, palmitic, and oleic acids) were statistically
significant and shared a similar change in the concentration level
between the aGT–group and NGT in both the first and second
trimester. The only difference between the trimesters was found
for nonanoic acid and capric acid, statistically significant only in
the second or first trimester, respectively. α–HB (p � 0.00005)
and myristic acid (p � 0.000005) were found to be strongly
associated with the aGT–group. To evaluate the clinical
usefulness and predictive ability of potential biomarkers to
distinguish the aGT–group from NGT, a ROC curve analysis
was performed for all of the metabolites that passed the
validation independently as well as for the combinations of
different metabolites (Supplementary Table S3). Considering
each metabolite independently, the best predictive power to
discriminate aGT-GDM patients, characterized by fair
accuracy of the test, was found for myristic acid (Area Under
Curve, AUC � 0.787 in the second trimester and AUC � 0.759 in
the first trimester), α–HB (AUC � 0.745 in the second trimester
and AUC � 0.797 in the first trimester), and palmitic acid (AUC
� 0.754 in the second trimester and AUC � 0.745 in the first
trimester). The ROC curve and the corresponding AUC were
significantly improved when combining the selected metabolites
into different models. The combination of fatty acids myristic,
lauric, palmitic, oleic, and nonanoic (in case of the second
trimester) or capric (first trimester) acid was found to have a
good predictive ability (AUC � 0.775 in the second trimester
and AUC � 0.747 in the first trimester). Furthermore, an
addition of α–HB and β–HB to the combination of fatty
acids improved its predictive value (AUC � 0.815 in the
second trimester and AUC � 0.772 in the first trimester)
(Supplementary Table S3). However, the best diagnostic
power considering its accuracy, sensitivity, and specificity
was found for the model consisting of α–HB, β–HB, and

myristic acid (AUC � 0.828 in the second trimester and
AUC � 0.791 in the first trimester) (Figure 2).

DISCUSSION

The discussion on the most appropriate screening strategy for
GDM with OGTT at 24–28 weeks of pregnancy is ongoing
(Gupta et al., 2015). Detection in the early pregnancy of
metabolites showing subtle metabolic perturbations indicating
GDM presence or risk of development has clinical significance for
early diagnosis or prognosis (Tenenbaum-Gavish et al., 2020),
which is crucial to prevent subsequent damage in both the mother
and fetus (Brink et al., 2016). Metabolomics research can not only
propose novel diagnostic or prognostic GDM biomarkers but
may also allow monitoring of pregnancy complications for better
GDM management (Donovan et al., 2018).

Therefore, in the discovery phase of this study, we have
evaluated differences in serum metabolic profiles between the
patients with GDM diagnosed solely with aFPG or aGT in
comparison to pregnant women with NGT. Among significant
metabolites (Table 2), mainly fatty acids (palmitic, stearic, capric,
lauric, oleic, caprylic, myristic, nonanoic, heptadecanoic, and
palmitoleic acids) and both hydroxybutyric acids (α and β)
were observed. The same metabolites or metabolites from the
same classes have already been proposed by other authors as
characteristic to GDM. For instance, in the study conducted by
(Hou et al., 2018), almost a half of FFAs were elevated in GDM
patients. Dudzik et al. (2017) reported an increased level of
several fatty acids in the GDM group compared to NGT, with
stearic acid as the most represented. Enquobahrie et al. (2015)
presented the results of untargeted GC–MS analysis of serum
samples collected in the early pregnancy. Out of 17 discovered
metabolites distinguishing GDM from NGT individuals, myristic
and oleic acids were among the most abundant metabolites
within the GDM group. Despite the fact that the diagnostic
criteria used by Enquobahrie et al. (2015) were different than
in the presented study, the results for myristic acid are consistent
with ours.

TABLE 2 | Statistically significant metabolites for NGT vs aGT-GDM comparison based on the validation study results.

Metabolite 1st trimester 2nd trimester

NGT aGT-GDM aFPG-GDM NGT aGT-GDM aFPG-GDM

α-Hydroxybutyric acid [mg/L] 1.45 (0.35) 1.8 (0.45)* 1.54 (0.3) 1.26 (0.25) 1.42 (0.24)*** 1.36 (0.32)
B-Hydroxybutyric acid [mg/L] 1.28 (0.72) 1.63 (0.71)* 1.45 (0.44) 1.29 (0.46) 1.69 (1.07)** 1.47 (0.68)
Capric acid [mg/L] 0.24 (0.07) 0.32 (0.08)* 0.26 (0.07) - - -
Nonanoic acid [mg/L] - - - 0.24 (0.08) 0.27 (0.11)** 0.26 (0.11)
Lauric acid [mg/L] 0.21 (0.09) 0.28 (0.11)* 0.26 (0.08) 0.23 (0.08) 0.28 (0.11)** 0.24 (0.15)
Myristic acid [mg/L] 0.42 (0.27) 0.59 (0.13)* 0.57 (0.21) 0.47 (0.23) 0.69 (0.25)**** 0.53 (0.3)
Palmitic acid [mg/L] 13.32 (2.85) 14.75 (1.97)* 13.52 (2.67) 13.41 (2.34) 14.93 (2.7)*** 14.18 (2.36)
Oleic acid [mg/L] 38.77 (23.19) 47.7 (33.45)* 45.6 (23.73) 40.33 (16.36) 48.45 (18.15)** 39.55 (18.63)

Classification of the subgroups in the 1st trimester study group was based on the OGTT results obtained in the 2nd trimester. Data are presented as a median and interquartile range in
brackets. Statistical significance for aGT–group vs NGT, comparison: * - ƿ <0.05, ** - ƿ <0.01, *** - ƿ <0.0001, **** - ƿ <0.00001 by Mann–Whitney U test. Abbreviations: NGT, normal
glucose tolerance; aGT-GDM, group with diagnosed GDM, based on abnormal OGTT, aFPG-GDM, group with abnormal fasting plasma glucose.
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Oxidation of free fatty acids and excess acetyl-CoA
production lead to an increase in the β–HB level (Lu et al.,
2021). Increased levels of α–HB and β–HB in GDM patients in
comparison to those of NGT women were also observed by
others. In the recent study conducted by Lu et al. (2021) on the
Chinese population, an elevated level of β–HBA in the second or
third trimester was found associated with GDM. In the already
mentioned study of Dudzik et al. (2017), increased levels of
α–HB and β–HB in the GDM group as compared to NGT were
also noted. Moreover, Scholtens et al. (2014) demonstrated
broad-scale perturbations in hyperglycemic pregnant women
and compared metabolic profiles of mothers with high and

low FPG levels. Among significant metabolites, α–HB and
β–HB were noted. The study was focused largely on the
differences between high and normal fasting plasma glucose
subjects. Nevertheless, according to the clinical characteristics
presented in this report, among the individuals defined as
high–FPG, subjects with increased plasma glucose level at 1 h
or 2 h in OGTT were also present.

The elevated level of α–HB can be associated with oxidative
stress or increased insulin resistance (Meigs et al., 2007).
Oxidative stress is a result of enhanced mitochondrial
activity. To manage the resulting oxidative stress,
glutathione biosynthesis is activated, and consequently, a
demand for cysteine is increased. During the conversion of
cystathionine to cysteine, α–ketobutyric acid (α–KB) is
produced, whereas α–HB is a by–product of α–KB
formation (Dudzik et al., 2014). Another important
metabolite associated with aGT–GDM individuals is β–HB.
Besides its known role as an important ketone body, which
carries energy from the liver to peripheral tissues during
fasting or exercise, β–HB plays a significant role in cellular
processes regulation by altering the level of other regulatory
metabolites such as acetyl-CoA, succinyl-CoA, and NAD+

(Newman and Verdin, 2014). Moreover, insulin resistance is
characterized by increased lipolysis and increased fatty acid
oxidation (Bronisz et al., 2018). IR is observed in normal
pregnancy, but in the case of excessive IR and significant
β-cell dysfunction, GDM develops (Chen et al., 2019;
Kampmann et al., 2019). Increased circulating free fatty
acids (also observed in our study) have been recognized as
one of the most critical factors contributing to IR and altering
insulin secretion (Chen et al., 2019).

However, none of the abovementioned metabolomics
studies on GDM considered the differences among the
women diagnosed solely with either aGT or aFPG. These
two distinct metabolic states, but described as isolated
impaired glucose tolerance (iIGT) and isolated impaired
fasting glucose (iIFG), were previously investigated in pre-
T2DM nonpregnant individuals (Gall et al., 2010; Ferrannini
et al., 2013; Cobb et al., 2015; Cobb et al., 2016). These reports
demonstrate some consistency with the results of our study,
particularly for iIGT individuals. For instance, Gall et al. (2010)
proposed that α–HB can serve as an early biomarker of insulin
resistance and IGT in nondiabetic individuals. Its increased
level was associated with increased lipid oxidation and
oxidative stress. Furthermore, the role of α–HB in the
pathophysiology of the prediabetes state was proved by
Cobb et al. (2015; 2016). Besides the elevated concentration
of α–HB in the individuals with IGT, they also found an
increase of β–HB together with an increased free fatty acids
level, which supports the concept of using α–HB, β–HB, and
free fatty acids as biomarkers of iIGT without performing an
OGTT. As the aim of this study was to find biomarkers that
could replace OGTT, but in the case of GDM diagnosis, we
evaluated the diagnostic potential of metabolites statistically
significant for the aGT-GDM vs NGT comparison using data
obtained in the validation phase. It was confirmed that a
combination of α–HB, β–HB, and myristic acid was highly

FIGURE 2 | ROC curves analyses evaluating the clinical usefulness of
potential biomarkers to diagnose pregnant women with aGT–group from a
fasting serum sample in the second trimester. (A) Combination of α–HB,
β–HB, and myristic acid: AUC � 0.828, CI (0.745–0.892), Sensitivity �
72.7, Specificity � 79.4, p < 0.0001 (B) α–HB: AUC � 0.745, CI (0.654–0.823),
Sensitivity � 70.5, Specificity � 72, p < 0.0001.
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specific and sensitive for the diagnosis of GDM manifested by
abnormal glucose tolerance with AUC � 0.828 (Figure 2).

Samples belonging to the other validation group were collected
in the first trimester (8–14 gwk) from women with normal FPG.
However, some of these women (Figure 1) were diagnosed with
GDM between 24–28 gwk. Performed targeted analyses revealed
a similar metabolite profile in the first and the second trimester of
pregnancy, considering the change in the concentration level of
significant metabolites between aGT-GDM and NGT individuals.
Despite the fact that the number of samples from the first
trimester was limited, the comparable tendency in both time
points of pregnancy shows that α–HB, β–HB, and myristic acid
may serve as early biomarkers of later-onset GDM (AUC � 0.791,
Table S3). However, we are aware that normoglycemic women in
the first trimester did not undergo OGTT. According to the
diagnostic strategy (International Association of Diabetes and
Pregnancy Study Groups Consensus Panel et al., 2010), if the
fasting plasma glucose level at the first prenatal visit is below
92 mg/dl, women should be screened for GDM with 75 g OGTT
between 24 and 28 gwk. Therefore, because of a lack of data, we
cannot reject the possibility of the already existing aGT-GDM.
Further investigations are needed to evaluate whether the
proposed markers are strictly related to the presence of IFG or
can be considered predictive. Nevertheless, diagnosing
individuals at high risk would potentially allow the prevention
of GDM development by implementing lifestyle modifications
with adequate diet and physical activity (Tobias et al., 2011;
Zhang et al., 2016).

Based on the literature review, there are only few reports in
the literature (Ravnsborg et al., 2016; Leitner et al., 2017;
Corcoran et al., 2018; Yin et al., 2018) where the GDM
predictive metabolites found in metabolomics are subjected
to further validation. For example, Leitner et al. (2017) received
similar results for α–HBA and β–HBA as strong markers in the
prediction of GDM. This hypothesis was additionally tested by
targeted profiling of serotonin-derived metabolites, also in
urine samples, and went one step further with the
integration of plasma and urine metabolic markers to
improve the prediction accuracy of GDM in this study. Due
to this fact, the continuation of our study should be the
replication of the findings in a large cohort study and
developing methods for other matrices, which may improve
the understanding of GDM pathogenesis and may have
implications for its early diagnosis.

CONCLUSION

Our study explored differences in the serum metabolic profile in
pregnancy, firstly by untargeted, and finally by quantitative
analysis with the GC–MS technique. In the first part of the
study, we identified and confirmed a set of metabolites
representative for GDM women with abnormal glucose
tolerance but a normal FPG level (aGT-GDM group). A
combination of three metabolites (α–HB, β–HB, and myristic
acid) was found strongly associated with aGT-GDM.
Measurement of the concentrations of the proposed panel of

metabolites in the fasting serum sample has the potential to be a
useful clinical test to diagnose GDM in the second trimester of
pregnancy without the need to perform OGTT. Moreover, these
metabolites can potentially be used to identify, in the early
pregnancy, subjects with aGT-GDM or at high risk for
developing GDM manifested by abnormal glucose metabolism
in the near future. The proposed panel of metabolites can
potentially be used instead of OGTT. However, measurement
of FPG is still needed to indicate women with aFPG-GDM.
Consequently, fasting plasma glucose measurement should be
accompanied by the measurement of α–HB, β–HB, and myristic
acid in the fasting serum sample. From the perspective of
pregnant women, it will facilitate the diagnostic procedure, as
only a single fasting blood collection will be needed.
Measurement of these GDM markers can be easily performed
using a method based on chromatographic separation and MS
detection. The application of MS in clinical laboratories has
developed very well in the last decade, and this technology is
already used for such routine applications as therapeutic drug
monitoring, newborn screening, or steroid analysis (Honour
et al., 2018; Cui et al., 2020; Seger and Salzmann, 2020).
Consequently, MS combined with a separation technique can
be easily adapted to measure metabolites significant in this study.
Our work contributes to the design of novel diagnostic targets
that may facilitate precision medicine and lead to the
development of personalized diagnostics of aGT-GDM based
on the three biomarkers (α–HB, β–HB, and myristic acid).
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