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α-Synuclein fibril-specific nanobody reduces
prion-like α-synuclein spreading in mice
Yemima R. Butler1,2,6, Yuqing Liu 3,4,5,6, Ramhari Kumbhar3,4,6, Peiran Zhao1, Kundlik Gadhave3,4,

Ning Wang3,4, Yanmei Li5, Xiaobo Mao 3,4✉ & Wenjing Wang 1,2✉

Pathogenic α-synuclein (α-syn) is a prion-like protein that drives the pathogenesis of Lewy

Body Dementia (LBD) and Parkinson’s Disease (PD). To target pathogenic α-syn preformed

fibrils (PFF), here we designed extracellular disulfide bond-free synthetic nanobody libraries

in yeast. Following selection, we identified a nanobody, PFFNB2, that can specifically

recognize α-syn PFF over α-syn monomers. PFFNB2 cannot inhibit the aggregation of α-syn
monomer, but can significantly dissociate α-syn fibrils. Furthermore, adeno-associated virus

(AAV)-encoding EGFP fused to PFFNB2 (AAV-EGFP-PFFNB2) can inhibit PFF-induced α-syn
serine 129 phosphorylation (pS129) in mouse primary cortical neurons, and prevent α-syn
pathology spreading to the cortex in the transgenic mice expressing human wild type (WT)

α-syn by intrastriatal-PFF injection. The pS129 immunoreactivity is negatively correlated with

the expression of AAV-EGFP-PFFNB2. In conclusion, PFFNB2 holds a promise for mechanistic

exploration and therapeutic development in α-syn-related pathogenesis.
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Lewy body dementia (LBD) is one of the most common
dementias, including Dementia with Lewy Body (DLB) and
Parkinson’s Disease (PD) with Dementia (PDD)1–3. More-

over, Alzheimer’s Disease (AD) patients with Lewy body
pathology exhibit a more rapid and severe cognitive decline than
AD alone4. There is an urgent need for effective therapies for
LBD. LBD is characterized by the accumulation of aggregated α-
synuclein (α-syn) in the cortex. Substantial post-mortem studies
by Braak et al.5,6 and others7–9 showed that misfolded α-syn is a
prion-like protein, and its pathology spreads stereotypically. A
single administration of recombinant α-syn preformed fibrils
(PFF) can induce endogenous α-syn monomers to aggregate and
subsequent cell-to-cell transmission10–15. Both clinical and
experimental observations support the prion-like hypothesis of
aggregated α-syn fibrils16. Thus, targeting α-syn fibrils could
provide an alternative approach to study the pathogenesis and to
treat LBD and related α-synucleinopathies.

Of note, α-syn pathology and propagation are observed mainly
inside neurons and α-syn is more abundant in neurons than
in glia cells, indicating that the intracellular α-syn significantly
drives the pathogenesis17–19. There have been tremendous efforts
on the development of antibodies against α-syn (reviewed in
Vaikath et al.20); however, due to the large size and structural
complexity, antibodies have limited penetrability through the
plasma membrane21,22. Consequently, α-syn antibodies typically
do not enter cells but only target the extracellular α-syn
fibrils23–27, not accessible to the essential target, the intracel-
lular pathologic α-syn species. Furthermore, antibodies are
usually not functional in the reducing environment of the cytosol
due to the reduction of the disulfide bonds, which are critical for
the correct folding of antibodies28. In addition, antibody treat-
ment could be costly and inconvenient in long-term disease
progression29. All these gaps indicate an urgent need to generate a
reagent targeting the intracellular pathogenic α-syn.

Nanobodies are single-domain antibodies with several advan-
tages: (1) high stability30,31, (2) small size (15 kDa)31,32 and
improved brain permeability33, and (3) suitability for intracellular
expression34,35. Recent advances in adeno-associated virus
(AAV)-based gene delivery have provided an attractive approach
to continuously express recombinant proteins binding to patho-
genic targets in long-term disease treatment22,35,36. Some
nanobodies37,38, including NbSyn2 and NbSyn87, were designed
to bind to total α-syn (both monomers and aggregates). In par-
ticular, NbSyn87 targeted to the proteasome was found to reduce
α-syn pathology both in vitro and in vivo39,40. However, the total
α-syn-targeting nanobodies may perturb the physiological func-
tion of α-syn monomers, and show reduced efficacy against α-syn
pathology due to the competitive binding with α-syn monomers.
Therefore, it is necessary to develop nanobodies that specifically
bind to α-syn aggregates.

Nanobodies are normally screened under extracellular oxidiz-
ing conditions41,42 and then applied for intracellular application
under reducing conditions (e.g., intracellular cytosol). In the
traditional nanobody scaffold, there are two conserved cysteine
residues that form a disulfide bond in oxidizing conditions (e.g.,
endoplasmic reticulum, Golgi, bacterial periplasm, extracellular
environment, etc.), which is critical for the stabilization of a
nanobody’s structural folding31. However, the disulfide bond can
be disrupted in reducing conditions, resulting in changes in the
stability, folding, and function of the nanobody in some
circumstances43. Thus, it is desired to develop an extracellular
disulfide bond-free nanobody selection platform to ensure con-
sistent nanobody folding.

In this study, we designed extracellular disulfide bond-free
synthetic nanobody libraries by mutagenesis of the two conserved
cysteine residues. We generated nanobodies that preferentially

bind to α-syn fibrils, but not α-syn monomers. We determined
the specificity and efficacy of one nanobody in vitro and in vivo.
The α-syn fibril-specific nanobody will provide a tool for
pathogenesis exploration and hold promise for therapeutic
application.

Results
Preparation of human α-syn monomers and PFF. To obtain
nanobodies that preferentially bind to α-syn fibrils but not α-syn
monomers, we prepared both human recombinant α-syn
monomers and PFF following the established protocol44. Seven
days after agitation, mature α-syn fibrils were generated from α-
syn monomers, and then sonicated for α-syn PFF. Transmission
electron microscopy (TEM) showed the short fibrillar morphol-
ogy (average length 53.8 nm) of α-syn PFF, and irregular mor-
phology of α-syn monomers (Supplementary Fig. 1a, b). α-Syn
PFF and monomers were validated with a thioflavin T (ThT)
fluorescence assay (Supplementary Fig. 1c)45,46.

Design of the disulfide bond-free nanobody libraries by
mutagenesis of the conserved cysteine residues and randomi-
zation of the binding loops. Nanobodies have a framework
region consisting of β-sheets (Fig. 1a), and three variable loops
that correspond to the complementary determining regions
(CDR1, 2, and 3) constituting the antigen-binding site (Fig. 1a).
Under oxidizing conditions, two conserved cysteine residues
inside the β-sheets form a disulfide bond (orange line, Fig. 1a),
stabilizing the nanobody scaffold31. Because the folding and
function of traditional nanobodies with the disulfide bond may
change in reducing conditions from oxidizing conditions, we
generated nanobody libraries with the disulfide bond removed, by
mutagenesis of the two conserved cysteine residues, to select
nanobodies for intracellular applications.

To evaluate whether nanobodies can fold correctly and
function without the conserved disulfide bond, we introduced
C22L and C96A mutations into a published nanobody against
GFP (GFPNB, PDB, 3K1K)47. Supplementary Fig. 2 shows that
the disulfide bond-free GFPNB can still bind to EGFP to a
substantial degree on the yeast cell surface. This is consistent with
a previous study that GFPNB with these two cysteine residues
mutated maintains the nanobody’s binding function48. Therefore,
we incorporated C22L and C95A (corresponding to C96 in
GFPNB) mutations to the synthetic nanobody scaffold to
generate the disulfide bond-free nanobody libraries (Fig. 1a,
Supplementary Fig. 3a). Without immunization, we constructed
the synthetic nanobody libraries using degenerated primers to
randomize CDR1, 2, and 3 following a recent protocol42 (detailed
PCR construction in Supplementary S3 and Supplementary
Method). The CDR3 was constructed with three different lengths
with 7, 11, or 15 amino acids totally randomized with NNK
degenerated codons to generate three libraries: DNA library 7, 11,
and 15. The nanobody library size obtained for each library was
~1 × 107, covering only part of all the possible amino acid
combinations. These nanobody libraries were displayed on the
yeast surface via fusion to the binding subunit of α-agglutinin
protein Aga2p, a yeast surface protein (Fig. 1b) following an
established protocol49.

Selection of nanobodies against α-syn PFF. Next, we performed
the selection of disulfide bond-free nanobodies against α-syn PFF.
As illustrated in Fig. 1b, nanobodies were expressed on the yeast
surface by fusion to the C-terminus of Aga2p, followed by the
FLAG tag. α-Syn PFF was incubated with the yeast cell libraries
to allow binding to nanobody clones. Then, mouse anti-α-syn
monoclonal antibody (mAb) (BD Biosciences) was added to label
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α-syn PFF bound on the yeast cell surface, followed by the
incubation with anti-mouse IgG conjugated with, either magnetic
beads for magnetic-activated cell sorting (MACS) or fluorophores
for fluorescence-activated cell sorting (FACS). By using MACS,
nanobody clones binding with α-syn PFF were selected in the first
round of sorting from a large population of yeast cells (~5 × 108

cells). From the MACS enriched clones, we performed 5 more
rounds of FACS and MACS (Fig. 1b) to enrich nanobody clones
binding with α-syn PFF (Fig. 1c). Details of the selection process
are described in Supplementary Fig. 3b, c.

From the enriched yeast cells, we extracted the plasmid DNA
and re-transformed the DNA into bacterial cells for individual
clone sequencing. From the 40 nanobody clones that were
sequenced, 28 unique clones were identified (Supplementary
Table 1). We re-transformed these nanobody clones into yeast
cells for further characterization of the individual clones.
Supplementary Fig. 4 shows that all these 28 clones showed
preferential binding to α-syn PFF over α-syn monomers.
Henceforward, we refer to these nanobodies as PFF-nanobodies
(PFFNBs).

Because CDR3 is the antigen-binding loop with the most
variations, we performed an amino acid analysis of loop3 for the
selected PFFNBs. The majority of the selected clones consist of a
CDR3 with 7 amino acids randomized (Supplementary Fig. 5a).
The selected PFFNBs tend to be rich in hydrophobic and
positively-charged residues in the CDR3 (Supplementary Fig. 5b).
These PFFNBs may exhibit preferential binding to α-syn PFF
through hydrophobic and ionic interactions.

In vitro characterization and validation of the selected
PFFNB2 binding to α-syn PFF. To validate the PFFNBs’ binding
with α-syn PFF, we made PFFNB constructs fused with maltose
binding protein (MBP) at its N-terminus for protein expression
in E. coli (BL21). However, all of these nanobody proteins were
retained in the cell pellet when expressed in E. coli (BL21) except
for the positive control, GFPNB (C22L, C95A). This indicated
that these PFFNBs are less stable than GFPNB (C22L, C95A)
(Supplementary Fig. 6a). Successful expression of soluble PFFNBs
was achieved by supplementing chaperon protein (plasmid
pGro7) to BL21(C14) E. coli cells. Recombinant MBP-PFFNBs
with a prominent band at the correct molecular weight were then
observed in both the crude cell lysate and the semi-purified
protein extract (Supplementary Fig. 6b) with polyacrylamide gel
electrophoresis (PAGE) analysis. Supplementary Fig. 6c showed
PAGE analysis of recombinant proteins which were later used in
this study.

We picked seven out of the 28 PFFNB clones for the initial
testing. These nanobody clones were expressed, purified, and
immunoblotted against α-syn PFF and monomers with native-
PAGE. As published, anti-α-syn mAb (BD Biosciences) can detect
total α-syn (monomers and aggregates) (Fig. 2a)50. Among the
seven nanobody clones tested, MBP-PFFNB2 was identified to
specifically bind α-syn aggregates, but not to α-syn monomers
(Fig. 2a). Next, we performed ELISA to evaluate PFFNB2’s
selective binding for α-syn PFF. MBP-PFFNB2 showed prefer-
ential binding to α-syn PFF (EC50, 163.0 nM) over α-syn
monomers (EC50, undetermined) (Fig. 2b). This ELISA result
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Fig. 2 In vitro characterization of PFFNB2 binding to α-syn PFF and aggregates. a Native-PAGE immunoblot of human α-syn monomers and PFF with
PFFNB2 and anti-α-syn monoclonal antibody (mAb). PFFNB2 binds selectively to the high molecular weight (MW) α-syn but not to the low MW α-syn.
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coated with 3 ng/μl of α-syn PFF or monomers, and then titrated with 3.3, 33.3, 66.7, 133.3, 266.7, 666.7, and, 1333.3 nM of PFFNB2. Three data points
were collected for each concentration and shown as mean ± SEM. The experiment was replicated once with similar result. c AAV-transduced EGFP-PFFNB2
(green) signal co-localized with the immunostaining of anti-pS129 in HEK293T cells stably expressing α-syn(A53T) induced by α-syn PFF. Green, EGFP-
PFFNB2 signal. Red, anti-pS129 immunofluorescence signal. White arrows indicated the co-localization between EGFP-PFFNB2 and pS129 α-syn. Scale bar,
40 μm. d Quantification of co-localization between pS129 α-syn signal to PFFNB2 using Pearson correlation. Data were analyzed from 103 puncta. The box
ranges from the first to the third quartile of the distribution with median indicated as line across the box. The whiskers are the minimum and maxima of the
data. e ELISA analysis of PFFNB2 binding to mouse brain lysate. KO, Snca knock-out mouse; PBS, transgenic mouse expressing human α-syn with striatal-
PBS injection; PFF, transgenic mouse expressing human α-syn with striatal-PFF injection. Wells were coated with 3 ng/μl of each brain lysate, and then
detected with 2, 15, 50, 100 nM of PFFNB2. Two data points were collected for each concentration. The experiment was replicated once with similar result.
Source data are provided as a Source Data file.
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is consistent with the result of native-PAGE immunoblot. To
exclude any role of MBP in the binding, we further determined
that MBP does not bind to α-syn PFF with ELISA (Supplemen-
tary Fig. 7a). Anti-α-syn mAb50 and MBP-NbSyn8738 exhibited
comparable (non-selective) binding affinities toward α-syn PFF
and monomers (Supplementary Fig. 7b, c). Further characteriza-
tion with ELISA showed a similar binding affinity of MBP-
PFFNB2 to human α-syn(A53T) PFF (EC50, 176.4 nM), a familial
PD mutant51, compared to human wild type (WT) α-syn PFF
(Supplementary Fig. 7d).

To evaluate the functional difference of PFFNB2 with or
without disulfide-bond, we added back cysteines to residues 22
and 95. Re-introduction of the disulfide bond significantly
reduced the binding affinity of PFFNB2 with α-syn PFF
(Supplementary Fig. 7e). This suggests that disulfide bond may
cause changes in the nanobody scaffold resulting in loss of
function, which supports the rationale of generating disulfide
bond-free nanobody libraries.

Next, we evaluated the expression and binding of PFFNB2 to α-
syn PFF in the cytosol of mammalian cells. To study the
interaction between α-syn aggregation and PFFNB2 in cells, we
administered α-syn PFF to HEK293T cells co-expressing human
α-syn(A53T) and EGFP-PFFNB2, following an established
protocol52. Two days later, the cells were fixed and immunos-
tained to assess the co-localization between EGFP-PFFNB2 and
phosphorylated α-syn at serine129 (pS129). pS129 is a typical
pathological α-syn marker11,53. Figure 2c showed that the pS129
level increased 2 days after α-syn PFF transduction, consistent
with the previous study52. The puncta formed by the EGFP-
PFFNB2 fusion protein (green) co-localized with the immunos-
taining of anti-pS129 (red puncta) (Fig. 2c, d). This result
indicated that intracellularly-expressed PFFNB2 has the proper
folding and function. More importantly, PFFNB2 not only binds
to recombinant α-syn PFF, but also binds to the cellular inclusion
of pS129-positive α-syn aggregates (Fig. 2c, d). We also attempted
to perform the immunostaining of PFFNB2 in fixed cells
containing α-syn aggregates (either with methanol fixation or
paraformaldehyde fixation). However, there was no specific signal,
probably because fixation could alter the conformational epitope
of α-syn aggregates54. In brief, PFFNB2 can recognize pS129-
positive α-syn aggregates in live cells, but not in fixed samples.

To further characterize the binding of PFFNB2 to α-syn
pathology in brain samples, we prepared three types of brain
samples: (1) α-syn transgenic mouse (PAC-Tg(SNCAWT), strain:
01071012,55) harboring Snca knockout allele, and a transgene
encoding the human α-syn with intrastriatal injection of α-syn
PFF, followed by 1-month incubation, which is PFF group; (2)
PAC-Tg(SNCAWT) mice with striatal-PBS injection (PBS
group); (3) Snca knockout (KO group) mice (C57BL/6-
Sncatm1MJMjff/J, strain: 01612355,56). A total of six fractions were
isolated (i.e., soluble and insoluble) from these three types of
mouse brains using well-established protocols12,44. The pS129-
positive α-syn pathology was first validated using immunoblot in
the insoluble fraction of the PFF group, but not in the other five
fractions (Supplementary Fig. 7f). Next, we performed ELISA on
these brain samples with PFFNB2 at four different concentrations
(2 nM, 15 nM, 50 nM and 100 nM). PFFNB2 exhibits higher
binding to the insoluble fraction of the PFF group than the other
five groups at concentrations of 15 nM, 50 nM and 100 nM
(Fig. 2e). Taken together, these results showed that PFFNB2 can
selectively bind to the native form of α-syn aggregates in mouse
brain lysate.

The dissociation of α-syn fibrils by PFFNB2 in vitro. Because
PFFNB2 can specifically bind to α-syn PFF, we further evaluated

whether PFFNB2 can affect α-syn aggregation. To determine
whether PFFNB2 can inhibit α-syn aggregation, we performed an
α-syn aggregation assay using 2 mg/ml recombinant α-syn
monomers with 0.04 mg/ml (2%) recombinant MBP-PFFNB2
or MBP. MBP-PFFNB2 cannot significantly reduce the ThT
signal in the α-syn aggregation assay compared to the MBP
group, indicating that MBP-PFFNB2 cannot inhibit α-syn
aggregation (Supplementary Fig. 8).

We then sought to determine whether PFFNB2 can disag-
gregate α-syn fibrils. Mature α-syn fibrils were generated (the
preparation step before sonication for α-syn PFF) as published44,
and then incubated with MBP-PFFNB2 or MBP alone for 15 days
(37 °C, 1000 r.p.m.). We assessed the level of α-syn aggregation
using a ThT assay, and found that MBP-PFFNB2 can significantly
reduce the ThT signal of α-syn fibrils, compared to the MBP
group (Fig. 3a). There is no significant reduction of the ThT
signal in the MBP group (Fig. 3a). We further assessed the
morphology of the α-syn fibrils with TEM, and found that MBP-
PFFNB2 can disrupt the fibrillar structures (Fig. 3b) with reduced
fibril length (Fig. 3c). No appreciable change of fibril morphology
or fibril length was observed in the MBP group (Fig. 3b, c).

Because fibrillar α-syn exhibits elevated β-sheet secondary
structure57,58, we further determined whether MBP-PFFNB2 can
reduce the β-sheet-enriched structure of α-syn fibrils with circular
dichroism (CD) spectroscopy. Figure 3d showed the typical
negative peak at 218 nm of the β-sheet secondary structure of α-
syn fibrils. The addition of MBP-PFFNB2, but not MBP, reduced
the negative ellipticity at 218 nm. Lastly, MBP-PFFNB2 signifi-
cantly reduced the mean diameter of α-syn fibrils compared to
MBP with dynamic light scattering (DLS) (Fig. 3e), which is
consistent with the abovementioned ThT, TEM, and CD results.
Taken together, our results showed that PFFNB2 can destabilize
α-syn fibrils.

AAV-EGFP-PFFNB2 decreased α-syn pathology in primary
cortical neurons. Encouraged by the dissociation result, we fur-
ther evaluated whether PFFNB2 can reduce α-syn pathology in
WT mouse primary cortical neurons. AAV encoding EGFP-
PFFNB2 (AAV-EGFP-PFFNB2) was added to cortical neurons at
5 days in vitro (DIV), followed by the administration of α-syn
PFF at 7 DIV. AAV encoding EGFP (AAV-EGFP) was used as
the control. Both substantial expression of EGFP in the AAV-
EGFP and AAV-EGFP-PFFNB2 groups appeared at 11 DIV
(Supplementary Figs. 9a, 8b). There was no difference in neuro-
toxicity 10 days after AAV transduction (neurons 15 DIV)
between these two groups (Supplementary Fig. 9c, d). Substantial
immunoreactivity of anti-pS129 in the AAV-EGFP group was
observed in cortical neurons 7 days after α-syn PFF administra-
tion as published10. In contrast, AAV-EGFP-PFFNB2 induced a
significant reduction of the immunoreactivity of anti-pS129
(Fig. 3f, g). Of note, in the experimental timeline, α-syn PFF was
administered at 7 DIV, and EGFP-PFFNB2 expression was pro-
minent at 11 DIV cortical neurons, 4 days after the PFF
administration. This indicated that AAV-EGFP-PFFNB2 exhib-
ited efficacy in inhibiting α-syn PFF-induced pathology in cortical
neurons.

AAV-EGFP-PFFNB2 prevented α-syn pathology spreading to
the cortex induced by intrastriatal injection of α-syn PFF
in vivo. To test the efficacy of PFFNB2 in mediating human α-syn
pathology in vivo, we chose the α-syn transgenic mouse (PAC-
Tg(SNCAWT), strain: 01071012,55) lacking endogenous mouse α-
syn but expressing human α-syn. We performed intraventricular
injection of AAV encoding either EGFP-PFFNB2 or EGFP to
these neonatal mice following the well-established protocol59.
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Two months after AAV injection, intrastriatal injection of α-syn
PFF was performed on these mice when in the adult age, to
induce α-syn pathology spreading to the cortex that was exam-
ined one month later11 (Fig. 4a).

One month post-striatal-PFF injection, we assessed the EGFP
expression in the cortex, and the immunoreactivity of anti-pS129
in the cortex of these mice. The intraventricular injection of the
AAV with synapsin promoter resulted in the expression of EGFP
in the neurons of the cerebral cortex (Figs. 4a, c, 5a–c), consistent
with the published study59. The EGFP was mainly expressed in
the motor and somatosensory cortical regions (~12–18%)

(Fig. 5b, c). Two cortex sub-regions with high intensity expression
of EGFP were chosen for analysis. Substantial immunoreactivity
of anti-pS129 was observed in the AAV-EGFP group (Figs. 4b–e,
5a–c), indicating that α-syn pathology spread from the striatum
to the cortex. In contrast, a significant decrease of pS129 level was
detected in the AAV-EGFP-PFFNB2 group (Figs. 4b–e, 5a–c).
Furthermore, we performed the correlation analysis between
the intensity of EGFP expression and pS129 immunoreactivity.
The results showed that pS129 immunoreactivity is negatively
correlated with the intensity of EGFP in the AAV-EGFP-PFFNB2
group, and there is no relevant correlation in the AAV-EGFP
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group (Fig. 5d). In another, there is no significant reduction of
pS129 level in the striatum of the AAV-EGFP-PFFNB2 group,
which could be attributed to the absence of EGFP-PFFNB2
expression in the striatum (Supplementary Fig. 10a, b). Taken
together, AAV-EGFP-PFFNB2 can effectively prevent pathogenic
α-syn spreading to the cortex in the striatal-PFF mice model.

Discussion
Fibrillar α-syn aggregates are prion-like seeds propagating
throughout the brain, which is a major driver in the pathogenesis
of LBD, PD, and related α-synucleinopathies7–9. It is important
and necessary to generate reagents that specifically target α-syn
fibrils. To address this, we establish an extracellular disulfide

bond-free nanobody selection platform that allows the generation
of nanobodies with consistent folding and function in both
intracellular and extracellular environments. We generated and
identified a nanobody (PFFNB2) that specifically binds to α-syn
PFF, but not to α-syn monomers. PFFNB2 dissociated α-syn
fibrils in the solution, inhibited α-syn pathology in vitro, and
prevented α-syn pathology from spreading to the cortex by AAV-
transduction. We expect that these PFFNB-related agents hold
great promise as a potential therapeutic strategy against α-syn-
related pathogenesis.

Native α-syn monomers play an important role in vesicle
trafficking and refilling at synapses60–62. Thus, targeting α-syn
monomers may result in the imbalance between the reserved and
releasable vesicles, and impair neurotransmitter uptake by the
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vesicles62,63. Non-conformationspecific reagents (e.g., antibody,
nanobody) might also disrupt the balance of α-syn monomers
and tetramer64,65, and α-syn tetramer has been reported to inhibit
α-syn aggregation. Of note, α-syn fibrils are more toxic than other
species66 (e.g., oligomer, ribbon). Thus, targeting α-syn fibrils is
critical for therapeutic development against LBD, PD, and related
α-synucleinopathies.

Considering the observation of cellular α-syn pathological
inclusions and abundant expression of cytosolic α-syn monomers
in neurons, it is critical to block the intracellular propagation of
endogenous α-syn induced by the internalized α-syn seeds. The
efficacy of α-syn fibril-specific antibodies in reducing α-syn
pathology has been reported27. However, antibodies have poor
membrane penetration ability and are usually not functional in
the reducing cytosolic environment21,22, and therefore, can only
target extracellular α-syn fibrils23–27,67, limiting their impact on
the pre-existing intracellular α-syn aggregates. A study has
reported that single-chain antibody fragment (scFv) D5 binding
to α-syn oligomer can inhibit α-syn fibrillization68 and toxicity69.
However, intracellular expression of scFV tends to aggregate,
which could compromise its therapeutic effects35. Overall,
nanobodies are preferred over conventional antibodies or scFVs
for intracellular applications, as they are small, monomeric,
stable, and commonly expressed inside cells31. We believe this
work provides a proof-of-concept that targets intracellular α-syn
aggregates using AAV transduced α-syn-fibril-specific nanobody
can effectively reduce pathology propagation.

In this study, we focus on using AAV-PFFNB2 to target intra-
cellular α-syn aggregates against pathogenic α-syn spreading. Of
note, emerging evidence also suggests the importance of exogenous
α-syn aggregates in α-syn cell-to-cell transmission, by entering

neurons and seeding endogenous α-syn aggregation12,70,71.
Encouragingly, two α-syn antibodies, PRX00223,72,73 and
MEDI134174 that bind to total α-syn, have exhibited efficacy in
ameliorating the disease phenotype of PD models when admi-
nistered extracellularly, and they are currently in Phase II (ID:
NCT03100149) and Phase I (ID: NCT04449484) clinical trial,
respectively. More study is needed to evaluate the efficacy of
exogenously applied PFFNB2 in preventing the neuronal uptake of
α-syn PFF and subsequent α-syn propagation. If recombinant
PFFNB2 can inhibit the effects of exogenous α-syn PFF when
administered extracellularly, we will then modify the AAV-
PFFNB2 system to secret PFFNB2 to the extracellular space.
PFFNB2 could also be expressed in a bacteria-based expression
system, which is higher-yielding and more cost-effective than the
eukaryotic cell-based system used for conventional antibody
production75. Further bioengineering efforts on PFFNB2 will also
be necessary to improve brain penetration76.

Because the conserved cysteine residues will not form a dis-
ulfide bond in the reducing environment of the bacterial cyto-
plasm during the selection process, an intracellular bacterial
selection platform could be advantageous for selecting nano-
bodies without forming a disulfide bond77. However, an extra-
cellular nanobody selection platform such as yeast surface display
is still needed, for selecting nanobodies against targets that can
only be supplemented extracellularly, such as α-syn PFF. In the
extracellular nanobody selection platform, the conserved cysteine
residues would form a disulfide bond during the selection process.
Therefore, in our library design, we introduced cysteine muta-
tions to remove the disulfide bond even in the extracellular oxi-
dizing condition. Although a previous study48,77 showed that
removing the conserved disulfide bond in nanobodies does not
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have a significant effect on their binding affinity in the reducing
environment, our study suggests that the disulfide bond can
change the binding property of a nanobody. Thus, it is important
to generate a nanobody framework exhibiting consistent binding
property from the selection stage to final applications.

In summary, we have demonstrated the feasibility of selecting
disulfide bond-free nanobodies that can be stably expressed in the
cytoplasm to target the α-syn fibrillar form over the monomeric
form. As a research tool, expressing EGFP-PFFNB2 in specific
brain regions of mouse models with α-syn pathology propagation
would enable interrogation of their functions in disease pro-
gression. PFFNB2 could be utilized to study pathology develop-
ment in different brain regions and their effects on the alleviation
of behavioral and cognitive deficits. Lastly, with further investi-
gation and development, PFFNB2 holds therapeutic promise for
treating LBD, PD, and related α-synucleinopathies.

Methods
This research complies with all relevant ethical regulations. The animal studies
were approved by Johns Hopkins University Animal Care and Use Committee
(ACUC). All animal studies were performed according to the NIH Guide for the
Care and Use of Experimental Animals and the guidelines of the Institutional
Animal Care Committee of the Johns Hopkins University.

α-Syn PFF generation. Recombinant human WT and A53T α-syn monomers
were purified following the established protocol44. Briefly, Full length human WT
or A53T α-syn containing pRK172 vector were expressed in BL21(DE3) E. coli. α-
syn monomers were subsequently purified using Hi-Trap Q HP anion exchange
column (GE Healthcare Life Sciences). To obtain α-syn PFF, the purified α-syn
monomers were diluted in phosphate buffer saline (PBS) (5 mg/ml) followed by
agitation for 7 days (1000 r.p.m., 37 °C) to prepare the mature fibrils. Then the
aggregates were collected by centrifugation and resuspended with endotoxin-free
PBS. The aggregates were sonicated for 1 min into PFF (1 s on, 1 s off, 30%
amplitude) with a sonicator (Branson Ultrasonics). The concentration of α-syn was
determined by BCA assay (Thermo Fisher Scientific). To confirm aggregate forma-
tion, recombinant α-syn monomers or PFF were diluted in PBS buffer (100 μg/ml)
followed by incubation with 50 μM Thioflavin T (ThT). The ThT fluorescence was
measured using a plate reader (Varioskan LUX plate reader, Thermo Fisher Scientific)
with excitation at 450 nm and emission at 485 nm. To perform TEM analysis, a drop
of 30 μl α-syn monomers or PFF sample (100 ng/μl) were loaded onto carbon-coated
400 mesh copper grids (Electron Microscopy Sciences). The grids were washed with
30 μl water three times and then negatively stained with 2% uranyl formate. The
excess buffer was removed by filter paper. The images were acquired with Philips/FEI
BioTwin CM120 Transmission Electron Microscope.

Nanobody library generation. Nanobody libraries were constructed by over-
lapping polymerase chain reaction (PCR), combining a series of degenerated pri-
mers to generate the DNA encoding full-length nanobody. Degenerated bases were
used to randomize CDR1, 2, and 3. Three different lengths were constructed for
CDR3 to generate Library 7, 11, and 15 (the number corresponds to the number of
amino acids randomized on CDR3). To enable homologous recombination of these
randomized nanobody DNA constructs into the yeast vector backbone, these DNA
constructs are flanked with 42 base pairs that are overlapping with the pCTCON2
vector backbone. The pCTCON2 vector was previously engineered to contain
Aga2p and FLAG-tag with NheI and BamHI cut sites in between for nanobody
gene insertion. After homologous recombination, nanobodies were expressed on
yeast surface with FLAG-tag at its C-terminus to monitor nanobody expression.
Details of construction with primer sequences and the sequence of nanobody
libraries could be found in Supplementary Table 3 and 4. A detailed description of
the nanobody library construction using overlapping PCR is included in the Sup-
plementary Method.

After preparation of the linearized vector and randomized nanobody PCR
fragments, we followed the established protocol for yeast competent cell
preparation and electroporation78. Briefly, EBY100 yeast competent cells (Thermo
Fisher Scientific) were pre-conditioned with 100 mM lithium acetate and 1 mM
dithiothreitol and then electroporated with a mix of the nanobody PCR fragments
and linearized vector. Electroporated yeast cells were grown in SDCAA media
(synthetic dextrose plus casein amino acid, 2% dextrose, 0.67% yeast nitrogen base
without amino acids (BioBasic), 0.5% Bacto casamino acids (Difco), 0.54%
disodium phosphate, 0.856% monosodium phosphate) lacking tryptophan as a
selection marker at 30 °C and 200 r.p.m. for 24 h. The library size of the nanobody
libraries generated was ~1 × 107 for each library.

PFFNB selection and DNA sequence analysis. Roughly 1.5 × 108 yeast cells from
each library (Library 7, 11, and 15) were cultured and protein expression was

induced with 1:10 dilution of SDCAA in SGCAA media (synthetic galactose plus
casein amino acid, 2% galactose, 0.67% yeast nitrogen base without amino acids
(BioBasic), 0.5% casamino acids (Difco), 0.54% disodium phosphate, 0.856%
monosodium phosphate) overnight at 30 °C. The next day, the yeast cells grew up
to 108 cells/ml. About 5 × 108 cells were pelleted to be incubated with α-syn PFF for
1 h at room temperature (RT). Following that, the yeast cells were immunostained
with mouse anti-α-syn mAb (1:200 dilution, BD Biosciences, Cat no. 610787) for
1 h at RT. For MACS, yeast cells were kept in MACS buffer (PBS pH 7.2, 0.5%
Bovine Serum Albumin, 2 mM EDTA). Then cells were immunostained first with
goat anti-mouse-AlexaFluor 647 antibody (1:400, Thermo Fisher Scientific, Cat no.
A21235) and then anti-Cy5-microbeads (20 uL/107 cells, Miltenyi Biotech, Cat no.
130-042-401), each for 30 min at RT. After immunostaining, yeast cells were loaded
onto the LS column (Miltenyi Biotech) followed by 3× washing with MACS buffer.
LS column was then removed from the magnetic apparatus and flushed with
MACS buffer to elute the bound cells.

For FACS, the yeast cells were first incubated with PFF, followed by primary
antibodies mouse anti-α-syn mAb (1:200 dilution, BD Biosciences, Cat no. 610787)
and rabbit anti-FLAG antibody (1:200 dilution, Sigma, Cat no. F7425) and then
secondary antibodies goat anti-mouse IgG-AlexaFluor 568 antibody (1:400
dilution, Thermo Fisher Scientific, Cat no. A11004) and goat anti-rabbit IgG-
AlexaFluor 647 antibody (1:400 dilution, Thermo Fisher Scientific, A21245). FACS
sorting was performed using BD FACSAria III cell sorter and BD FACSDiva
software (BD Biosciences). Analysis of the FACS plot was performed using FlowJo
software. After several rounds of alternating MACS and FACS, the nanobody DNA
plasmids were isolated and re-transformed to XL1-Blue E. coli competent cells.
Forty PFFNB clones were sequenced and analyzed with Sanger sequencing.

Yeast re-transformation. From the 40 PFFNB clones sequenced, 28 unique clones
were identified and re-transformed into yeast chemical competent cells individually
using Frozen-EZ yeast Transformation Kit (Zymo Research). Each of these
nanobody clones was labelled with α-syn PFF or monomers and then immunos-
tained and analyzed using BD FACSAria III (BD Biosciences) as described above in
PFFNB selection.

PFFNB protein expression and purification. The PFFNBs were cloned into the
pYFJ16 plasmid for protein expression and purification (listed in Supplementary
Table 4). For Native-PAGE gel immunoblotting experiment, ELISA and dissocia-
tion assay, HisTag-MBP-FLAG, MBP-PFFNB2-FLAG, MBP-PFFNB2(L22C,
A95C)-FLAG, and MBP-NbSyn87-FLAG were used (see Supplementary Table 3
for details). The PFFNB clones were transformed into BL21 E. Coli (C14) (gift from
Dr. Haoming Zhang, University of Michigan) expressing a set of chaperones from
plasmid pGro7 (Takara Bio). The transformed BL21 cells were grown in 5 ml Luria
Broth (LB) media overnight at 37 °C and 220 r.p.m. The next morning, the 5 mL
bacterial cultures were transferred to 500 ml LB and grown until OD600= 3. Then,
1 mM IPTG was added to cells to induce protein expression. Cells were shaken at
220 r.p.m. and 16 °C for 16 h.

Cells were pelleted and lysed using B-PER Bacterial Protein Extraction Reagent
(Thermo Fisher Scientific). The soluble proteins in the cell lysates were extracted
first with Ni-NTA resin (New England Biolabs) and then size exclusion gel
chromatography (AKTA Go, Cytiva). The purified proteins were analyzed with
SDS-PAGE.

Mouse brain lysis and fractionation. Soluble and insoluble fractions of brain
lysates were prepared as previously described50. Briefly, brain tissue was homo-
genized in soluble lysis buffer (10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM
EDTA, 0.5% Nonidet P-40, complete protease inhibitor cocktail, and Phosphatase
Inhibitor). Tissue homogenate was centrifuged at 20,000 g for 30 min and the
supernatant (soluble fraction) was collected and stored. The pellet was washed with
soluble lysis buffer and the resulting pellet was resuspended into the insoluble lysis
buffer (10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 0.5% Nonidet P-40,
complete protease inhibitor cocktail, and Phosphatase Inhibitor) containing 1%
SDS and 0.5% sodium deoxycholate. The homogenate was sonicated for 10 s (2 min
on, 3 min off) and centrifuged at 20,000 g for 30 min to collect the insoluble
fraction.

Immunoblot analysis. Samples were separated on Native-PAGE™ Bis-Tris Gels
(Thermo Fisher Scientific) and transferred to PVDF membranes (Bio-Rad). The
membranes were blocked with 5% BSA in TBST (Tris-buffered Saline-Tween 20)
overnight at 4 °C. Then the membranes were incubated with purified MBP-
PFFNB2-FLAG (~4 μg/ml) or mouse anti-α-syn mAb (1:2000 dilution, BD Bios-
ciences, Cat no. 610787) in TBST with 5% Bovine Serum Albumin overnight at
4 °C. Mouse-anti-Flag-HRP antibody (1:5000 dilution, Sigma-Aldrich, Cat no.
A8592) or anti-mouse IgG-HRP (1:5000 dilution, GE Healthcare, Cat no. NA931)
were used as secondary antibody followed by incubation with SuperSignal West
Pico Plus chemiluminescent substrate (Thermo Fisher Scientific). The images were
acquired and processed with ImageQuant LAS 4000mini scanner (GE Healthcare
Life Sciences) and Amersham Image 600 (GE Healthcare Life Sciences).

The soluble and insoluble fractions of brain lysates were resolved on 15% Tris-
glycine gel and transferred to PVDF membranes for analysis with rabbit anti-α-syn
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(1:1000 dilution, Cell signaling, Cat#4179), rabbit anti-α-syn (pS129) (dilution
1:1000, Abcam, Cat no. ab51253) and mouse anti-ß-actin peroxidase (1:10,000
dilution, Millipore Sigma, Cat no. A3854) antibodies.

ELISA. To determine the EC50 of PFFNB2 (in Fig. 2b), 300 ng of α-syn PFF or
monomers were diluted in 100 μl of coating buffer (0.2 M sodium carbonate buffer
pH 9.4). α-Syn PFF or monomers were plated on 96-well plates (Greiner Bio-One)
(100 μl/well) followed by shaking at 200 r.p.m. at 4 °C overnight. Wells incubated
with coating buffer served as the blank. The next day, all treatments were done at
RT, with 200 r.p.m. shaking on a microplate shaker. First, each well was decanted
and washed with 200 μl washing buffer (25 mM Tris, 150 mM NaCl, Tween 0.05%,
pH 7.2) for 3 min. The washing step was repeated three times. Then the wells were
blocked with SuperBlock blocking buffer containing 0.05% Tween-20 (Thermo
Fisher Scientific) for 30 min, followed by incubation with purified recombinant
MBP-PFFNB2-FLAG protein in SuperBlock at concentrations of 3.3, 33.3, 66.7,
133.3, 266.7, 666.7, and 1333.3 nM. The wells were then washed three times before
incubation with mouse-anti-FLAG antibody (Sigma-Aldrich, 1:1000 dilution, Cat
no. F3165) in SuperBlock for 1 h. Lastly, the wells were washed and incubated with
Goat anti-mouse-IgG-HRP antibody (Thermo Fisher Scientific, 1:5000 dilution,
Cat no. 31430) in SuperBlock for 1 h. 100 μl of TMB substrate (Thermo Fisher
Scientific) were added into the wells and incubated for 15–30 min until blue color
appeared. The reaction was stopped with an ELISA stop solution (Thermo Fisher
Scientific). The absorbance of processed TMB substrate at 450 nm was quantified
with a microplate reader (BioTek Cytation 5) and Gen5 software. Similar proce-
dures were applied to acquire data in Fig. 2e, Supplementary Fig. 7a–e.

For Fig. 2e, 3 ng/μl of soluble or insoluble mouse brain lysates were used to coat
the wells. For Supplementary Fig. 7a, 3 ng/μl of α-syn PFF were used to coat the
wells then MBP-PFFNB2-FLAG and MBP-FLAG (as control) were used for
titration. For Supplementary Fig. 7b, a similar ELISA protocol was used, except that
α-syn PFF and monomers were plated on white opaque 96 well-plates (Costar) and
the signal was detected using SuperSignal ELISA Pico chemiluminescent substrate
(Thermo Fisher Scientific). For Supplementary Fig. 7c, purified MBP-NbSyn87-
FLAG was used for titration of α-syn PFF and monomers. For Supplementary
Fig. 7d, 3 ng/μl of recombinant human α-syn PFF with and without A53T mutation
were used for coating the plates. For Supplementary Fig. 7e, MBP-PFFNB2-FLAG
and MBP-PFFNB2 (L22C, A95C) were used for titration.

HEK293T cell culture. HEK 293T/17 cell line (ATCC, cat#: CRL-11268) were used
in this study and tested every 3 months for mycoplasma contamination by DNA
staining. Cell morphology was also visually checked and the doubling rate was
quantified (~24 h). No misidentified cell line was used in this study. Cells (<20
passages) were cultured at 37 °C under 5% CO2 in complete growth media (1:1
DMEM (Dulbecco’s Modified Eagle Medium, Gibco): MEM (Eagle’s Minimal
Essential Medium) supplemented with 10% FBS (Fetal Bovine Serum, Sigma),
50 mM HEPES (Gibco), and 1% Penicillin-Streptomycin (Gibco). All plates and
flasks used for cell culture were pre-treated with 20 µg/mL human fibronectin
(Millipore Sigma) for 10 min at 37 °C.

Production of lentiviruses. For the HEK293T cell experiment in Fig. 2c, d, the
EGFP-PFFNB2 fusion gene was cloned into a modified pLX208 lentiviral vector
that does not have a hygromycin selection marker (Supplementary Table 4). For
generating α-syn stable cell line, α-syn(A53T) DNA (Integrated DNA Technolo-
gies) was cloned into the pLX208 plasmid with a hygromycin selection marker.
2.5 µg of these lentiviral DNA were then mixed with 0.25 µg pVSVG and 2.25 µg
Δ8.9 lentiviral helper plasmid in 250 µl of DMEM. Then, the DNA mix was
incubated with 25 µL PEI max solution (1 mg/ml, Polysciences) at RT for at least
10 min. The DNA and PEI mix was finally added to 70–90% confluent
HEK293T cells in the T25 flask. After incubation at 37 °C for 36–48 h to allow
lentivirus production, the supernatant with lentiviruses was collected for either
immediate use or was flash frozen in liquid nitrogen and stored at −80 °C for
future use.

α-Syn(A53T)-HEK293T stable cell line generation. HEK293T cells were
infected with lentiviruses expressing α-syn(A53T) monomers and selected with
150 µg/ml hygromycin (Thermo Fisher Scientific). α-syn(A53T)-expressing stable
cell line was validated by immunostaining using mouse anti-α-syn mAb (1:2000
dilution, BD Biosciences, Cat no. 610787) and goat anti-mouse-AlexaFluor 568
(1:2000 dilution, Thermo Fisher Scientific, Cat no. A11004).

HEK293T cell lentiviral infection and α-syn PFF transduction in α-syn(A53T)-
stable cell line. For confirmation of PFFNBs binding to PFF in mammalian cells,
HEK293T cells stably expressing α-syn(A53T) were plated on 24-well glass-bottom
plates at 40–60% confluence. After 2 h incubation at 37 °C under 5% CO2 in
complete growth media, the cells were then transduced with 10 ng recombinant
human α-syn PFF using BioPorter (Genlantis). Three hours after transduction,
100–200 µl of each supernatant lentiviruses encoding EGFP-PFFNB2 was added to
the cells. Cells were incubated for two more days before immunostaining.

Immunostaining and immunofluorescence analysis of α-syn PFF-transduced
HEK293T cells. Two days after transduction with or without α-syn PFF,
HEK293T cells expressing EGFP-PFFNBs were fixed with 4% paraformaldehyde.
The fixed cells were permeabilized using 0.1% Triton-X, followed by blocking with
5% BSA in PBS. Cells were stained with rabbit anti-p129S primary antibody
(1:1000 dilution, Abcam, Cat no. ab51253) and DAPI (1:1,000, Bio-Rad, Cat no.
1351303) for 1 h at RT. The secondary stainings were performed with anti-rabbit
IgG-AlexaFluor 568 (1:2000 dilution, Thermo Fisher Scientific, Cat no. A11036) for
1 h at RT.

Confocal imaging was performed on a Nikon Eclipse Ti2 inverted confocal
microscope with 60X oil-immersion objectives, outfitted with Yokogawa CSU-X1
5000RPM spinning disk confocal head and ORCA-Flash 4.0 LT+ sCMOS camera.
The following combinations of laser excitation and emission filters were used for
corresponding fluorophores: DAPI (405 nm excitation; 455/50 emission), EGFP
(488 nm excitation; 525/36 emission), Alexa Fluor 568 (568 nm excitation; 605/52
emission). Region with high pS129 signal were chosen as region of interest (ROI),
then the Pearson correlation analysis was performed using Nikon NIS-Elements
software.

Preparation of concentrated AAV with AAV1/2 mixed serotype. For the
neuron culture infection and animal experiments, EGFP and EGFP-PFFNB2 fusion
genes were cloned into AAV2 vector under synapsin promoter (Supplementary
Table 4). To produce AAV, 3× T150 flasks of HEK293T cells (<20 passages, 100%
confluency) were each transfected with 5.2 μg AAV vector, 4.35 μg AAV1, 4.35 μg
AAV2 serotype plasmids, and 10.4 μg pDF6 adenovirus helper plasmid using PEI
max. After 36–48 h incubation at 37 °C under 5% CO2, cells were collected with
10 mL DPBS and centrifuged at 30 g at RT for 5 min. The pellet was resuspended in
20 mL 100 mM NaCl, 20 mM Tris (pH= 8.0) and lysed with 1 mL freshly prepared
10% sodium deoxycholate (Sigma). Benzonase nuclease (Sigma) was added to a
final concentration of 50 units per mL and the solution was incubated at 37 °C for
1 h with gentle agitation followed by centrifugation at 11,000 g for 10 min.

A heparin column (GE Healthcare) was first equilibrated with 10 ml of 100 mM
sodium chloride (NaCl), 20 mM Tris (pH= 8.0) using a peristaltic pump. The viral
supernatant was then loaded to the column followed by serial washing steps with
20 ml of 100 mM NaCl, 20 mM Tris (pH 8.0), 1 ml of 200 mM NaCl, 20 mM Tris
(pH 8.0) and 1 ml of 300 mM NaCl, 20 mM Tris (pH 8.0). The AAVs were eluted
sequentially with 1.5 ml 400 mM NaCl, 20 mM Tris (pH 8.0); 3.0 mL 450 mM
NaCl, 20 mM Tris (pH 8.0) and 1.5 ml 500 mM NaCl, 20 mM Tris (pH 8.0). The
eluted virus was concentrated using Amicon Ultra centrifugal units (Sigma) with a
100,000 Da cut off and buffer exchanged into sterile 20 mM Tris, 150 mM NaCl,
0.05% PF68 solution to a final volume of ~100 μl. The concentrated AAV was
stored at −80 °C. AAV titer was measured with qPCR.

Primary cortical neuron culture. Before primary cortical neuron culture, tissue
culture plates were coated with Poly-L-Ornithine and washed three times with
autoclaved milli-Q water. Primary cortical neurons were cultured from embryonic
15.5 days pups of CD-1 pregnant mice (Charles River) in Neurobasal Medium with
B-27 Supplement (Thermo Fisher Scientific).

AAVs with titer 3.6 × 1010/μl were applied to primary cortical neurons on day 5.
Then, α-syn PFF were treated into neurons on day 7 followed by incubation for
7 days before α-syn pathology assay. To check neurotoxicity, primary cortical
neurons were transduced with AAVs with titer 3.6 × 1010/μl on day 5 and
incubated further for 10 days before immunostaining with anti-NeuN antibody
(Millipore-Sigma, MAB377).

Animals. PAC-Tg(SNCAWT) mice (Strain: 010710) and C57BL/6-Sncatm1MJMjff/J
mice (strain: 016123) were obtained from the Jackson Laboratory. Pregnant CD-1
mice (Strain: 022) were used for primary cortical neuron cultures (Charles River).
All mice were housed under standard condition of constant temperature of
(22 ± 1 °C), relative humidity of 42%, and 12 h light cycle with food and water.
These animal studies were approved by Johns Hopkins University ACUC. All
animal studies were performed according to the NIH Guide for the Care and Use of
Experimental Animals and the guidelines of the Institutional Animal Care Com-
mittee of the Johns Hopkins University.

Intraventricular injection of AAV. Intraventricular injection of AAV was per-
formed as soon as the pups are nursing. The pups were transferred from the
warming pad to the cold metal plate to induce hypothermia anesthesia. Injection
sites were marked at 2/5 of the distance from the lambda suture to each eye then
the needle was inserted to a depth of 3 mm. One μl of AAV1/2 mixed serotype
AAV with titer 3.6 × 1010/μl were delivered into both hemispheres. After com-
pleting injections, the pups were placed back on the warming pad and monitored
for wound healing and recovery after surgery.

Stereotaxic injection. Two-month-old PAC-Tg(SNCAWT) mice (Jackson
Laboratory) were anesthetized with a mixture of ketamine and xylazine before
injection. α-Syn PFF (5 μg for each mouse) were briefly sonicated and stereo-
tactically injected into the striatum at a rate of 0.2 μl per minute with the following
coordinates: +2.0 mm medial-lateral; +0.2 mm antero-posterior; +2.6 mm
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dorsoventral from bregma. The needle was maintained in place for another 5 min
after injection, and then slowly removed from the brain. After surgery, the mice
were monitored for wound healing and recovery. For histological studies, the mice
were sacrificed one month after injection followed by perfusion with ice-cold PBS
and 4% paraformaldehyde. Mouse brains were fixed in 4% paraformaldehyde
overnight and then transferred to 30% sucrose in PBS. A series of 40 μm coronal
sections were prepared for immunostaining.

Immunofluorescence analysis of α-syn PFF-treated primary cortical neuron
culture and α-syn PFF-injected brain section. Primary cortical neurons were
fixed with 4% paraformaldehyde followed by permeabilization with 0.2% Triton
X-100. The cells were incubated overnight at 4 °C with rabbit anti-α-syn (pS129)
antibody (dilution 1:1,000, Abcam, Cat no. ab51253) as primary antibody for α-syn
pathology assay or mouse anti-NeuN antibody (dilution1:500, Millipore-sigma, Cat
no. MAB377) for neurotoxicity, then incubation with anti-rabbit IgG secondary
antibodies conjugated to Alexa-fluor 568 (1:1000 dilution, Thermo Fisher Scien-
tific, Cat no. A11036) and Hoechst (1:5000 dilution, Thermo Fisher Scientific, Cat
no. 62249) for 1 h at RT. For brain sections, 40 μm thick brain sections were
blocked in with 10% goat serum with 0.3% Triton X-100 for 1 h at RT and then
immunostained with the same method as culture studies. All images for primary
cortical neuron culture and brain sections were taken with Zeiss Axio Observer Z1
then analyzed with Zen Lite software and ImageJ.

α-Syn fibrils dissociation assay and transmission electron microscopy (TEM).
α-Syn fibrils were first generated by incubation of 2 mg/ml α-syn in PBS, pH 7.4 at
37 °C for 7 days at 1000 r.p.m. For in vitro dissociation assay, 5 μM of α-syn fibrils
were incubated with 250 nM MBP or MBP-PFFNB2 for up to 15 days at 37 °C at
1000 r.p.m. The reaction mixture was taken out from an incubation solution at a
different time interval (0, 2, 4, 8, 12, 15 days). 20 μM final concentration of ThT
was added into clear bottom 96 well microplate (Invitrogen, Cat no.M33089), and
fluorescence intensity was measured at 450 nm excitation and 485 nm emission
wavelength using a Varioskan lux (Thermo scientific) multimode microplate
reader. All measurements were performed in triplicate. All ThT fluorescence results
were normalized with the ThT signal at zero time. The morphological analysis of
PFFNB2 mediated α-syn fibrils dissociation was analyzed with TEM. Briefly, 10 µl
of samples were diluted ten times and adsorbed on 400 mesh carbon-coated copper
grids (Ted Pella, Inc, USA). Excess liquid was adsorbed by lint-free tissue paper and
incubated for 1 min, following negatively stained with 2% uranyl acetate for 1 min.
After the film dried, images were captured via TEM (Hitachi) with accelerating
voltage at 80 kV. The length of the fibrils was measured using the open-source
image processing program ImageJ.

Dynamic light scattering (DLS) analysis. DLS experiments were performed to
study the changes in the mean diameter of α-syn fibrils in the presence and absence
of PFFNB2. 10 μl of fibrils were mixed with 990 μl of filtered PBS. Measurements
were performed in Zetasizer Nano-ZS from Malvern Instruments with He-Ne laser.
Each sample was measured in single-use polystyrene semi-micro disposable cuv-
ettes (Fisher Emergo, Landsmeer, The Netherlands) with a path length of 1 cm. The
cell holder was maintained at 25 °C for all measurements. For each sample, 10 runs
were performed, with three repetitions. Data were processed using the Malvern
Zetasizer Software. The error bars displayed on the DLS graphs were obtained by
the SD of measurements in triplicates.

Circular dichroism (CD) spectroscopy. The far-UV CD spectra were recorded
from 195–250 nm using an Aviv model 420 spectrometer (Aviv Biomedical, Inc.
Lakewood, NJ, USA). CD spectra were collected in a 1 mm path length cuvette at
25 °C with the data pitch of 1 nm. For all spectra, an average of three scans was
obtained. Smoothing of CD data was done by keeping points of the window ‘5’ for
removing noise from signals. The secondary structural changes in α-syn fibrils with
PFFNB2 were predicted based on its negative peak at 218 nm and positive peak at
195 nm.

Statistical analysis. All statistical analyses were performed using GraphPad Prism
8.0 and GraphPad Prism 9.3.1. Analysis of primary cortical neuron and animal
experiments were performed based on at least three independent experiments.
Statistical significance was determined by unpaired two-tailed Student’s t test or
one-way ANOVA test with Tukey’s correction. P value lower than 0.05 was con-
sidered to indicate a significant difference.*P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
PDB-4LDE and PDB-3K1K cited in this study are accessible from Protein Data Bank. All
the data supporting the findings of this study are available within the paper and its

supplementary information files. Source data are provided with this paper. All the DNA
constructs used in this study are available upon request to the corresponding author.
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