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Endometrial and cervical cancers, uterine myoma, and endometriosis are very common
uterine diseases. Worldwide, more than 800,000 women are affected annually by gyneco-
logical cancers, as a result of which, more than 360,000 die. During their reproductive age,
about 70% of women develop uterine myomas and 10–15% suffer from endometriosis.
Uterine diseases are associated with aberrant inflammatory responses and concomitant
increased production of prostaglandins (PG). They are also related to decreased differen-
tiation, due to low levels of protective progesterone and retinoic acid, and to enhanced
proliferation, due to high local concentrations of estrogens. The pathogenesis of these
diseases can thus be attributed to disturbed PG, estrogen, and retinoid metabolism and
actions. Five human members of the aldo-keto reductase 1B (AKR1B) and 1C (AKR1C)
superfamilies, i.e., AKR1B1, AKR1B10, AKR1C1, AKR1C2, and AKR1C3, have roles in these
processes and can thus be implicated in uterine diseases. AKR1B1 and AKR1C3 catalyze
the formation of PGF2α, which stimulates cell proliferation. AKR1C3 converts PGD2 to
9α,11β-PGF2, and thus counteracts the formation of 15-deoxy-PGJ2, which can activate
pro-apoptotic peroxisome-proliferator-activated receptor γ. AKR1B10 catalyzes the reduc-
tion of retinal to retinol, and thus lessens the formation of retinoic acid, with potential
pro-differentiating actions. The AKR1C1–AKR1C3 enzymes also act as 17-keto- and 20-
ketosteroid reductases to varying extents, and are implicated in increased estradiol and
decreased progesterone levels. This review comprises an introduction to uterine diseases
and AKR1B and AKR1C enzymes, followed by an overview of the current literature on the
AKR1B and AKR1C expression in the uterus and in uterine diseases. The potential impli-
cations of the AKR1B and AKR1C enzymes in the pathophysiologies are then discussed,
followed by conclusions and future perspectives.
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UTERINE DISEASES
Uterine diseases include malignant diseases, such as endometrial
cancer and cervical cancer, and benign diseases, which include
mainly uterine myoma (myoma uteri, uterus myomatosus) and
endometriosis.

ENDOMETRIAL CANCER
Endometrial cancer is the fourth-most-common cancer in Europe
and the sixth-most-common cancer worldwide, with the majority
of cases arising in post-menopausal women (Ferlay et al., 2008).
For 2010, 303,071 new cases and 77,671 deaths were estimated

Abbreviations: 5α-DHP, 5α-dihydroprogesterone; ADH, alcohol dehydrogenase;
AKR, aldo-keto reductase; ALDH, aldehyde dehydrogenase; AP1, activator protein
1; COX-2, cycloxygenase-2; FA, farnesoic acid; FAL, farnesal; FOH, farnesol; FT,
farnesyltranserase; GABA, γ-aminobutyric acid; GGA, geranylgeranoic acid; GGAL,
geranylgeranial; GGOH, geranylgeranyol; GGT, geranylgeranyltransferase; GTPases,
guanine nucleotide triphosphatases; IL, interleukin; MAPK, mitogen-activated pro-
tein kinase; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells;
PCLY, prenylcystein lyase; PG, prostaglandin; PKC, protein kinase C; PLC, phospho-
liase C; PPARγ, peroxisome-proliferator-activated receptor γ; RARs, retinoic acid
receptors; RXRs, retinoid X receptors; TNF, tumor necrosis factor.

(Ferlay et al., 2008). Most endometrial cancers are sporadic and
only 10% of cases are familiar (Amant et al., 2005; Ryan et al.,
2005). The sporadic cases can be divided into two subgroups: type
1, the estrogen-dependent endometrioid carcinomas (80%); and
type 2, the poorly differentiated, more aggressive form, which is
considered to be estrogen independent (20%; Inoue, 2001). Type 1
endometrial cancer is related to exposure to estrogens (of endoge-
nous or exogenous origins) that is not opposed by progesterone or
synthetic progestins. This exposure increases the mitotic activity
of endometrial cells, along with the number of DNA replication
errors and can lead to somatic mutations that result in a malignant
phenotype (Inoue, 2001). Development of endometrial cancer is
also associated with a number of risk factors, such as obesity, nul-
liparity, early age at menarche, late onset of menopause, among
others (Wallace et al., 2010). In the last few years, it has also
been suggested that inflammation contributes to the initiation
and progression of endometrial cancer (Wallace et al., 2010). The
prostaglandins (PGs) are mediators of inflammation, and they
have important roles in the pathogenesis of endometrial cancer.
PGE2 and PGF2α are formed locally in cancerous endometrium,
where in autocrine/paracrine manners, they can stimulate cell
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proliferation, cell adhesion, cell migration, and angiogenesis (Sales
et al., 2005, 2008; Wallace et al., 2010).

CERVICAL CANCER
Cervical cancer is the seventh-most-common cancer in women
in Europe and the third-most-common cancer worldwide. The
majority of cases are detected in developing countries, where it
accounts for 13% of all female cancers (Ferlay et al., 2008). For
2010, 553,119 new cases, and 288,109 deaths were estimated as due
to cervical cancer (Ferlay et al., 2008). The average age at onset is
45–55 years. The pathology of cervical cancer is related to infec-
tion with human papillomavirus (HPV) the DNA of which has
been detected in 90% of cervical cancer cases (reviewed in Faridi
et al., 2011). HPV, especially high-risk HPV16 and HPV18, are
the vectors that confer susceptibility to neoplastic conversion or
that directly induce malignant phenotypes in the infected epithe-
lial cells by their oncoproteins E6 and E7, which block the normal
functions of the tumor suppressor genes p53 and the retinoblas-
toma protein (pRb; reviewed in Faridi et al., 2011). Cervical cancer
is also related to chronic inflammation of the cervix, due to cellu-
lar and molecular changes that can be triggered by human semen,
which increase the concentration of cytokines and chemokines.
Higher levels of PGE2 are considered as possible promoters of cer-
vical carinogenesis (Herfs et al., 2009). Some studies have shown
that risk of cervical cancer increases with use of oral contracep-
tives, and recently it has been reported that estrogens can promote
HPV-induced carcinogenesis (Chung et al., 2010).

UTERINE MYOMAS
Uterine myomas are also known as leiomyomas or uterine fibroids
(myoma uteri or uterus myomatosus). These are benign tumors of
the myometrium that occur in up to 70% of women of repro-
ductive age (Maybin et al., 2011). As such, they are the most
common tumors of women of reproductive age, although they
have clinically significant symptoms in only one-third of the
affected population (Miller, 2008). The majority of cases are thus
asymptomatic; when symptomatic, these myomas can be linked
to heavy menstrual bleeding, anemia, and even pregnancy com-
plications, which can include difficulty conceiving and increased
risk of miscarriage (Miller, 2008). Myomas appear after menar-
che and decline after menopause, which implicates estrogens as
the primary factor that drive their growth. The pathophysiol-
ogy of uterine myomas is far from clear. At the molecular level,
several pathways were associated with this disease, including the
retinoic-acid pathway, growth-factor signaling, and extracellular-
matrix formation (Zaitseva et al., 2007). Recently, myomas have
also been related to aberrant inflammation (Maybin et al., 2011).

ENDOMETRIOSIS
Endometriosis is a complex, estrogen-dependent disease that is
defined as the presence of endometrial glands and stroma out-
side the uterine cavity (Giudice and Kao, 2004). It is diagnosed
mainly in women of reproductive age, and estimates show that up
to 15% of all pre-menopausal women, and 35–50% of women
with infertility and pelvic pain are affected (Giudice and Kao,
2004). Ectopic endometrial tissue can be found in different parts
of peritoneal cavity, thus forming three different entities: ovar-
ian, peritoneal, and deep infiltrative endometriosis (Nisolle and

Donnez, 1997). The pathogenesis of endometriosis is very com-
plex and remains not completely understood. The most widely
accepted is the theory on retrograde menstruation and disturbed
immune system (Berkley et al., 2005). However, the pathogenesis
also involves changes in apoptosis, cell adhesion, degradation of
the extracellular matrix, angiogenesis, cell communication, loss of
differentiation capacity (Hompes and Mijatovic, 2007), as well as
alterations in other biological pathways (Giudice and Kao, 2004).
Also environmental factors, increased local formation of estra-
diol, and diminished progesterone action affect the development
of endometriosis (Giudice and Kao, 2004; Berkley et al., 2005).
Enhanced inflammation has been seen in eutopic endometrium
of endometriosis patients, and growth of the endometrium in
ectopic sites leads to chronic pelvic inflammatory responses, as
supported by the increased concentrations of PGE2 and PGF2α in
the peritoneal fluid of endometriosis patients (Banu et al., 2009;
Lousse et al., 2010). PGE2 regulates proliferation of endometri-
otic cells, immune suppression, and angiogenesis (Wu, 2005; Wu
et al., 2007, 2010), while both PGE2 and PGF2α promote tran-
scription of angiogenic factors, such as vascular epithelial growth
factor (Jabbour et al., 2006).

THE ENZYMES OF THE AKR1B SUBFAMILY
There are two well-characterized human members of the aldo-
keto reductase 1B (AKR1B) subfamily, AKR1B1 and AKR1B10.
These AKR1B enzymes are known as aldose reductases, and they
catalyze the reduction of aldehydes to alcohol (glucose to sorbitol
in the polyol pathway, and retinal to retinol) and the reduction
of a series of other substrates (Table 1; Penning and Drury, 2007;
Barski et al., 2008).

AKR1B1 is the most studied of the AKRs. The reduction of
glucose by AKR1B1 during hyperglycemia has been linked to
the development of tissue injury associated with diabetes. There-
fore, a number of AKR1B1 inhibitors have been developed for
the treatment of diabetic complications (reviewed by Liu et al.,
2009; Ramana, 2011; Srivastava et al., 2011; Tammali et al., 2011).
In addition to reduction of glucose to sorbitol in the polyol
pathway, AKR1B1 catalyzes the reduction of further substrates
(Table 1), which include lipid peroxidation products, such as 4-
hydroxynonenal, and their glutathione (GSH) conjugates, with
a higher catalytic efficiency reported for the latter (Barski et al.,
2008; Kabututu et al., 2009; Ramana, 2011; Table 1). Recombinant
AKR1B1 also acts as a PG synthase, as it can convert PGH2 into
PGF2α with a lower K M and a higher V max compared to AKR1C3
(Kabututu et al., 2009). As confirmed by gene silencing, transient
transfection studies, and the use of specific inhibitors, AKR1B1 is
a functional PGF2α synthase (Bresson et al., 2011). Over the last
few years, the involvement of AKR1B1 in inflammatory pathways
has also been reported. By reducing GSH conjugated aldehydes,
AKR1B1 indirectly stimulates NF-κB, which can lead to activation
of the inflammatory cytokines and the inflammatory mediators,
such as cycloxygenase-2 (COX-2; Barski et al., 2008; Ramana, 2011;
Figure 1). AKR1B1 has also been implicated in the development of
human cancers, such as liver, breast, ovarian, and cervical cancers
(reviewed by Alexiou et al., 2009). It is also associated with resis-
tance toward anticancer drugs, such as the anthracycline antibiotic
danorubicin, and cisplatin (Tammali et al., 2011).
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Table 1 | Kinetic parameters of the AKR1B1 and AKR1B10 enzymes.

Substrate AKR1B1 AKR1B10 References

K M (μM) k cat (min−1) k cat/K M

(mM−1 min−1)

K M (μM) k cat (min−1) k cat/K M

(mM−1 min−1)

d,l-Glyceraldehyde 65 33 507 563 29 52 Shen et al. (2011)

4-Hydroxynonenal 716 50 70 31 119 3,839 Shen et al. (2011)

GS-4-hydroxynonanal 5 13 2,600 ND ND ND Shen et al. (2011)

d,l-Glyceraldehyde 50 31 620 5.7 35 6,140 Ruiz et al. (2011a)

All-trans-retinal 1.1 0.35 318 0.6 27 45,000 Ruiz et al. (2011a)

All-trans-retinol NA NA NA 0.4 4.3 12,750 Ruiz et al. (2011a)

9-cis-retinal ND ND ND 0.7 0.9 1,300 Ruiz et al. (2011a)

PGH2 1.9 0.93 491 ND ND ND Kabututu et al. (2009)

PGH2 29 6.06 210 ND ND ND Nagata et al. (2011)

Farnesal 37 27 730 2.5 23 9,100 Endo et al. (2011)

Geranylgeranial ND ND ND 0.9 7.5 8,300 Endo et al. (2011)

NA, no activity; ND, not determined.

FIGURE 1 |The implications of AKR1B and AKR1C enzymes in

prostaglandin biosynthesis and action, and metabolism of lipid

peroxidation-derived aldehydes. AKR1B1 reduces
lipid-peroxidation-derived aldehydes, such as 4-hydroxynonenal (HNE) and
their GSH conjugates, such as the GSH conjugates of HNE (GS-HNE) to
GS-DHN. GS-DHN activates the phospholiase C (PLC)/protein kinase C
(PKC) pathway and transcription factor NF-κB, which stimulates expression
of inflammatory mediators, such as cyclooxygenease-2 (COX-2) and thus
leads to pathological inflammation and proliferation. AKR1C3 and AKR1B
convert PGH2 to PGF2α, while AKR1C3 and also AKR1C2 convert PGD2 to
9α,11β-PGF2. These two prostaglandins activate the FP receptor, which in
turn activates mitogen-activated protein kinase (MAPK) and NF-κB.
Additionally, the MAPK inactivate peroxisome proliferator-activated receptor
γ (PPARγ), which controls cell growth. By reducing PGD2, AKR1C3 and
AKR1C2 prevent the non-enzymatic formation of pro-apoptotic 15d-PGJ2,
which would activate PPARγ and inactivate NF-κB.

AKR1B10 has 71% identical amino-acid residues to AKR1B1
and overlapping substrate specificities. With respect to retinols,
AKR1B10 has a 100-fold higher catalytic efficiency toward all-
trans-retinal, 9-cis-retinal, and 13-cis-retinal (Barski et al., 2008).
AKR1B10 thus counteracts the formation of retinoic acid, a signal-
ing molecule that is involved in the regulation of cell proliferation
and differentiation. Similar to AKR1B1, AKR1B10 metabolizes
the anticancer agents daunorubicin and idarubicin (Zhong et al.,
2011). But in contrast to AKR1B1, which is ubiquitously expressed,
AKR1B10 is expressed mainly in the small intestine and colon
(Liu et al., 2011), and in different cancerous tissues (hepatocellu-
lar, lung, breast, colorectal, cervical, endometrial), although very
weakly in normal tissues (Yoshitake et al., 2007). In colon car-
cinoma and lung carcinoma cells, AKR1B10 silencing induces
apoptosis, decreases total phospholipids levels, and increases levels
of reductive oxygen species and lipid peroxides (Wang et al., 2009).
AKR1B10 also reduces isoprenyl aldehydes and is thus impli-
cated in prenylation of small guanine nucleotide triphosphatases
(GTPases) responsible for cell proliferation (Matsunaga et al.,
2012; Novelli and D’Apice, 2012). This suggests that AKR1B10 rep-
resents an important cell-survival protein and also a novel drug
target (Wang et al., 2009). The search for AKR1B10 inhibitors
started recently and structurally diverse selective inhibitors of
AKR1B10 have already been reported (Endo et al., 2010; Take-
mura et al., 2011; Soda et al., 2012). AKR1B10 is secreted from
normal intestinal epithelium and cancer cell lines through a
lysosome-mediated non-classical pathway, which suggests that it
also represents a potential serum marker (Luo et al., 2011).

THE AKR1B ENZYMES AND THE UTERUS
The AKR1B1 protein is known to be widely expressed, and the
published literature report its expression in normal endometrium
and myometrium, where it is induced by IL-1β (Rossi et al., 2005),
as well as in the cervix (Saraswat et al., 2006; Table 2). As AKR1B1
has a high catalytic efficiency as a PGF2α synthase (Kabututu
et al., 2009), it may be responsible for increased production of
PGF2α in the secretory as well as the menstrual phases of the
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Table 2 | Expression of AKR1B1 and AKR1B10 in human uterus.

Isoform Level Tissue References

Endometrium

Epithelial cells Stromal cells

AKR1B1 mRNA Expression related to PGF2α production. Chapdelaine et al. (2006)

Induced by IL-1β. Rossi et al. (2005)

Expressed throughout the menstrual cycle without significant variations. Bresson et al. (2011)

Higher expression in the menstrual phase and middle/late secretory phase. Catalano et al. (2011)

Protein Immunohistochemical staining of luminal and glandular cells,

higher expression in early proliferative and mid-late secretory

phase of menstrual cycle.

Bresson et al. (2011)

AKR1B10 Not evaluated.

Myometrium

AKR1B1 mRNA Low expression, no significant difference between pregnant and non-pregnant women. Phillips et al. (2011)

In cultured cells induced by IL-1β and TNFα. Phillips et al. (2011)

AKR1B10 Not evaluated.

Cervix

AKR1B1 Protein Detected by immunoblotting and immunohistochemistry. Saraswat et al. (2006)

AKR1B10 Not evaluated.

Table 3 | Expression of AKR1B1 and AKR1B10 in uterine diseases.

Isoform Level Tissue References

Endometrial cancer

AKR1B1 Not evaluated.

AKR1B10 Protein Staining in 16% cases, 10% to 20% of cells in AKR1B10-positive cases. Yoshitake et al. (2007)

No correlation with age, clinical stage, pathological features, histological grade,

metastasis, and recurrence after surgery.

Cervical cancer

AKR1B1 Protein Detected in squamous cervical cancer and adenocarcinoma of the cervix, higher protein

levels, and enzymatic activity in cancer.

Saraswat et al. (2006)

AKR1B10 Staining in 20% cases, 90% of cells in AKR1B10-positive cases; correlates with tumor

recurrence after surgery.

Yoshitake et al. (2007)

Endometriosis

AKR1B1 Not evaluated.

AKR1B10 Not evaluated.

Uterine myomas

AKR1B1 Not evaluated.

AKR1B10 Not evaluated.

menstrual cycle, when the highest concentrations of PGF2α have
been detected. Concurrently increased synthesis of PGF2α and
PGE2 in endometrium has important implications in menstru-
ation. PGF2α acts as a vasoconstrictor and induces myometrial
contractions, while PGE2 acts as a vasodilator, which leads to
increased edema (reviewed in Maybin et al., 2011). A significantly
decreased ratio of PGF2α/PGE2 was observed in women with
heavy menstrual bleeding, which might be related to decreased
expression/activity of AKR1B1 or increased expression/activity of
PGE2 synthase in this condition (reviewed in Maybin et al., 2011).
PGF2α has been implicated in the development of primary dys-
menorrhea, which again implies a role for AKR1B1 here (reviewed
in Maybin et al., 2011). In contrast to AKR1B1, the expression of

the AKR1B10 gene in the endometrium, myometrium, and cervix
of normal human uterus has not been reported.

THE AKR1B ENZYMES IN ENDOMETRIAL AND CERVICAL CANCERS
There have been no reports of the expression of AKR1B1 in
endometrial cancer, but AKR1B1 has been detected in squamous
cervical cancer and adenocarcinoma of the cervix (Saraswat et al.,
2006; Table 3). Increased AKR1B1 levels and increased activity
detected in cervical cancer (Saraswat et al., 2006) may be related
to its implication in inflammation, including its promotion of
PGF2α synthesis. It may also be associated with resistance to
chemotherapeutics, which is a major problem in treatment of this
disease. AKR1B10 has been revealed in cancerous endometrium
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and cervical cancer (Yoshitake et al., 2007; Table 3). In the later the
expression correlated with tumor recurrence after surgery and the
authors suggested that AKR1B10 represents a promising marker
(Yoshitake et al., 2007). Similarly, as reported in lung cancer (Fuku-
moto et al., 2005), higher percentages of AKR1B10-positive cells
were seen in squamous cell carcinoma (cervical cancer patients),
as compared to adenocarcinoma (endometrial cancer patients;
Yoshitake et al., 2007). AKR1B10 appears to be specific for this
distinct morphology, where it might be associated with reduction
of retinal to retinol, and thus with decreased levels of retinoic
acid. This will remove the ligands for the retinoic acid recep-
tors (RARs) and retinoid X receptors (RXRs), and thus prevent
cell differentiation. At present, there appear to be no reports on
the expression of AKR1B1 and AKR1B10 in uterine myomas or
endometriosis.

A POTENTIAL ROLE FOR THE AKR1B ENZYMES IN UTERINE DISEASES
AKR1B1 has a relatively high catalytic efficiency as a PGF2α syn-
thase (Kabututu et al., 2009). PGF2α acts through FP receptor and
mitogen-activated protein kinase (MAPK) signaling, which acti-
vates NF-κB and thus induces COX-2. Higher levels of COX-2
then lead to a further production of the PGs, and thus enhanced
cell proliferation, cell adhesion, angiogenesis, and cytoskeleton
remodeling of the endometrium (Figure 1; Sales et al., 2007,
2008). Additionally, AKR1B1 via reduction of the GSH conjugates
of lipid-aldehydes stimulates transcription of various inflamma-
tory cytokines, chemokines, and inflammatory mediators. Lipid-
peroxidation-derived aldehydes, such as 4-hydroxynonenal, are
conjugated with GSH by GSH-S-transferase and reduced by
AKR1B1 to the 1,4-dihydroxy-2-nonene GSH conjugate, which
activates PLC, and also NF-κB and AP1 via protein kinase C (PKC;
Figure 1; Ramana, 2011). Furthermore, the cytokine IL-1β stimu-
lates AKR1B1 expression (Rossi et al., 2005), which may potentiate
the activation of NF-κB and may lead to a vicious inflammatory
cycle. The uncontrolled inflammation is related to the develop-
ment of uterine diseases, including endometrial cancer, uterine
myoma, and endometriosis (Wallace et al., 2010; Maybin et al.,
2011). As it is involved in inflammation via at least two possible
mechanisms, AKR1B1 might also be involved in the pathogene-
sis of these diseases. To date, higher AKR1B1 expression has been
reported only in cervical cancer (Saraswat et al., 2006) and there
have been no reports of AKR1B1 expression in endometrial cancer,
uterine myoma, and endometriosis. Endometriosis and endome-
trial cancer are associated with higher PGF2α concentrations in
peritoneal fluid and endometriosis tissue, and increased local for-
mation of PGF2α in cancer endometrium, respectively (Sales et al.,
2008; Banu et al., 2009), thus AKR1B1 might be implicated in the
pathogenesis of these diseases as well. In endometrial cancer cells,
PGF2α stimulates cell proliferation, cell adhesion, migration, and
angiogenesis (Sales et al., 2008). Also, uterine myoma is related to
aberrant inflammation, and thus AKR1B1 might also have a role
in this disease.

Due to the high catalytic efficiency of AKR1B10 for the reduc-
tion of all-trans, 9-cis, and 13-cis retinaldehydes to retinols (Kabu-
tutu et al., 2009), the increased levels of AKR1B10 in endometrial
and cervical cancer (Yoshitake et al., 2007) might be linked to
depletion of retinoic acid. Decreased availability of the ligand for

FIGURE 2 |The implications of AKR1B and AKR1C enzymes in retinoid

signaling. AKR1B10, AKR1C3, and AKR1C1 catalyze the reduction of
all-trans-retinal and 9-cis-retinal to their corresponding retinols, respectively.
The reverse reaction is catalyzed by alcohol dehydrogenases (ADHs). Retinal
is further oxidized by aldehyde dehydrogenases (ALDHs) to form retinoic
acid, which by binding to the retinoic acid receptor (RAR) and the retinoid X
receptor (RXR) stimulates cell differentiation. Retinoic acid is further
metabolized by CYP26A to form 4-hydroxy-retinoic acid. Increased levels of
AKR1B10 and AKR1C3 might be linked to depletion of retinoic acid, which
deprives RAR and RXR of their ligands, and thus blocks cell differentiation.

the RARs and RXRs, will lead to a loss of cell differentiation
(Figure 2). The oxidation of retinal to retinoic acid by reti-
naldehyde dehydrogenase is irreversible in a cellular context, and
reduction of retinals to retinols by AKR1B10 thus counteracts the
synthesis of retinoic acid (Penning, 2005). Indeed retinoic acid
and RAR agonists inhibit the growth of the Ishikawa endome-
trial cancer cell line (Tanabe et al., 2008; Cheng et al., 2011) and
retinoic acid stimulates differentiation of the poorly differenti-
ated CAC-1 endometrial adenocarcinoma cell line (Carter, 2003).
Also, a very recent report on antitumor effects of inhibitors of
the retinoic-acid-metabolizing CYP26A (Goss et al., 2011) con-
firmed the protective effects of retinoic acid and suggested that
AKR1B10 inhibitors might have a similar role. Interestingly, topical
retinoic acid has shown activity in cervical intraepithelial neopla-
sia (a potentially premalignant transformation of cervical cells;
Abu et al., 2005), which implies a decreased protective effect of
retinoic acid in precancerous tissue. However, in cervical cancer
cell lines, no effects (in CaSki cells) and even stimulatory effect
(in HeLa cells) of all-trans retinoic acid have been observed. As
retinoic acid does not repress the expression of the viral oncopro-
teins E6 and E7 of HPV types 16 and 18, which have a major role in
carcinogenesis of the cervix (Myga-Nowak et al., 2011), this shows
that retinoids might have a role only in precancerous tissue.

Suppressed action of retinoic acid might also be related
to the benign proliferative diseases, such as uterine myoma
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and endometriosis. Indeed, decreased expression of alcohol
dehydrogenase 1 (ADH1) and aldehyde dehydrogenase 1
(ALDH1), which are responsible for the conversion of retinol
to retinal and of retinal to retinoic acid, respectively, has been
reported in uterine fibroids (Zaitseva et al., 2007). While decreased
retinoid uptake, formation and action, and increased retinoic-
acid metabolism have been shown in endometriosis (Pavone et al.,
2011). It has also been suggested that deficient retinoic-acid action
in endometriosis leads to decreased levels of 17β-hydroxysteroid
dehydrogenase type 2, which converts the potent estradiol to the
less active estrone. This leads to increased levels of the potent
mitogen estradiol and thus increased cell proliferation (reviewed
in Bulun, 2009). However, evaluation of the expression and role of
AKRB10 in these diseases awaits further studies.

AKR1B10 has a high catalytic efficiency for reduction of iso-
prenyl aldehydes, farnesal (FAL), and geranylgeranial (GGAL;
Endo et al., 2011) and is thus also involved in prenylation of
cellular proteins (Figure 3). Proteins that undergo prenylation

FIGURE 3 |The implications of AKR1B and AKR1C enzymes in protein

prenylation. Prenylation involves transfer of farnesyl pyrophosphate (FPP)
or geranylgeranyl pyrophosphate (GGPP) by farnesyltranserase (FT) and
geranylgeranyltransferase 1 and 2 (GGT1 and GGT2), respectively, to
various proteins including small GTPases (RAS and RHO). The reverse
reaction that releases farnesal (FAL) and geranylgeranial (GGAL) is catalyzed
by prenylcystein lyase (PCLY). Farnesyl pyrophosphate and geranylgeranyl
pyrophosphate thus serve as substrates of FT and GGT1/GGT2 but can also
be dephosphorylated to form farnesol (FOH) and geranylgeranyol (GGOH).
FOH and GGOH are oxidized to FAL and GGAL by alcohol dehydrogenases
(ADHs) and by yet unidentified enzymes to farnesoic acid (FA),
geranylgeranoic acid (GGA) and other metabolites. The reduction of FAL and
GGAL to FOH and GGOH is catalyzed by AKR1B and AKR1C enzymes. This
reaction indirectly recovers substrates for further formation of active
prenyl-pyrophosphates. Additionally, reduction of GGAL to GGOH prevents
formation of GGA and the metabolites with potential apoptotic effects.
(Adopted from Endo et al., 2011.)

include small GTPases: RAS and RHO proteins (Novelli and
D’Apice, 2012). These prenylated proteins are integral compo-
nents of signaling networks that regulate cell proliferation, dif-
ferentiation, migration, and apoptosis (Berndt et al., 2011; Nov-
elli and D’Apice, 2012). Prenylation involves transfer of farnesyl
pyrophosphate (15-carbon chain) or geranylgeranyl pyrophospate
(20-carbon chain), which both originate from the mevalonate
pathway, to cysteine residue of these proteins and is catalyzed by
farnesyltranserase (FT) and geranylgeranyltransferase 1 (GGT1)
and GGT2, respectively. Prenylcystein lyase (PCLY) catalyzes the
reverse reaction that releases FAL and GGAL from prenylated
proteins (Digits et al., 2002). Farnesyl pyrophosphate and ger-
anylgeranyl pyrophosphate thus serve as substrates for FT and
GGT1/GGT2 but can as well be dephosphorylated to form farnesol
(FOH) and geranylgeranyol (GGOH; reviewed by Matsunaga et al.,
2012). FOH and GGOH are oxidized to FAL and GGAL by ADHs
and further to farnesoic acid (FA), geranylgeranoic acid (GGA),
and other metabolites. The reduction of FAL and GGAL to FOH
and GGOH, catalyzed by AKR1B enzymes, thus recovers substrates
for further phosphorylation to corresponding pyrophosphates.
Additionally, AKR1B10 with the highest catalytic efficiency for
reduction of GGAL prevents formation of GGA and other metabo-
lites with diverse biological effect, including induction of apoptosis
(reviewed in Matsunaga et al., 2012). In this manner AKR1B10
prevents formation of pro-apoptotic metabolites and promotes
prenylation and activation of small GTPases and further intra-
cellular signaling (reviewed in Matsunaga et al., 2012). Inhibitors
of FT (FTI) and GGT1 (GT1I) have already been developed as
potential anticancer agents and several clinical trials have been
reported for FTI, while the first GGT1I recently entered the clinic
(Berndt et al., 2011). FTIs have shown a very limited application
in cancer patients, therefore there is a need for novel drug targets
within the prenylation pathway, with a potential for AKR1B10. As
a secretory protein (Luo et al., 2011), AKR1B10 also represents a
potential novel biomarker not only of liver and lung cancer, but
also of uterine cancers, and especially of cervical cancer.

THE ENZYMES OF THE AKR1C SUBFAMILY
The AKR1C subfamily includes four human enzymes AKR1C1,
AKR1C2, AKR1C3, and AKR1C4, which share high percentages
of amino-acid identities (84–98%). AKR1C1 and AKR1C2, for
instance, differ in only seven amino-acid residues. These enzymes
function in vivo as 3-keto-, 17-keto-, and 20-ketosteroid reductases
to varying extents (Table 4), and they thus regulate the activity of
androgens, estrogens, and progesterone, and the occupancy and
transactivation of the corresponding receptors (Penning et al.,
2000; Steckelbroeck et al., 2004). The AKR1C isozymes are also
involved in PG metabolism (Table 4). AKR1C3 catalyzes the for-
mation of PGF2α from PGH2, and 9α,11β-PGF2 from PGD2,
and in this manner prevents the formation of the pro-apoptotic
15-deoxy-PGJ2 (Byrns et al., 2010). AKR1C1 and AKR1C2, on
the other hand, convert PGE2 to PGF2α and also have lower
11-ketoreductase activities to reduce PGD2 to 9α,11β-PHF2α

(Nishizawa et al., 2000; Dozier et al., 2008). The AKR1C enzymes
reduce isoprenyl aldehydes and may be implicated in prenylation
of cellular proteins (Table 4; Matsunaga et al., 2012). Recently it
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Table 4 | Kinetic parameters of the AKR1C1, AKR1C2, and AKR1C3 enzymes

Substrate AKR1C1 AKR1C2 AKR1C3 References

KM (μM) kcat

(min−1)

kcat/KM

(mM−1

min−1)

KM (μM) kcat

(min−1)

kcat/KM

(mM−1

min−1)

KM (μM) kcat

(min−1)

kcat/KM

(mM−1

min−1)

Progesterone 5.7 0.93 210 ND ND ND 2.8 1.04 370 Sharma et al. (2006)

Progesterone 1.9 0.57 300 7.7 0.21 30 5.6 0.168 30 Beranič et al. (2011, 2012)

Estrone ND ND ND ND ND ND 9 0.068 7.6 Byrns et al. (2010)

5α-DHP 1.1 2.6 2,400 0.6 0.48 800 ND 0.06 ND Higaki et al. (2003)

3α,5α-THP 2.0 4.4 2,200 3.1 0.26 80 ND ND ND Higaki et al. (2003)

20α,5α-THP 0.7 0.6 860 0.5 0.48 960 2.1 0.52 250 Higaki et al. (2003)

PGD2 ND ND ND ND ND ND 1.1 1.4 1,270 Matsuura et al. (1998)

PGD2 140 0.015 0.11 120 ND ND 3 3.7 1,200 Nishizawa et al. (2000)

PGE2 1,400 0.48 0.34 98 0.082 0.83 LA LA LA Nishizawa et al. (2000)

All-trans-retinal LA LA LA NA NA NA 1.4 0.60 430 Ruiz et al. (2011b)

9-cis-retinal 0.48 0.18 370 NA NA NA 0.4 13 32 500 Ruiz et al. (2011b)

Farnesal 3.1 1.7 550 1.1 1.8 1,600 2.6 2.7 1,100 Endo et al. (2011)

Geranylgeranial ND ND ND ND ND ND 0.3 3.6 12,000 Endo et al. (2011)

LA, low activity; NA, no activity; ND, not determined, 3α,5α-THP, 3α-hydroxy-5α-pregnane-20-one; 20α,5α-THP, 20α-hydroxy-5α-pregnane-3-one.

has been reported that AKR1C3 also catalyzes reduction of reti-
naldehydes, especially 9-cis-retinaldehyde with surprisingly higher
catalytic efficiency as compared to other substrates (Ruiz et al.,
2011b). The AKR1C enzymes act as phase I metabolism enzymes,
and they are responsible for metabolism and clearance of different
xenobiotics, and are thus implicated in resistance to treatments
with different drugs (Huang et al., 2010; Le Calve et al., 2010).
The AKR1C enzymes also convert 5α-dihydroprogesterone (5α-
DHP; Table 4) to the 3α-hydroxy-metabolite, the most potent
positive allosteric modulator of the γ-aminobutyric acid type A
(GABAA) receptor, as well as to the less potent 20α-hydroxy-
metabolite. In this manner AKR1C enzymes are implicated in
the production of active neurosteroids. As 5α-pregnanes stim-
ulate proliferation of breast cancer cells, the AKR1C enzymes
are also involved in the production of pro-proliferative metabo-
lites (Wiebe, 2006). AKR1C2 preferentially catalyzes the formation
of 3α-hydroxy-5α-pregnane-20-one, while AKR1C1 and AKR1C3
mainly form 20α-hydroxy-metabolites (Usami et al., 2002). The
AKR1C enzymes, except AKR1C4 which is liver specific, are
expressed in different normal and diseased tissues and have thus
been related to several diseases, such as lung, breast, prostate,
endometrial cancer, myeloid leukemia, and others. Structurally
diverse inhibitors have been reported and in spite the high amino-
acid identity also selective inhibitors of individual isoforms have
been reported (reviewed in Brožic et al., 2011; Byrns et al.,
2011).

THE AKR1C ENZYMES AND THE UTERUS
Expression of the AKR1C genes has been reported in human
uterus (Nishizawa et al., 2000; Penning et al., 2000; Table 5).
In endometrium, semiquantitative RT-PCR analysis revealed sig-
nificantly higher mRNA levels of AKR1C1 in the secretory
phase (Nakajima et al., 2003). As the concentrations of PGF2α

increase during the secretory phase and PGF2α can activate the

AKR1C1 promoter (Nishizawa et al., 2000), this leads to increased
expression of AKR1C1. Also mRNA levels of AKR1C3 are the
highest in the early secretory phase (Catalano et al., 2011), while
expression of AKR1C2 throughout the menstrual phases has not
yet been examined. To date, expression at the protein/cellular lev-
els has been studied only for AKR1C3 (Pelletier et al., 1999).
In paraffin sections of normal endometrium no significant dif-
ferences in the presence of AKR1C3 were reported during the
menstrual phases (Ito et al., 2006). However, these authors pro-
vided no information on the specificities of their antibodies. As
AKR1C1, AKR1C2, and AKR1C3 have more than 87% identical
amino acids, the antibodies might well have detected all of the
three isoforms; thus these data should be considered with caution.

The AKR1C genes are not expressed only in the endometrium.
Expression of AKR1C1 and AKR1C3 has been detected also in
myometrium (Lee et al., 2008; Phillips et al., 2011; Table 5). The
authors concluded that the increased AKR1C1 expression may
be responsible for the increased 20α-OHP concentrations that
are associated with spontaneous labor, and they suggested that
induced labor is not dependent on AKR1C1 (Lee et al., 2008).
Expression of the AKR1C genes have been detected also in the
human cervix (Andersson et al., 2008; Table 5). In human cervi-
cal fibroblasts IL-1β significantly induced AKR1C1 and AKR1C3,
therefore the authors hypothesized that lower uterine infections
during pregnancy, with the concomitant production of cytokines,
might increase the expression of AKR1C1 and AKR1C3 and
thus accelerate progesterone metabolism to 20α-OHP in cervical
fibroblasts. This would potentially have a major impact on cervi-
cal structure, with an increase in the likelihood of a preterm birth
(Roberson et al., 2011).

Studies have thus shown that the AKR1C genes AKR1C1
and AKR1C3 are expressed in the normal uterus within the
endometrium, myometrium, and cervical canal (Table 5).
AKR1C1 is the major human 20-ketosteroid reductase, and
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Table 5 | Expression of AKR1C1, AKR1C2, and AKR1C3 in human uterus

Isoform Level Tissue References

Uterus

AKR1C1, AKR1C2, mRNA AKR1C2 >AKR1C3 >>AKR1C1 Penning et al. (2000)

AKR1C3 AKR1C3 >AKR1C1 >>AKR1C2 Nishizawa et al. (2000)

Endometrium

AKR1C1 mRNA Higher levels in secretory phase. Nakajima et al. (2003)

Induced by PGF2α. Nishizawa et al. (2000)

AKR1C3 Higher levels in early secretory phase. Catalano et al. (2011)

AKR1C2 Not evaluated.

AKR1C3 Protein Epithelial cells of endometrial glands. Pelletier et al. (1999)

No significant difference between menstrual phases. Ito et al. (2006)

AKR1C1, AKR1C Not evaluated.

Myometrium

AKR1C1 mRNA Significantly increased in women in spontaneous labor versus women not in labor, no

difference in women with induced labor.

Lee et al. (2008)

AKR1C3 No difference between pregnant/non-pregnant women, no effects of cytokines. Phillips et al. (2011)

AKR1C2 Not evaluated.

Cervix

AKR1C1, AKR1C2, AKR1C3 mRNA AKR1C1 > AKR1C2 (7-fold) AKR1C1 > AKR1C3 (3-fold) No difference in AKR1C1

expression in women before/after labor; decreased AKR1C2 and AKR1C3 levels during

labor.

Andersson et al. (2008)

Cervical fibroblasts: AKR1C1 and AKR1C3 induced by IL-1β. Roberson et al. (2011)

it converts progesterone to 20α-OHP (Nishizawa et al., 2000;
Lanišnik Rižner et al., 2006). AKR1C3 acts as a 17-ketosteroid
reductase, and activates estrone to estradiol, while it also acts as
a 20-ketosteroid reductase, albeit with 10-fold lower catalytic effi-
ciency than that seen for AKR1C1 (Penning et al., 2000; Beranič
et al., 2011). Additionally, AKR1C3 can act as PGF2α synthase
(Dozier et al., 2008). AKR1C3 detected in endometrial glands of
normal endometrium (Pelletier et al., 1999; Ito et al., 2006) may
thus be related to PGF2α formation and progesterone metabolism.
The higher levels of AKR1C1 mRNA in the secretory endometrium
are probably associated with increased PGF2α concentrations,
and the higher levels of AKR1C1 mRNA in myometrium, with
spontaneous labor (Nakajima et al., 2003; Lee et al., 2008). In
late secretory phase endometrium and in myometrium, AKR1C1
thus contributes to decreased local concentrations of progesterone.
Induction of AKR1C1 and AKR1C3 by IL-1β might be related to
preterm labor caused by uterine infection (Roberson et al., 2011).
Finally, although AKR1C2 was reported to be the predominate
AKR1C isoform of the whole uterus (Penning et al., 2000), its
expression and its role in endometrium and myometium have not
yet been studied.

THE AKR1C ENZYMES IN ENDOMETRIAL AND CERVICAL CANCER
The expression of the AKR1C genes in endometrial cancer has
been studied mainly by three groups (Table 6). We detected
AKR1C1, AKR1C2, and AKR1C3 mRNA levels in paired samples
of cancerous endometrium and adjacent control endometrium
(Lanišnik Rižner et al., 2006; Šmuc and Lanišnik Rižner, 2009).
The differences in expression were not statistically significant,
but our pair-wise comparison suggested that in some patients,
increased levels of AKR1C1 and/or AKR1C3 might be associated

with pathophysiology of endometrial cancer. At the cellular level,
Ito et al. (2006) reported increased AKR1C3 immunoreactivity
in endometrial hyperplasia and endometrial carcinoma. Although
this was without showing any experimental data for the sections
or clinical data of the patients, and without sufficient information
on the antibodies, the authors suggested that AKR1C3 is one of the
key enzymes in the local regulation of estrogen concentrations in
endometrial malignancies (Ito et al., 2006). Our group used a well-
characterized and specific monoclonal antibody against AKR1C3
(Lin et al., 2004),which stained all 10 paraffin sections of cancerous
endometrium (Šmuc and Lanišnik Rižner, 2009). Using the same
antibody, Zakhaorov et al. (2010) showed weaker AKR1C3 staining
in hyperplastic endometrium and cancerous endometrium, versus
the normal proliferative endometrium. However, such compar-
isons should also be interpreted with caution, due to differences
between the groups according to menopausal status, and due
to the small number of patients. In contrast to women with
normal endometrium (pre-menopausal; mean age, 31.5 years)
and patients with endometrial hyperplasia (2 out of 8 post-
menopausal; mean age, 47.8), the majority of endometrial cancer
patients were post-menopausal (8 out of 12, mean age 58.4), as
expected, and there was a significant age difference between the
control and the endometrial cancer groups.

Among the AKR1C genes, expression of AKR1C1, AKR1C2,
and AKR1C3 was detected in endometrial cancer and adjacent
control endometrium, and increased mRNA levels of AKR1C1
and AKR1C3 were seen in some patients (Lanišnik Rižner et al.,
2006; Šmuc and Lanišnik Rižner, 2009). However, on average,
no significant differences were observed at the mRNA level, and
immunohistochemical analysis revealed lower AKR1C3 levels in
the hyperplastic and cancer endometrium (Zakhaorov et al., 2010).
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Table 6 | Expression of AKR1C1, AKR1C2, and AKR1C3 in uterine diseases

Isoform Level Tissue References

Endometrial cancer

AKR1C1, AKR1C2, AKR1C3 mRNA No statistically significant difference (25 paired samples). Lanišnik Rižner et al. (2006);

Šmuc and Lanišnik Rižner (2009)

AK1C3 Protein No statistically significant difference (16 paired samples). Šmuc and Lanišnik Rižner (2009)

Increased expression: 50% endometrial hyperplasia, 69%

endometrial carcinoma, 19% to 25% normal endometrium samples.

Ito et al. (2006)

Glandular and luminal epithelial cells, 10/10 paraffin sections of

endometrial cancer.

Šmuc and Lanišnik Rižner (2009)

Weaker staining in endometrial hyperplasia (8) and endometrial

cancer (12) versus normal proliferative endometrium (13).

Zakhaorov et al. (2010)

AKR1C1, AKR1C2 Not evaluated.

Cervical cancer

AKR1C1, AKR1C2, AKR1C3 mRNA Increased AKR1C1 and AKR1C3 expression in C33A cell line

transfected with truncated HPV16E6.

Wanichwatanadecha et al. (2012)

AKR1C1, AKR1C2 protein Detected in 75% HPV positive and 43.2% HPV negative cervical

cancer cases, expression correlates with HPV status.

Ueda et al. (2006)

Endometriosis

AKR1C1, AKR1C3 mRNA Significantly higher expression in ovarian endometriosis (24) versus

control endometrium (10).

Šmuc et al. (2009)

AKR1C1, AKR1C2 Significantly higher expression in ovarian endometriosis (24) versus

normal endometrium (10).

Hevir et al. (2011)

AKR1C3 protein In 13/15 samples of ectopic endometrium. Šmuc et al. (2009)

No significant difference between ovarian endometriosis (18) and

control endometrium (9).

Hevir et al. (2011)

AKR1C1, AKR1C2 Significantly higher levels in ovarian endometriosis. Hevir et al. (2011)

Uterine myomas

AKR1C1, AKR1C2, AKR1C3 Not evaluated.

It is clear here that AKR1C3 expression in endometrial cancer
needs to be further studied at the protein level on a larger number
of endometrial cancer samples with the specific antibodies that
are available. The menopausal status of the patients should also
be taken into consideration, and therefore comparisons between
post-menopausal cancer endometrium and control endometrium
of the same patient should be used. Additionally, the expression of
AKR1C1 and AKR1C2 remain to be studied further.

The AKR1C1 and AKR1C2 enzymes have also been detected in
cervical cancer patients with significant correlation to HPV infec-
tion and poorer survival rate (Ueda et al., 2006). Interestingly, the
up-regulation of AKR1C1 and AKR1C3 genes have been reported
in cervical cancer C33A cell line stably transfected with trun-
cated HPV16 oncoprotein E6 (Wanichwatanadecha et al., 2012).
The authors suggested that the increased levels of AKR1C1 and
AKR1C3 may be involved in drug resistance, a major problem in
treatment of cervical cancer.

THE AKR1C ENZYMES IN ENDOMETRIOSIS
Our group was the first to show expression of the AKR1C genes
in endometriosis (Table 6). Significantly higher mRNA levels of
AKR1C1,AKR1C2, and AKR1C3 were seen in ovarian endometrio-
sis versus control endometrium of myoma patients and versus
normal endometrium of healthy women (Šmuc et al., 2009;
Hevir et al., 2011). At the protein level, AKR1C3 was detected in

ectopic endometrium (Šmuc et al., 2009) and immunohistochem-
ical staining showed no significant differences in AKR1C3 scores,
but a significant increase in AKR1C2 total scores (Hevir et al.,
2011). Although the comparisons to normal endometrium still
need to be done, our data suggest that the AKR1C enzymes, and
especially AKR1C1 and AKR1C2, may be associated with the devel-
opment of ovarian endometriosis. Increased levels of AKR1C1
and AKR1C2 in endometriotic tissue might also contribute to
enhanced metabolism of the protective progesterone, and to the
formation of the pro-proliferative 5α-pregnanes (Wiebe, 2006;
Beranič and Lanišnik Rižner, unpublished data). To the best of
our knowledge, there have been no reports on the expression of
the AKR1C enzymes in uterine myomas.

THE POTENTIAL ROLE OF THE AKR1C ENZYMES IN UTERINE DISEASES
AKR1C3 and AKR1C1 are involved in estradiol formation and
progesterone inactivation, respectively (Penning et al., 2000);
therefore, their increased levels in diseased endometrium might
lead to enhanced proliferation stimulated by estrogens. It has
long been known that estrogen actions that remain unopposed
by the protective actions of progesterone are related to the devel-
opment of uterine diseases, endometrial hyperplasia, endometrial
cancer, and endometriosis (Inoue, 2001). The increased levels of
AKR1C3 that have been seen in some endometrial cancer patients
(Lanišnik Rižner et al., 2006; Šmuc et al., 2009) might increase
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local concentrations of estradiol and might decrease the concen-
trations of progesterone, by its 17-ketosteroid and 20-ketosteroid
reductase activities, respectively. Increased levels of AKR1C1, the
major human 20-ketosteroid reductase, which is also seen in some
endometrial cancer patients, might result in enhanced metabo-
lism of progesterone. Also, in ovarian endometriosis, increased
levels of AKR1C3 and AKR1C1 might have similar effects on
local estradiol and progesterone concentrations. As the growth
of uterine myomas is hormone dependent, AKR1C1 and AKR1C3
might also be associated with the development of these benign
tumors.

The AKR1C enzymes are involved in the metabolism of 5α-
DHP. In breast cancer 5α-pregnanes have been shown to stimulate
cell proliferation and detachment (Wiebe, 2006), and also our
unpublished studies have confirmed their stimulatory effects on
the Z12 endometriotic cell line (Beranič and Lanišnik Rižner,
unpublished data). Due to increased levels of 5α-reductase type
1 in endometriosis (Hevir et al., 2011), which catalyzes the for-
mation of 5α-DHP, the AKR1C enzymes might be responsible
for enhanced formation of its pro-proliferative 3α/β- and 20α-
hydroxy-metabolites. Interestingly, in vitro the catalytic activity of
the AKR1C enzymes can be blocked by progestins (Beranič et al.,
2011, 2012), which are used for the treatment of endometrio-
sis, such as medroxyprogesterone acetate and dydrogesterone.
Increased levels of AKR1C1–AKR1C3 and 5α-reductase type 1
in endometriosis might thus lead to enhanced metabolism of
progesterone toward the formation of 5α-pregnanes (Hevir et al.,
2011). Also, in some endometrial cancer patients, and especially
those who are pre-menopausal, and possibly also in patients with
myoma, AKR1C1–AKR1C3 may have a similar role.

The AKR1C enzymes are also implicated in PG biosynthesis,
forming PGF2α and 9α,11β-PGF2α (Nishizawa et al., 2000; Dozier
et al., 2008). These PGs have similar affinities for the FP recep-
tor (Dozier et al., 2008), and both activate this receptor, which
exerts diverse responses via the MAPK signaling cascades, includ-
ing inflammation and proliferation (Figure 1). These actions are
mediated through the activation of NF-κB and the inactivation
of PPARγ. By converting PGH2 to PGF2α and PGD2 to 9α,11β-
PGF2, the AKR1C enzymes prevent the formation of the antipro-
liferative and anti-inflammatory 15d-PGJ2. This PG covalently
modifies, and thus activates, PPARγ, while it inactivates NF-κB
(Byrns and Penning, 2007). These mechanisms might be used
mainly by AKR1C3 but also other AKR1C enzymes in the patho-
genesis of cancer endometrium and endometriosis, and possibly
also in other uterine diseases.

Similarly as AKR1B enzymes, also AKR1C1 and especially
AKR1C3, act as isoprenyl aldehyde reductases (Endo et al., 2011)
and retinal reductases (Ruiz et al., 2011b) with higher catalytic effi-
ciencies for GGAL and 9-cis-retinal, respectively. As described for
AKR1B10 also AKR1C1 and AKR1C3 may be involved in protein

prenylation (Figure 3) with potential stimulation of proliferation
and may also deprive RAR and RXR from their ligand, retinoic
acid, which leads to loss of cell differentiation (Figure 2). This
suggests that inhibitors of AKR1C1 and AKR1C3 would block
formation of these prenylated proteins and pro-differentiating
retinoic acid. Last but not least, AKR1C enzymes may also be
responsible for drug resistance, a frequent and serious problem in
treatment of cervical cancer.

CONCLUSION AND PERSPECTIVES
In uterine diseases gene expression and the role of the AKR1C
enzymes have been most studied among the enzymes of the
AKR1B and AKR1C subfamilies. There are several reports on the
expression of AKR1Cs in endometrial cancer, cervical cancer, and
endometriosis, while there are only two studies on the expression
of AKR1B in endometrial and cervical cancers. Currently, there are
no reports showing the presence of the AKR1B enzymes in uterine
myomas and endometriosis, nor of AKR1C in uterine myomas.

AKR1B and AKR1C enzymes are involved in processes that are
implicated in the pathophysiology of uterine diseases; therefore, it
is clear that these enzymes need to be further investigated. First,
we need information on the expression of AKR1Bs and AKR1Cs
in all parts of the human uterus at the mRNA, protein, and cel-
lular levels, and in diseased versus normal tissues. Secondly, the
appropriate model cell lines together with overexpression of indi-
vidual genes and siRNA approach should be used to delineate the
enzymatic activities and the involvement of the salient enzymes in
the proposed pathways. As specific inhibitors of these AKR1B and
AKR1C enzymes have already been developed these can then be
tested in these appropriate cell models.

If further studies reveal the involvement of these AKR1B and
AKR1C enzymes in the pathophysiology of uterine diseases, these
enzymes would represent potential drug targets. The inhibitors
would block the biosynthesis of the proliferative PGF2α (AKR1B1,
AKR1C3) and estradiol (AKR1C3), formation of prenylated pro-
teins, which may stimulate proliferation (AKR1B10, AKR1C3),
the biosynthesis of 9α,11β-PGF2 (AKR1C3), which deprives pro-
apoptotic PPARγ of its ligand, and the biosynthesis of retinol
(AKR1B10), which decreases the concentrations of retinoic acid
and prevents cell differentiation. These inhibitors might block
the proliferative effects and the pathological inflammation in the
endometrium, myometrium and cervix, and might thus be effica-
cious as therapies for women with uterine diseases. Furthermore,
there is support for these enzymes, and especially for the secretory
AKR1B10, to be used as novel diagnostic markers.
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