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INTRODUCTION

Haemodynamic monitoring is crucial to patient care in 
various medical settings, especially in operating rooms, 
critical care units, and during specific interventional 
procedures. It involves continuous assessment 
and measurement of cardiovascular parameters to 
understand blood circulation dynamics and ensure 
optimal organ perfusion. It aids in decision-making 
as well as evaluation of the effectiveness of treatment 
strategies.

Historically, haemodynamic monitoring relied on 
invasive procedures, such as inserting a pulmonary 
artery catheter to measure cardiac output, mixed 
venous oxygenation, and pulmonary artery pressures. 
This invasive approach provided direct and 
accurate measurements but came with associated 
risks, including infections, bleeding, and vascular 
complications. Furthermore, these methods often 
require specialised training. They posed challenges 
regarding patient comfort and acceptance, leading 

to the emergence of non-invasive cardiac output 
monitoring, which overcame several limitations and 
risks associated with invasive methods. However, 
like any medical technology, it has limitations 
and disadvantages, including lesser accuracy and 
precision, dependency on operator skills, and limited 
ability to select patient populations.[1]

Artificial intelligence (AI) has the potential to 
revolutionise haemodynamic monitoring by addressing 
the limitations associated with traditional approaches, 
offering real-time insights, and contributing to 
improved patient outcomes. AI is pivotal in enhancing 
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the accuracy and reliability of non-invasive cardiac 
output monitoring. Machine learning algorithms 
can process complex data from various non-invasive 
sensors, improving the precision of cardiac output 
estimates and providing valuable insights for clinical 
decision-making.[1,2]

This narrative review aims to explore and analyse 
the evolving role of AI in haemodynamic monitoring, 
shedding light on the advancements, challenges, and 
potential implications for clinical practice.

METHODS

We conducted a comprehensive literature review to 
explore the role of AI in haemodynamic monitoring. 
The search was conducted across various electronic 
databases, including PubMed, IEEE Xplore, Google 
Scholar, and relevant medical and technology 
journals. Articles published in the English language 
from 2001 to 2023 were included. Primary research 
articles, systematic reviews, and meta-analyses 
were considered to ensure the inclusion of rigorous 
studies performed in humans. Articles were included 
if they directly addressed the application of AI in 
haemodynamic monitoring.

The search strategies employed a combination 
of Medical Subject Headings (MeSH) terms and 
keywords related to AI, haemodynamic monitoring, 
and cardiovascular health. The primary search terms 
included ‘artificial intelligence’, ‘machine learning’, 
‘haemodynamic monitoring’, and variations of these 
terms. Boolean operators (AND, OR) were used to 
refine the search and ensure relevance.

RATIONALE FOR THE USE OF ARTIFICIAL 
INTELLIGENCE IN HAEMODYNAMIC MONITORING

Physicians need help in accurately predicting the 
occurrence of circulatory shock and determining the 
optimal treatment strategies for individual patients 
due to limitations in existing diagnostic and prognostic 
techniques.[3] Understanding circulatory shock’s 
physiological mechanisms is imperative for guiding 
appropriate therapeutic interventions. Typically, 
the administration of vasoactive medications and 
fluid resuscitation becomes necessary, along with 
addressing concurrent issues such as inflammation, 
multiple organ failure, hypotension, and 
haemodynamic instability. The symptoms of different 
causes of shock are similar, making early decisions 

challenging. The current management of hypotension 
tends to be reactive, relying on observing declining 
blood pressure trends. However, this approach often 
leads to delays in interventions. Studies have shown 
a direct correlation between the duration of mean 
arterial pressure (MAP) below 65 mm Hg and increased 
mortality in non-cardiac patient populations.[4,5] It is 
reasonable to consider that minimising the severity 
and duration of hypotension could improve patient 
outcomes. 

Therefore, it is crucial to develop quick, reliable, and 
easy-to-understand methods for planning treatments to 
reduce mortality and avoid irreversible consequences 
linked to shock, which AI can facilitate.

APPLICATIONS IN HAEMODYNAMIC MONITORING

Artificial intelligence for prediction of hypotension
Hatib et al. developed a system to predict hypotension 
by using a logistic regression model. This system, called 
the hypotension prediction index (HPI), is integrated 
into the Haemo Sphere Advanced Monitoring 
Platform TM (Edwards Lifesciences, California, USA). 
The HPI can accurately forecast hypotension several 
minutes before a drop in blood pressure occurs. The 
Acumen HPI algorithm™ is a mathematical model 
developed by learning from almost 59,000 past 
hypotensive events and over 144,000 non-hypotensive 
events.[6] Through performance analysis and sequential 
feature selection, 2.6 million features are reduced to 
the 23 most predictive features to build the HPI model. 
Features from the current patient’s Acumen IQ arterial 
waveform features are fed into the model to determine 
the HPI parameter value. The model compares the 
current patient’s Acumen IQ arterial waveform 
features to those from development dataset patients.

The HPI model generates a numerical value between 
1 and 100 to indicate the likelihood of hypotension. 
Beyond MAP, the model considers various parameters 
such as stroke volume, cardiac output, stroke 
volume variation, systemic vascular resistance, 
dP/dt (an indicator of cardiac contractility), and 
Eadyn (a measure of dynamic elastance). These 
inputs help guide decisions using fluids, inotropes, 
or vasopressors to enhance haemodynamic stability 
and prevent anticipated hypotensive events. The main 
objective of the method is to detect minute multivariate 
fluctuations that occur before hypotensive events 
but are invisible to the naked eye or basic signal 
processing. It uses sophisticated machine learning to 
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map these subtle changes and forecast the probability 
of approaching hypotension.

The EU HYPROTECT Registry monitored 
749 patients undergoing major non-cardiac surgery 
by using the Acumen™ Hypotension Prediction 
Index software.[7] The analysis of 702 patients 
revealed a notably low median time-weighted average 
MAP of <65 mmHg (0.03 mmHg). A significant 
proportion (41%) experienced no extended hypotensive 
episodes, while 59% had at least one episode, with 
a	 median	 of	 1	 episode	 lasting	 ≥1	 minute.	 Patients	
spent a median of 2 minutes, constituting merely 1% 
of the total surgical time below a MAP of 65 mmHg. 
These findings indicate that employing HPI software 
monitoring might decrease both the severity and 
duration of intra-operative hypotension in non-cardiac 
surgery patients.

Artificial intelligence to overcome alarm fatigue
In hospitals, healthcare workers use alarms to monitor 
patients’ vital signs and identify those in danger of 
worsening. However, these alarms can generate false 
alarms, leading to alarm fatigue. This can be dangerous 
for patients. Alarm fatigue is when healthcare workers 
become desensitised to safety alerts and ignore or fail 
to respond appropriately to such warnings.[8-10] This 
was ranked seventh on the Emergency Care Research 
Institute list of the top ten technological hazards.[11,12] 
AI can help reduce alarm fatigue by providing real-time 
monitoring, often incorporating alert systems 
triggered by predefined thresholds. When specific 
haemodynamic parameters deviate from the normal 
range, the system generates alerts, notifying healthcare 
providers promptly. This proactive notification system 
is crucial for time-sensitive interventions in critical 
care scenarios.

Artificial intelligence for other early warning 
systems
Smith and Wood found that 51% of patients had one or 
more abnormal vital signs in the form of tachycardia, 
hypotension, hypo or hyperthermia, tachypnoea, 
altered mental status, or decreased urine output in the 
24 hours before their cardiac arrest.[13] These warning 
signs in the form of derangement of physiologic 
variables often go unnoticed. AI provides real-time 
monitoring in haemodynamic assessment involving 
the continuous analysis of physiological data, such 
as blood pressure, heart rate, and cardiac output. ML 
algorithms process this data instantaneously, providing 
a dynamic and up-to-the-moment understanding of a 

patient’s cardiovascular status that can augment the 
physician’s decision-making abilities and improve 
patient outcomes.[14]

SL Hyland et al.[15] introduced CircEWS and 
CircEWS-lite, two early-warning systems specifically 
engineered to alert clinicians to anticipated 
circulatory failure events within 8 hours. Developing 
and validating these systems involved utilising 
patient data sourced from the High Time Resolution 
ICU dataset. A continuous risk score, updating every 
5 minutes, was generated to forecast the likelihood 
of a patient developing circulatory failure within the 
subsequent 8 hours. Notably, the model achieved a 
90% prediction accuracy for circulatory failure events 
in the test set, with 82% identified more than 2 hours 
in advance. The authors implemented an alarm system 
featuring a silencing policy, where subsequent alarms 
are suppressed for 30 minutes once an initial alarm is 
triggered. The system resets if a patient experiences 
circulatory failure and subsequently recovers.

Artificial intelligence for cardiac surgery and shock
Various AI models have been created for post-cardiac 
surgery and septic shock. Denai M et al.[16] have 
described fuzzy decision support systems (DDS) for 
managing post-surgical cardiac intensive care patients. 
Paetz H et al.[17] and Paetz J et al.,[18] the former, in 
conjunction with an artificial neural network (ANN), 
have tackled the problem of rule generation for patients 
suffering from septic shock. Later, Ross et al. developed 
an ANN model of inflammation and septic shock in 
conjunction with a system of ordinary differential 
equations.[19] ML methods have also been used with 
varying success for the more specific problem of 
predicting mortality caused by sepsis. A diagnostic 
system for septic shock based on ANNs (radial basis 
functions (RBFs) and supervised growing neural gas) 
was presented.[20]

These models and studies present various methods 
that use AI and predictive techniques to predict 
haemodynamic instability, treat conditions such as 
septic shock and post-cardiac surgery care, and forecast 
circulatory failure. These methods offer promising 
ways to improve patient care in critical situations.

Using pre-operative and intra-operative data, a 
real-time prediction model for large transfusion during 
surgery showed high accuracy (AUROC of 0.972 in 
internal validation and 0.943 in external validation).[21] 
This model shows the promise of AI-supported clinical 

Page no. 103



Myatra, et al.: Artificial intelligence and haemodynamic monitoring

96 Indian Journal of Anaesthesia | Volume 68 | Issue 1 | January 2024

decision-making in surgical settings by enabling early 
identification of high-risk patients and maybe enabling 
timely interventions.

Artificial intelligence‑assisted ultrasonography
The role of AI in various ultrasonographic procedures 
has been reported. Shaikh et al.[22] examined how 
well-inexperienced users could quantify cardiac 
output (CO) during point-of-care ultrasonography 
(POCUS) using manual methods versus an 
automation-assisted method supported by AI. The 
automated method supplied real-time feedback for 
appropriate aortic outflow velocity measurement. 
Results demonstrated that although there was a 
correlation between human and automated measures, 
the automated approach had better repeatability, 
lower variability, and more constrained measurement 
ranges. Although both groups overestimated readings 
compared to experts, the automated method showed 
higher accuracy when measuring CO. Accordingly, 
AI-assisted ultrasonography may improve accuracy 
and decrease unpredictability in critical care 
environments, which may facilitate the evaluation of 
haemodynamic responses to therapies.

Closed loop systems
Closed-loop systems that integrate monitoring with 
therapy have been developed. Combining monitoring 
of various systems with therapy to correct values in 
a closed-loop system would be the most efficient and 
intelligent use of a monitoring system. A closed-loop 
control system is where the actual behaviour is sensed 
and fed back to the controller. This is compared to the 
system’s set, reference, or desired state to adjust it to 
its desired state. These include closed-loop control of 
blood glucose levels,[23] use of the electroencephalogram 
to administer propofol to maintain a predetermined 
level of sedation in intensive care unit patients,[24] 
a fluid-administration system based on dynamic 
predictors of fluid responsiveness,[25] and to manage 
blood pressure.[26]

Thus, monitoring and therapy will be seamless with 
advanced technology. Frequent monitoring, frequent 
titration, and adherence to the protocol can lead to 
reduced error, increased safety, reduced nursing and 
staff workload, and reduced mortality and hospital stay. 
However, clinicians must identify the parameters of 
interest, develop and validate clinically valuable sensors, 
develop clinically validated management algorithms, 
validate the entire closed-loop system, and demonstrate 
the utility of these closed-loop systems in clinical trials.

CHALLENGES AND LIMITATIONS
The quality of data used to train ML models is 
paramount. Challenges arise from the potential 
biases and inaccuracies in the training data, 
which can impact the performance of algorithms, 
particularly in diverse patient populations. Some 
ML models, incredibly complex neural networks, 
may need more interpretability. Understanding 
how these models arrive at specific conclusions 
can take time, raising concerns about transparency 
and trust in decision-making. Incorporating 
AI-driven haemodynamic monitoring systems 
into existing healthcare structures presents a 
multi-faceted challenge. Compatibility issues, 
interoperability, and the need for seamless data 
exchange between different systems pose challenges 
to implementation. Furthermore, establishing 
effective collaboration between healthcare 
professionals and AI systems remains challenging. 
Encouraging physicians to leverage AI to their 
advantage is challenging due to the misconception 
that AI aims to replace them. In reality, it serves as a 
complementary tool, offering those with AI knowledge 
a distinct edge without seeking to replace their 
expertise.

AI in healthcare raises ethical concerns, including 
patient privacy, consent, and the responsible 
handling of sensitive medical data. Clear guidelines 
and regulations are necessary to address these ethical 
considerations. Haemodynamic parameters are 
dynamic and can change rapidly in response to various 
factors. AI models may face challenges adapting 
to these dynamic changes and providing real-time 
accurate predictions. AI models developed for 
haemodynamic monitoring need rigorous validation 
across diverse patient populations and healthcare 
settings to ensure their reliability and generalisability.

THE FUTURE OF ARTIFICIAL INTELLIGENCE IN 
HAEMODYNAMIC MONITORING

The future of AI in haemodynamic monitoring is poised 
for exciting developments that aim to enhance patient 
care and clinical decision-making. One key direction 
is the move towards personalised monitoring, where 
AI algorithms can be tailored to individual patient 
characteristics, optimising precision in assessing 
haemodynamic status. Real-time adaptive models 
are anticipated, allowing AI systems to dynamically 
respond to changes in a patient’s condition, facilitating 
more timely interventions.
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Integrating AI with wearable devices is another 
forward-looking trend, offering continuous and 
unobtrusive monitoring of haemodynamic parameters. 
This could prove valuable in various healthcare settings, 
providing patients and healthcare professionals 
with insightful data. Blockchain technology may be 
incorporated to address data security and privacy 
concerns, ensuring a secure and decentralised system 
for managing patient information.

The future also holds promise for more transparent AI 
models with improved interpretability. This is crucial 
for building trust among healthcare professionals, 
particularly as AI becomes more integral to clinical 
decision-making. Advanced signal processing 
techniques, including incorporating cutting-edge 
imaging modalities and sensor technologies, are 
expected to improve the accuracy and reliability of 
haemodynamic measurements.

AI applications in haemodynamic monitoring 
may evolve to predict instability and anticipate 
complications or adverse events. This predictive 
analytics approach enables proactive interventions, 
potentially improving patient safety. Continuous 
learning models that adapt and improve over time 
based on real-world patient data represent another 
exciting frontier.

Technological advancements such as edge computing, 
which processes data locally near the patient, could 
reduce latency, particularly in critical care scenarios 
where real-time decision-making is critical. As 
AI in haemodynamic monitoring progresses, the 
development of regulatory frameworks will become 
essential to ensure these technologies’ safe, effective, 
and ethical use in healthcare.

The present-day noise in Intensive care units (ICU), 
primarily attributed to existing alarm systems, could 
potentially transform into a quieter environment; in the 
foreseeable future, ICUs might transition into ‘silent 
zones’, facilitated by the integration of wearable and 
remote monitoring devices, fostering an environment 
focused on patient comfort and tranquillity.

Despite these challenges, the future of AI in 
haemodynamic monitoring holds tremendous promise. 
Ongoing innovations, including real-time adaptive 
models, personalised monitoring approaches, and the 
incorporation of wearable devices, suggest a trajectory 
toward more efficient and patient-centric care. The 

potential for AI to predict complications and adverse 
events further underscores its role as a valuable tool in 
clinical decision-making.

As we navigate these advancements, it is crucial to 
balance AI’s power and healthcare professionals’ 
essential role. The collaboration between man and 
machine, where AI complements rather than replaces 
clinical judgment, is pivotal for successful integration. 
Ethical considerations surrounding data privacy and 
security also necessitate careful attention, emphasising 
the importance of clear regulations and standards.

AI in haemodynamic monitoring will likely witness 
continual growth in the coming years, fuelled by ongoing 
research, technological innovations, and collaborative 
efforts across the healthcare and technology sectors. 
Ultimately, the successful integration of AI can usher 
in a new era of proactive and personalised healthcare, 
where the intersection of AI and clinical expertise 
optimally serves the well-being of patients.

ROLE OF THE CLINICIAN

What will the clinician’s role be in this highly 
automated, computer- and data-driven environment? 
Arguably, this could dehumanise medical care even 
further. On the other hand, automation of several 
processes will save considerable time for the doctor. 
This time could be devoted to talking and listening 
to patients and their families, examining patients, 
and focusing on the humane aspects of care. Another 
benefit will be the reduction or elimination of physician 
error. However, the system’s strength depends on the 
reliability of the databases and algorithms built into the 
software. Finally, not all processes can be automated. 
Clinicians must continue to use their clinical acumen 
to ensure that patient outliers or system problems do 
not compromise the treatment of the condition and 
patient safety.

CONCLUSIONS

Integrating AI into haemodynamic monitoring 
represents a transformative frontier in healthcare, 
offering a spectrum of benefits and presenting unique 
challenges. The current landscape showcases the 
potential for AI to revolutionise the precision and 
personalisation of haemodynamic assessments, 
providing timely insights for clinicians and optimising 
patient outcomes. With the advent and refinement of 
AI, future monitors will not be a mere collective display 
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of numbers and waveforms. Monitoring systems will 
integrate current and trends of physiological data 
and data from the electronic medical records (EMR) 
and use bioinformatics to identify disease patterns, 
predict events, determine appropriate therapy, and 
help prognosticate. Intelligent monitoring will help 
clinicians with decision support, eradicate unnecessary 
alarms, and allow the clinician to focus on the patient. 
Closed-loop systems will integrate monitoring with 
therapy in an automated manner, leading to better 
adherence to protocol, elimination of human error, 
excellent patient safety, and better outcomes. However, 
challenges such as data quality, model interpretability, 
and seamless integration into existing healthcare 
infrastructures must be diligently addressed to unlock 
the full potential of AI in this domain. As we navigate 
these advancements, it is crucial to balance AI’s power 
and healthcare professionals’ essential role. Clinicians 
must continue to use their clinical acumen to ensure that 
patient outliers or system problems do not compromise 
the treatment of the condition and patient safety.
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