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Abstract. Myocardial infarction (MI) is a major form of 
heart disease that leads to immediate cardiomyocyte death 
due to ischemia and eventually fibrosis and scar forma-
tion and further dysfunction of myocardium and heart 
failure. Extracellular matrix (ECM) production and tissue 
repair is conducted by myofibroblasts, which are formed 
from the normal quiescent cardiac fibroblasts following 
transformational changes, through the active participation 
of transforming growth factor β (TGFβ) and its signaling 
pathways. TGFβ appears to be a ‘Master of all trades’, with 
respect to cardiac fibrosis, as it can promote cardiomyo-
cyte apoptosis and cardiac hypertrophy. TGFβ signaling 
involves its binding to TGFβ receptor type II (TGFβRII), 
which recruits TGFβ receptor type I (TGFβRI), which are 
also known as activin receptor-like kinase  (ALK) in five 
different isoforms. In canonical signaling pathways, ALK5 
activates Smads 2 and 3, and ALK1 activates Smads 1 and 5. 
These pairs of Smads form a corresponding complex and 
then bind to Smad 4, to translocate into the nucleus, where 
transcriptional reprogramming is carried out to promote 
myofibroblast formation and ECM production, eventually 
leading to cardiac fibrosis. TGFβ levels are elevated in MI, 
thereby aggravating the myocardial injury further. Several 
microRNAs are involved in the regulation of TGFβ signaling 
at different steps, affecting different components. Therapeutic 

targeting of TGFβ signaling at ALK1-5  receptor activity 
level has met with limited success and extensive research 
is needed to develop therapies based on the components of 
TGFβ signaling pathway, for instance cardiac dysfunction 
and heart failure.
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1. Introduction

Heart diseases affect millions of individuals worldwide and 
the mortality due to different types of heart diseases, both 
congenital and acquired is steadily increasing. Myocardial 
infarction (MI) is a major form of heart disease that leads 
to immediate cardiomyocyte death due to ischemia. Even 
intervention with reperfusion in a timely manner, causes reper-
fusion injury to the myocardium, by promoting post‑infarct 
heart remodeling, which is a known cause of heart failure (1). 

A fundamental problem during heart remodeling is cardiac 
fibrosis, which is promoted by the formation of myofibroblasts 
and excessive section of extracellular matrix (ECM). There 
are three major types of cells in the heart, including cardio-
myocytes, which are contractile, fibroblasts, which consist of 
10-30% of total cells, i.e., even more than cardiomyocytes (1), 
in adult heart and provide structural support and vascular 
cells, which are important for vascularization (2). Fibroblasts 
are known to secrete ECM into the interstitial space, which is 
necessary for providing structural organization and support 
to myocardium (3,4) and thus play an important role in tissue 
replacement and repair following injury to myocardium. 
However, this ability of ECM production and tissue repair 
is bestowed upon the normal quiescent cardiac fibroblasts 
following transformational changes into myofibroblasts, 
accompanied by several changes in gene expression and 
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phenotype of the cells. Hypertension and many other vascular 
and heart diseases lead to cardiac fibrosis, which compro-
mises the mechanical function of heart and thus pose serious 
threat to overall health and survival (3,4). Previous findings 
suggested that conditions associated with elevated levels 
of plasma levels of certain hormones such as aldosterone, 
angiotensin II, endothelin-1 (ET-1) and cytokines including 
transforming growth factor  β  (TGFβ), connective tissue 
growth factor  (CTGF/CCN2) and platelet-derived growth 
factor (PDGF), which actively participate in the process of 
transformation of quiescent fibroblasts to myofibroblasts, 
lead to cardiac fibrosis and eventually to heart failure (5). 
Normally, myofibroblasts undergo apoptotic removal 
following their function of tissue repair, but their persistent 
presence in disease and stress conditions, results in excessive 
ECM production and cardiac remodeling and fibrosis  (6). 
Fibrotic response arises from a concerted action of hormones 
such as aldosterone, ET-1 and angiotensin II and cytokines 
TGFβ, with the matricellular CTGF/CCN2, which amplifies 
the signals coming from TGFβ (7).

In this review, we discuss the role of TGFβ and its signaling 
in cardiac fibrosis and remodeling and heart failure. TGFβ 
plays an important role in post-infarct remodeling, where 
tissue repair involving hypertrophic growth and fibrosis take 
place as a compensatory mechanism in response to the loss of 
cardiomyocytes by apoptosis (8).

2. TGFβ and cardiac fibroblast transformation

It is well established that TGFβ expression is increased in 
response to tissue injury in general (9) and this cytokine is 
involved in the tissue repair process and scar formation (10). 
Notably, TGFβ appears to be a ‘Master of all trades’, with 
respect to cardiac fibrosis (11), as it can promote cardiomyo-
cyte apoptosis (12) and cardiac hypertrophy (13). Additionally, 
TGFβ is upregulated in post-infarction myocardium (14) and 
this correlates strongly with reduced ventricular ejection frac-
tions (15). There are three TGFβ isoforms, TGFβ1, TGFβ2 
and TGFβ3 and all these are released from their binding 
proteins, present as a protein complex, via the proteolytic 
process. Although most cells in myocardium are known to 
release TGFβ1, macrophages that infiltrate into myocardium 
after myocardial injury and cardiomyocyte apoptosis to engulf 
the damaged cardiomyocytes, are known to release TGFβ 
and angiotensin II in significant quantities (16). It has been 
demonstrated that TGFβ, when added to fibroblast cultures 
in  vitro, induces the expression of genes related to ECM 
production and thus increases ECM deposition and concomi-
tant suppression of matrix metalloproteinase through elevation 
of inhibitors of matrix metalloproteinase gene expression (7). 
TGFβ binds to its type I and II receptors and TGFβ/Smad 
signaling (see below) in fibroblasts, which sets into motion 
the processes involved in the transformation of fibroblasts to 
myofibroblasts. Once formed, myofibroblasts not only secrete 
ECM components, but also TGFβ, angiotensin and ET-1, 
which in a cyclical manner, further increase the formation of 
more fibroblasts and ECM deposition (16). The role of TGFβ 
in scar formation is evident from studies showing that the 
treatment of wounds with anti-TGFβ-antibodies or antisense 
oligonucleotides directed against TGFβ, reduce both ECM 

production as well as scarring (17). MI and ischemia reperfu-
sion injury to myocardium are known to elevate the levels of 
reactive oxygen species (ROS) in myocardial cells and this 
is known to increase the expression of TGFβ, which further 
aggravates injury and in fact the treatment of MI patients with 
ROS scavenger, N-acetylcysteine, was found to reduce TGFβ 
levels (15). Besides the transformation of fibroblasts, TGFβ1 
by partnering with tumor necrosis factor-α or IL1-β, is also 
shown to promote epithelial to mesenchymal transdifferentia-
tion and endothelial to mesenchymal transdifferentiation, both 
of which contribute to the formation of myofibroblasts (18,19). 
It is estimated that nearly 35% of the fibroblasts in the fibrotic 
areas of heart are derived through the process of endothelial to 
mesenchymal transdifferentiation (20).

3. TGFβ receptors and signaling

TGFβ exerts its cellular effects through its binding to cell 
surface receptors, TGFβ receptors type I (TGFβRI) and type II 
(TGFβRII), which are Ser/Thr kinase receptors. Engagement of 
TGFβ1 to TGFβRII induces its autophosphorylation, resulting 
in the recruitment of TGFβRI, which is also known as activin 
receptor-like kinase (ALK), and its heterodimerization with 
TGFβRI (21). After recruitment, TGFβRI phosphorylates and 
activates receptor-mediated Smads (R-Smad2 and R-Smad3), 
the downstream players in the TGFβ signaling pathway (22). 
R-Smads are released from Smad anchor after phosphoryla-
tion by ALK in response to TGFβ, and then they form a 
complex with co-mediator Smad4  (co-Smad4). This Smad 
complex translocates into the nucleus (Fig. 1), where it binds 
to promoter regions of the genes involved in ECM production 
and fibrotic process and enhances their expression. TGFβ 
signaling gets more modular and cell specific as there are five 
different isoforms of TGFβRI (ALK1‑5), which are expressed 
in different cell types and function by activating Smads 2 
and 3 or Smads 1 and 5 (23). ALK1 mediates the activation of 
Smads 1/5 whereas ALK5 activates Smads 2/3 in endothelial 
cells and in many other cell types, thus adding another layer 
of complexity to TGFβ signaling. In addition, Smads 6 and 7 
are known as inhibitory Smads that counter‑regulate TGFβ 
signaling (Fig. 1). Thus, the outcome of TGFβ1 signaling is 
a balance between stimulatory R-Smad2/3 and inhibitory 
Smad6/7 (I-Smad6/7). In addition to Smads 6 and 7, other 
factors such as Ski, and SnoN also act as negative regulators 
of TGFβ signaling (24,25). I-Smad7, which itself is induced 
by TGFβ, acts as a negative feedback regulator by targeting 
TGFβRI for degradation through Smurf2, a Smad ubiqui-
tination protein (26). By contrast, SnoN and Ski, which are 
ubiquitously expressed, negatively modulate TGF-β1 signaling 
at the gene transcription. Besides ALK-mediated signaling, 
TGFβ also mediates signaling directly via TGFβRII, by acti-
vating kinases such as TAK1, RhoA, ERK, and p38 (27) and 
also through the regulation of microRNAs (miRNAs), both at 
the transcriptional and post-transcriptional level (28).

Importance of Smad 3 in TGFβ‑mediated signaling and 
subsequent fibrotic response became evident in studies using 
Smad 3-knockout (KO) mice. Thus, it has been demonstrated 
that there is accelerated wound healing and low scar tissue 
formation, and reduced inflammation in Smad3-KO mice (29). 
Moreover, infarcted hearts from Smad3-KO mice display 
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reduced cardiac fibrosis in comparison to wild-type mice (30). 
Isolated cardiac fibroblasts from Smad3-KO mice are unable 
to respond to TGFβ to produce elevated levels of collagen 
and other ECM components, such as pro-collagen  III and 
tenascin-C (31,32), indicating the essential role of Smad 3 
in TGFβ signaling and fibrotic processes. Non-canonical 
pathways of TGFβ signaling are also involved in the 
expression of α-smooth muscle actin (αSMA) expression and 
CTGF/CCN2 expression by the myofibroblasts (33,34).

4. TGFβ signaling and miRNAs

miRNAs are important in the modulation of TGFβ signaling 
and cardiac fibrosis. Thus, it has been shown earlier that miR24 
prevents conversion of latent TGFβ to active form (35) and 
protects myocardium from post-infarction apoptosis and loss of 
cardiomyocytes in transgenic mice with cardiomyocyte‑specific 
overexpression of miR24 (36). Similarly, it has been observed 
that miR503 is upregulated in the mouse left ventricles 
subjected to transverse aortic constriction and also in 
neonatal cardiac fibroblasts treated with angiotensin  II in 

cell culture. miR-503 has been found to promote cardiac 
fibrosis involving the Apelin‑13‑TGFβ‑CTGF‑collagen 
production pathway  (37). In another study, miR101a was 
shown to protect from hypoxia‑induced cardiac fibrosis by 
targeting TGFβRI (ALK) in cardiac fibroblasts (38). Another 
miRNA, miR92a appears to be involved in promoting fibrosis 
induction by TGFβ by maintaining inhibitory Smad 7 at low 
levels. Thus, antagomirs against miR92a have been shown 
to protect hypoxia/reoxygenation induced apoptosis of 
cardiomyocytes (39). In a more recent study, it has been shown 
that miR19a-3p/19b‑3p was present at low levels in the plasma 
of heart failure patients and that miR19a‑3p/19b-3p mimics 
are inhibitory to epithelial mesenchymal transition and ECM 
production and invasion of cardiac fibroblasts. These miRs 
are found to antagonize autophagy of cardiac fibroblasts 
by targeting TGFβRII mRNA  (40). In an elegant study, 
Tijsen et al (41) demonstrated that expression of the miR15 
family was elevated in models of overloaded heart and cardiac 
hypertrophy and fibrosis in a protective response, as antimiRs 
against miR15 aggravated the fibrosis and hypertrophy in 
mice. miR15 was found to target TGFβRI (ALK) and other 

Figure 1. TGFβ signaling pathways that lead to myofibroblast formation. Binding of TGFβ to TGFβRII leads to its autophosphorylation and recruitment of 
TGFβRI (also known as ALK1-5). In normal canonical signaling, Smads 2 and 3 are activated by ALK5, followed by complex formation with Smad 4, for trans-
location into nucleus and activation of transcriptional program relevant for myofibroblast transformation. ALK1 activates Smads 1 and 5. Translocation of Smad 
complex into nucleus is inhibited by Smads 6 and 7, which prevent myofibroblast formation. In non-canonical signaling of TGFβ1, TGFβRII phosphorylates 
and activates RhoA, Ras and/or TAK1, which further activate ROCK, ERK and p38, respectively. TGFβ, transforming growth factor β; TGFβRII, transforming 
growth factor receptor type II; TGFβRI, transforming growth factor receptor type I; ALK, activin receptor-like kinase.
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components of this signaling pathway. Thus it appears that 
several miRNAs are involved in the regulation of TGFβ 
signaling and its effects on cardiac function.

5. Pathological effects of TGFβ and Smad signaling

As mentioned before, several lines of experimental evidence 
suggest the importance of Smad signaling in TGFβ‑mediated 
detrimental effects in cardiac dysfunction and failure (Fig. 2). 
Thus, it has been shown that decoy‑oligonucleotides targeting 
Smads were found to prevent TGFβ‑induced apoptosis in 
cardiomyocytes  (12). Interruption of Smad 2 signaling by 
inhibiting ALK receptors using SB431542, also prevented 
TGFβ‑induced apoptosis in cardiomyocytes (42). As detailed 
above, targeting Smads with miRNAs has been shown to be 
protective against TGFβ‑mediated detrimental effects (36). 
Of note, it has been demonstrated that activation of alternate 
Smad signaling pathways is able to prevent MI‑mediated 
cardiomyocyte death. Thus, bone morphogenetic protein-2 
(BMP2), another TGF family member, which activates 
Smad 1/5/8 signaling via ALK1, 2 or 3 receptors, is able to 
alleviate post-MI cardiomyocyte death and improve heart 
function (43). Additionally, endothelial mesenchymal transdif-
ferentiation, which is known to contribute to myofibroblasts, 
is significantly decreased in Smad 3-KO mice and also by 
injection of BMP7 (44). Smad 3-KO mice have been found 
to display reduced fibrosis following MI. Protected diastolic 
function and isolated cardiac fibroblasts from these KO mice 

do not show enhanced collagen synthesis in response to TGFβ 
and also markedly lowered migration and transdifferentia-
tion potential to become myofibroblasts (30,45). Inasmuch as 
Smad 3-KO did not alter early immune and inflammatory 
responses of myocardium, Smad 3 pathway is a potential ther-
apeutic target for reduction of the fibrotic response following 
MI and hypoxia/reperfusion injury. There is gene dosage 
effect on TGFβ signaling with regard to Smad 3 expression, 
as mice heterozygous for Smad3 are protected from cardiac 
hypertrophy induced by diabetes  (46). Novel ALK inhibi-
tors such as GW788388 have been found to curtail Smad 2 
activation, myofibroblast formation, ECM deposition as well 
as systolic dysfunction, without changing TGFβ levels and 
macrophage infiltration, which is necessary for myocardial 
injury healing (47). However, other ALK inhibitors were found 
to have several unwanted side effects including increased 
mortality and valve lesions (48,49), thus raising concerns in 
targeting this target. Overexpression of inhibitory Smad 7 
in  vivo, inhibited angiotensin  II-induced fibrosis and loss 
of contractility, whereas in  vitro overexpression curtailed 
ROS-induced expression of matrix metalloproteases and 
collagen (50).

Besides the canonical pathways, non-canonical 
signaling through TAK1 is important in TGFβ-mediated 
effects on cardiac dysfunction and hypertrophic response. 
TAK1‑mediated effects appear to involve p38 MAPK and other 
effectors such as TAK1 binding protein and JNK kinases (51). 
Extensive understanding of this complex signaling pathway is 

Figure 2. Pathological effects of TGFβ signaling and heart failure. Hypoxia/reperfusion injury, overload and/or myocardial infarction lead to heart dysfunction 
through TGFβ signaling. The canonical and non-canonical signaling pathways of TGFβ trigger cardiac hypertrophy, apoptosis of cardiomyocytes and fibrosis, 
which all culminate in scar formation in the infarct area, cardiac remodeling and eventually heart failure. TGFβ, transforming growth factor β.
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imperative in order to develop therapies targeting the compo-
nents of TGFβ signaling pathway.

6. Conclusions

MI leads to immediate cardiomyocyte death due to ischemia 
and fibrosis and further dysfunction of myocardium and heart 
failure. Fibrosis is deposition of ECM, which is conducted by 
myofibroblasts, which are formed from the normal quiescent 
cardiac fibroblasts, through the active participation of TGFβ 
and its signaling pathways. TGFβ appears to be responsible 
for cardiac fibrosis, cardiomyocyte apoptosis and cardiac 
hypertrophy. TGFβ signaling involves its binding to TGFβRII 
receptor, which recruits TGFβRI receptors, also known as 
ALK in five different isoforms. Canonical signaling pathways 
of TGFβ involve activation of Smads, which translocate into 
nucleus, where transcriptional reprogramming is carried out 
to promote myofibroblast formation and ECM production, 
eventually leading to cardiac fibrosis. TGFβ levels are elevated 
in MI, thereby aggravating the myocardial injury further. 
Therapeutic targeting of TGFβ signaling at ALK1-5 receptor 
activity level has met with limited success and investigation is 
needed to develop therapies based on TGFβ signaling pathway, 
for cardiac dysfunction and heart failure.
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