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Introduction
Foraging describes the process by which animals actively search 
for and harvest resources (Stephens and Krebs, 1986). While for-
aging, animals must decide whether to accept or reject a particu-
lar item upon encounter and choose when to leave a depleting 
patch of resources for a better one. Foraging behaviour is ubiqui-
tous and manifests in varied contexts including foraging for 
water, sexual opportunities, social encounters, and even informa-
tion (Dukas, 2002; Fu and Pirolli, 2007; Pirolli, 2007; Stephens 
and Krebs, 1986). Moreover, the foraging framework has been 
extended beyond physical resources to understand cognitive con-
cepts like visual search (Anderson et al., 2013; Cain et al., 2012; 
Wolfe, 2018), free recall (Hills et al., 2012, 2015), social process-
ing (Hills and Pachur, 2012), and problem solving (Hills et al., 
2010; Payne and Duggan, 2011), suggesting that foraging com-
putations are a neurological primitive and central to a wide array 
of cognitive functions (Hills et al., 2010; Newell, 1992).

The computational demands of foraging for dispersed and dif-
ficult to obtain resources have been hypothesised to be a major 
contributor to the rapid development of the human neocortex 
(DeCasien et al., 2017; Genovesio et al., 2014; González-Forero 
and Gardner, 2018; Milton, 1988). Despite the central impor-
tance of foraging for understanding behaviour, the neural circuits 

that mediate foraging have only recently begun to be described 
(Barack et al., 2017; Daw et al., 2006; Hayden et al., 2011; 
Kolling et al., 2012; Strait et al., 2014). In mammals, the main 
cortical nodes of the putative foraging circuit include ventrome-
dial prefrontal cortex (vmPFC), anterior cingulate cortex (ACC), 
and posterior cingulate cortex (PCC; Heilbronner and Hayden, 
2016; Vogt et al., 1979). The activity of these nodes is regulated 
by dopamine (Björklund and Dunnett, 2007; Williams and 
Goldman-rakic, 1993) and norepinephrine (Aston-Jones and 
Cohen, 2005).
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Foraging decisions typically require animals to accept or 
reject foreground choices based on the immediately available 
reward. Choosing whether to accept or reject an option is thought 
to be mediated by two distinct valuation processes: one related to 
valuation of the immediately available foreground options, car-
ried out by the vmPFC (Kolling et al., 2012; McGuire and Kable, 
2015; Shenhav et al., 2014; Strait et al., 2014). The other valua-
tion process involves estimation of the background context, 
including the local history of rewards and cost of travelling, and 
appears to be mediated by the dorsal anterior cingulate sulcus 
(dACC) (Blanchard et al., 2015; Hayden et al., 2011; Kolling 
et al., 2012; Shenhav et al., 2014; Wittmann et al., 2016). 
Decisions in these contexts also require integrating accept and 
reject computations over multiple decisions, a strategic process 
associated with PCC (Barack et al., 2017).

In a previous study (Hayden et al., 2011), we showed that 
spike rates of dorsal ACC (dACC) neurons vary with both imme-
diately available reward and time costs of travelling from patch to 
patch, the two key variables the animals must track to in order to 
maximize their intake rates. However, whether the activity 
observed in dACC neurons is a result of local processing or 
reflects signals inherited from other brain areas upstream to dACC 
is unclear. To address this question, we examined local field 
potentials (LFPs) gathered simultaneously with neuronal spiking 
activity from the same recordings in dACC (Hayden et al., 2011). 
LFPs are thought to index dendritic potentials reflecting the inputs 
to a given cortical area, as well as local circuit processes, whereas 
spikes are thought to index outputs of a brain area (Buzsáki et al., 
2012; Einevoll et al., 2013; Mitzdorf, 1985; Monosov et al., 2008; 
Sendhilnathan et al., 2017). We hypothesised that if LFPs in 
dACC differ from spiking activity at the same sites, by reflecting 
only reward or time costs but not both, this would endorse a role 
for dACC in integrating immediate reward and time costs into a 
single decision variable during patch foraging.

Here we report evidence in favour of dACC’s role in cost–
benefit computations. Modulations of LFP power spectra, espe-
cially in theta, beta, and gamma frequency bands, robustly 
encoded immediately available reward at several sites. LFPs 
from few sites signalled time costs. Furthermore, simultaneously 
recorded dACC spiking activity strongly encoded reward value 
modulated by time costs. Together, these observations suggest 
dACC receives reward-related inputs which are locally combined 
with signals reflecting time costs in order to generate spike rates 
signal reward value normalised by time costs. The source of time 
costs, how they are transmitted to dACC, and how they are inte-
grated with reward signals, however, remains unknown.

Results

Monkeys forage optimally in a virtual patch 
foraging task

The patch foraging task has been described in detail previously 
(Blanchard and Hayden, 2015; Hayden et al., 2011). In this task, 
on any given trial, the animal faced two options: choosing (by 
shifting gaze) the ‘stay’ option, represented by the short blue tar-
get (Figure 1(a)), led to a juice reward after a short delay (called 
handling time, 0.4 s). The juice reward began at a high value 
(306 µL) and declined by 19 ± 1.9 µL each time the animal chose 
the stay option (Figure 1(b)). On the other hand, choosing the 
‘leave’ option, represented by the tall grey target, led to no reward 

and a long delay. At the end of the delay period, the value of the 
stay target was reset to the high initial value (i.e. 306 µL). Time 
spent choosing the stay option (time in the patch) is referred to as 
‘patch residence time’. The long delay after the animal chose to 
leave the patch is referred to as ‘travel time’. Travel time was 
indicated by the height of the grey bar and was chosen randomly 
from a uniform distribution (0.5–10.5 s), and changed only fol-
lowing decisions to leave a patch.

The marginal value theorem (MVT; Charnov, 1976) – the nor-
mative model in these conditions– prescribes that the animal should 
leave a patch when the instantaneous reward rate falls below the 
average reward rate for the environment. When the travel delay is 
larger, the average reward rate reduces, and the animal should stay 
in the patch longer. Consistent with this prediction, in our data, we 
observed a significant increase in patch residence time with increase 
in travel time (Figure 1(d); Pearson’s r = 0.32, p < 0.0001). 
Furthermore, the two monkeys performed nearly optimally: the 
average deviation from optimal leave time was <3 s. Put another 
way, the animals obtained >95% of the maximum reward obtaina-
ble as predicted by the MVT, given certain assumptions about vari-
ability in their behaviour (see Hayden et al., 2011 for details).

Patch residence time weakly modulates 
event-related LFPs

The neural data presented here were recorded from 55 sites in 
dACC from two monkeys performing the patch foraging task (27 
sites in monkey E, 28 in monkey O). Event-related potentials 
(ERPs) were determined by aligning them to the onset of fixa-
tion, when the patches appeared (left column in Figure 2.), and to 
the end of the choice saccade (right column in Figure 2). ERPs 
for the example site (Figure 2(a)) and the aggregate ERPs across 
sites (Figure 2(b)) show that the dACC field potentials decrease 
in voltage just prior to the trial and around the time of the choice 
saccade, then increase as the time of reward delivery approaches. 
Decrease in ERPs around the time of the choice saccade followed 
by an increase in anticipation of reward is consistent with obser-
vations from a previous report (Emeric et al., 2008).

We then tested whether the observed ERP modulations were 
sensitive to patch residence time, which by the design of the task 
predicts the immediate expected reward. That is, longer patch 
residence time reduces the size of the reward that can be expected 
for staying. To test this prediction, we examined LFPs in three 
different patch residence time bins: early: t < 7.5 s, medium: 
7.5 < t < 22.5, and late: 22.5 < t (Figure 2(a) and (b)). When tri-
als were segregated this way, we observed that LFPs for the 
longer patch residence time bins were elevated about ~0.2 s 
before the onset of the trial (left panel Figure 2(a); one-way anal-
ysis of variance (ANOVA), F(3, 1996) = 3.13, p = 0.02) and 
around the time of the choice saccade (right panel Figure 2(a); 
one-way ANOVA, F(3, 1996) = 12.5, p = 0.0001) in the example 
site. The aggregate LFPs across sites (Figure 2(b)) also showed 
an increase in ERPs in a similar fashion. To assess the number of 
sites that showed an increase in ERPs with patch residence time, 
we performed a sliding ANOVA (see section ‘Methods’). We 
then counted the number of sites with a significant increase in 
ERPs in every 200 ms time bin (Figure 2(c)). When late patch 
residence time trials were compared with early patch residence 
time trials (Figure 2, cyan trace), as opposed to when late patch 
residence time trials were compared with medium patch resi-
dence time trials, an increase in ERPs was observed in more 
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number of sites (Figure 2(c): left panel: cyan vs green; up to 16% 
increase, X2(2, N = 55) = 5.88, p = 0.01), 0.2 s before the onset of 
the trial, and just after (0.1 s) saccade end (Figure 2(d): right 
panel: cyan vs green; up to 15% increase, X2(2, N = 55) = 4.15, 

p = 0.04). These results demonstrate that ERPs signal trial- 
relevant events and weakly (8%–23% of the sites, 55 sites, Figure 
2(c), right column) encode changes in patch residence time.

Patch residence time but not travel time 
modulates LFP spectral power

We next examined modulations in LFP spectral bands at the time 
of fixation onset that correspond to changes in patch residence 
time. To do this, we assessed spectral power using the Chronux 
toolbox (Bokil et al., 2010) in the delta (1.5–4 Hz), theta (3–9 Hz), 
alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–80 Hz) bands. 
Modulations in the spectral power at an example site in the low 
frequencies (<30 Hz; Figure 3(a), lower panel) and in the gamma 
band (30–80 Hz; Figure 3(a) upper panel) are shown as the patch 
residence time increases. When trials were segregated into early 
(<7.5 s), medium (7.5–22.5 s), and high (>22.5 s) patch resi-
dence time bins, significant increase in theta (Figure 3(a); one-
way ANOVA, F(3, 1308) = 2.3, p = 0.067), beta (Figure 3(a); F(3, 
1308) = 3.8, p = 0.009), and gamma (Figure 3(a), upper panel and 

Figure 1. Patch-leaving task ((a)–(c), adapted with permission from 
Hayden et al., 2011)). (a) Task design. After fixation, two eccentric 
targets, a large grey and a small blue rectangle, appear. Monkey 
chooses one of two targets by shifting gaze to it. Choice of blue 
rectangle (stay in patch) yields a short delay (0.4 s, handling time) 
and reward whose value diminishes by 19 μL per trial. Choice of grey 
rectangle (leave patch) yields no reward and a long delay (travel time) 
whose duration is indicated by the height of the bar and resets the 
value of the blue rectangle at 306 μL. Travel time varies randomly 
from patch to patch and ranges from 0.5 to 10.5 s. (b) Plot of the 
cumulative reward available in this task as a function of time in patch 
(black line). (c) Plot of reward intake rate derived from a range of 
patch residence times (x-axis). Data are shown for each of 10 travel 
times (1-s intervals from 0.5 to 10.5 s). Rate-maximising time in 
patch (the curves’ maxima, shown by the black line) increases with 
increasing travel time. Data are generated based on average times 
associated with actual animal performance. (d) Monkeys performed 
optimally in the patch-leaving task: Monkeys remain in the patch 
longer as travel time rises, as predicted by the marginal value theorem 
(MVT). Each dot indicates a single patch-leaving decision (n = 2794 
patch-leaving events). The time at which the monkey chose to leave 
the patch (y-axis) was defined relative to the beginning of foraging 
in that patch. Travel time was kept constant in a patch (x-axis). Data 
from both monkeys are shown. Average leave time is shown by the blue 
trace, MVT-prescribed optimal leave time in green.

Figure 2. Influence of patch residence time on event-related field 
potentials (ERPs). Phasic increase in dACC ERPs were observed 
after stimulus onset (left panel, Fix ON) and around the time of the 
saccade (right panel, saccade end) at an example site (a) and for the 
normalised aggregate LFPs across sites (N = 55, 2 monkeys) in (b) 
during a ‘stay’ trial at different patch residence times corresponding 
to early (<7.5 s, black), medium (7.5–22.5 s, blue), and late (>22.5 s, 
magenta). Confidence bands represent s.e.m. (c) When late patch 
residence times were compared with early patch residence times (cyan 
trace), as opposed to when late patch residence times were compared 
with medium patch residence times, an increase in ERPs was observed 
in significantly more sites around the time of saccade  
(* in the right panel).
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Figure 3(b); F(3, 1308) = 2.6, p = 0.049) bands were observed. To 
assess the number of sites that showed an increase in power in 
these spectral bands, we performed a sliding ANOVA (see sec-
tion ‘Methods’). We then counted the number of sites with a sig-
nificant increase in LFPs in every 5 Hz frequency bin (Figure 
3(c)). When late patch residence time trials were compared with 
early patch residence time trials (Figure 3(c), cyan trace), as 
opposed to when late patch residence time trials were compared 
with medium patch residence time trials (Figure 3(c), green 

trace), increase in LFP spectral power was observed in a greater 
number of sites (Figure 3(c): cyan vs green; theta: up to 22%, 
X2(2, N = 55) = 10.38, p = 0.001; beta: up to 18%, X2(2, 
N = 55) = 6.69, p = 0.001; gamma: up to 20%, X2(2, N = 55) = 12.5, 
p = 0005).

We next examined modulations in LFP spectral bands that 
corresponded to changes in travel time. Travel time imposes an 
opportunity cost and is the major disincentive for abandoning 
a patch. To test whether LFP spectral bands reflected travel 
cost, we plotted modulations in spectral power at the time of 
fixation onset from an example site. Time–frequency spectrum 
for low frequencies (0–30 Hz; Figure 4(a), lower panel) and 
higher frequencies (30–80 Hz, Figure 4(a), upper panel) are 
shown as travel time increases. Interestingly, when trials were 
segregated into low (<3 s), medium (3–8 s), and high (>8 s) 
travel time bins, we did not observe significant modulation in 
spectral power bands, or any other consistent trend, at the 
example site (Figure 4(b); theta: F(3, 1308) = 2.3, p = 0.081; 
beta: F(3, 1308) = 0.65, p = 0.578; gamma: F(3, 1308) = 0.67, 
p = 0.565). Next, we performed a sliding ANOVA and counted 
the number of sites with a significant increase in LFPs in every 
5-Hz frequency bin (Figure 4(c)). LFPs in dACC were modu-
lated by travel time in small proportion of sites (25%–38%, 
Figure 4(a)). By comparison, LFPs in more than twice as many 
sites (48%–70% for frequencies < 30 Hz; 66%–89% for fre-
quencies between 30 and 80 Hz, Figure 3(c)) were modulated 
by patch residence time. Furthermore, when high travel time 
trials were compared with low travel time trials (Figure 4(c), 
cyan trace), as opposed to when high travel time trials were 
compared with medium travel time trials (Figure 3(c), green 
trace), increase in LFP spectral power was observed in few 
sites (Figure 4(c), cyan vs green; theta: up to 16%, X2(2, 
N = 55) = 3.74, p = 0.06; beta: up to 11%, X2(2, N = 55) = 2.85, 
p = 0.091; gamma: up to 9% (except around 60 Hz), X2(2, 
N = 55) = 1.94, p = 0.16).

Overall, these observations demonstrate that LFP spectral 
power in the theta, beta, and gamma bands is robustly influenced 
by patch residence time, which indicated the value of immedi-
ately available reward. LFP spectral bands, were, however, only 
weakly influenced by travel time, the major cost for abandoning 
a patch for a new one.

Both travel time and patch residence time 
modulates neuronal spiking activity

For this analysis, we segregated both patch residence time and 
travel time into quartiles. Then, we trained a linear classifier (see 
section ‘Methods’) using a fraction of the data (9 parts out of 10) 
to classify patch residence time or travel time of the held-out 
sample. The data consisted of different LFP spectral bands, LFP 
voltage fluctuations, or neuronal spiking rates. Area under the 
receiver operating characteristic (AUROC) curve was deter-
mined post-classification as a measure of classifier performance. 
We also randomly shuffled the data prior to classification to 
obtain a shuffle control.

Consistent with previous results plotted in Figure 3, we 
observed that LFPs, especially spectral bands corresponding to 
beta (13–30 Hz) and low gamma band (30–80 Hz), as well as all 
LFP spectral bands together, encoded patch residence time 
much better than chance, in a majority of the sites (Figure 5(a); 

Figure 3. Influence of patch residence time on LFP spectral power. 
(a) Time–frequency spectrograms showed an increase in the theta 
(3–9 Hz), beta (13–30 Hz), and gamma (30–80 Hz) band power with 
patch residence time. Heatmap intensity represents power in decibel. 
Each tile in the panel represents a 500 ms window at the time of 
stimulus onset. All the trials in a 3-s patch residence time bin were 
pooled together to calculate the average spectral power. (b) LFP 
power spectrum from the example site during a ‘stay’ trial at different 
patch residence time bins – early (<7.5 s, black), medium (7.5–22.5 s, 
blue), and late (>22.5 s, magenta). Confidence bands represent s.e.m. 
(c) When late patch residence times were compared with early patch 
residence times (cyan trace), as opposed to when late patch residence 
times were compared with medium patch residence times (green 
trace), increase in LFP spectral power was observed in significantly 
more sites.
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median ± interquartile range (IQR) of the AUROC across 55 
sites, 2 monkeys: beta: 0.57 ± 0.04, low gamma: 0.60 ± 0.04, 
all LFPs: 0.62 ± 0.04). However, these same spectral bands did 
not encode travel time as well as they encoded patch residence 
time (Figure 5(b); median ± IQR of the AUROC across 55 sites, 
2 monkeys: meta: 0.52 ± 0.03, low gamma: 0.52 ± 0.03, all 
LFPs: 0.53 ± 0.03). Neuronal firing rates at these same sites, 
however, encoded both patch residence time (Figure 5(a); 

median ± IQR of the AUROC across 55 sites, 2 monkeys: 
spikes: 0.55 ± 0.04) and travel time (Figure 5(b); spikes: 
0.56 ± 0.03).

The results from the classification analyses demonstrate that 
LFP spectral bands at many dACC sites strongly encoded patch 
residence time but only a few sites weakly encoded the travel 
time. Neuronal spiking activity at those same sites, however, 
encoded both patch residence time and travel time.

The primary reason for binning the patch residence time and 
travel time data was to keep the analyses and the results compa-
rable with a prior study (Hayden et al., 2011). However, to take 
advantage of the continuous nature of the data, we also carried 
out a regression-based analysis. The regression models treated 
the LFP spectral power or the neuronal spiking rate as the 
dependent variable and the patch residence time and/or travel 
time as the independent variable(s) (see section ‘Methods’). At 
an example site (Figures 3–4(a)), we observed that patch 

Figure 4. Influence of travel time on LFP spectral power. (a) Time-
frequency spectrograms did not show a significant change in the theta 
(3–9 Hz), beta (13–30 Hz), and gamma (30–80 Hz) band power with 
travel time. Heatmap intensity represents power in decibel. Each tile in 
the panel represents a 500 ms window at the time of stimulus onset. All 
the trials in a 1.25 s travel time bin were pooled together to calculate 
the average spectral power. (b) LFP power spectrum from the example 
site during a ‘stay’ trial at different travel time bins – low (<3 s, 
black), medium (3–8 s, blue), and high (>8 s, magenta). Confidence 
bands represent s.e.m. (c) When late patch residence times were 
compared with early patch residence times (cyan trace), as opposed 
to when late patch residence times were compared with medium patch 
residence times (green trace), the number of sites that showed a 
difference was not significant.

Figure 5. Encoding of patch residence time and travel time by 
LFPs and spikes in the dACC. The area under the receiver operating 
characteristic (AUROC) from a cross-validated linear discriminant 
analysis to assess how well the ERPs (L-t); LFP power modulations 
in different spectral bands (D-delta, T-theta, A-alpha, B-beta, Gl-
low gamma, Gh-high gamma, L-f – all LFP bands); and changes in 
the neuronal spiking activity (S) encode the changes in expected 
reward magnitudes with patch residence time (a) and travel time (b). 
Consistent with previous analyses, LFP spectral bands especially in the 
beta, low gamma, or all LFP bands together from many sites (each dot 
is a site, blue boxes represent 25–75 percentile of AUROC across sites) 
accounted for changes in patch residence time, significantly better 
than chance (0.5, dashed horizontal line) and the shuffled control 
(green boxes; 25–75 percentile). These spectral bands, however, were 
less informative regarding changes in travel times (b). On the other 
hand, changes in firing rate of the neurons at many of these sites, 
encoded changes in patch residence time and travel time, consistent 
with previous reports (Hayden et al., 2011).
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Table 1. The table shows the average effect size of the patch residence time (top row) and travel time (middle row) on the LFP spectral bands 
(columns).

Delta Theta Alpha Beta Low gamma High gamma LFP-t Spike

Residence time 0.06 (12) 0.09 (18) 0.08 (19) 0.04 (19) 0.02 (12) 0.01 (16) 0.16 (13) 0.01 (17)
Travel time 0.001 (5) 0.04 (5) 0.06 (7) 0.02 (9) 0.004 (4) 0.02 (5) 0.003 (4) 0.02 (15)
Chi-square  
(p-value)

3.53 (0.06) 9.79 (0.001) 7.72 (0.005) 5.13 (0.02) 4.84 (0.02) 7.4 (0.006) 5.84 (0.01) 0.19 (0.66)

The number in brackets indicates the number of sites in which the effect size was significant. The bottom row reports the Chi-square statistics and the associated  
p-values (in brackets) based on the increase in the proportion of sites encoding patch residence time over travel time.

residence time was a significant contributor to LFP spectral 
bands, for example, the low gamma band (coefficient: 
0.11 ± 0.04; Tstat: 2.6; degrees of freedom (DOF): 561; 
p = 0.007), whereas travel time was not (coefficient: 
–0.01 ± 0.04; Tstat = –0.29; DOF: 561; p = 0.77). On the other 
hand, both patch residence time (coefficient: 0.1 ± 0.037; Tstat: 
2.94; DOF: 572; p = 0.003) and travel time (coefficient: 
–0.02 ± 0.01; Tstat: –2.4; DOF: 572; p = 0.01) contributed to 
neuronal spiking rate. Overall, of the 55 sites, for low gamma 
band, patch residence time was a significant predictor at 12 
sites (linear mixed effects model, p < 0.05), whereas travel time 
was a significant predictor at only 4 sites (linear mixed effects 
model, p < 0.05). The increase in the number of sites that 
encoded patch residence time over travel time was significant 
(4 to 12 sites out of 46; Chi-square Stat = 4.84; p = 0.02). 
Conversely, for spiking activity, patch residence time and travel 
time were significant predictors at 17 and 15 sites, respectively 
(linear mixed effects model, p < 0.05). The number of sites that 
encoded patch residence time over travel time was not signifi-
cant (17 to 15 sites out of 46; Chi-square Stat = 0.19; p = 0.66). 
Table 1 shows the average effect size of patch residence time 
(top row) and travel time (middle row) on the LFP spectral 
bands (columns). The bottom row reports the Chi-square statis-
tics and associated p-values (in brackets) based on the increase 
in the proportion of sites encoding patch residence time over 
travel time.

Again, as observed previously using a linear discriminant 
analysis, the regression analyses also indicated that at many 
sites, changes in spectral power in LFPs could be better 
accounted for by changes in patch residence time than by travel 
time. By contrast, variation in neuronal spiking activity could 
be accounted for by changes in both patch residence time and 
travel time. Converging evidence from the above analyses indi-
cated that LFP spectral bands at many dACC sites strongly 
encoded patch residence times but only a few sites encoded 
travel times. At these same recording sites, however, spiking 
activity signalled both patch residence times and travel times. 
This mismatch in the information content between LFPs, 
thought to reflect inputs and local processing, and spikes, 
thought to reflect outputs of the brain area, constrains the role 
of the dACC in foraging behaviour.

Spike-field coherence

We observed an increase in spectral power with patch residence 
time, concomitant with an increase in neuronal firing rate in 
dACC (Hayden et al., 2011), suggesting that LFP spectral power 
may mediate the ramping up in firing rates observed during 

foraging. Furthermore, local oscillations also tend to synchronise 
neuronal spiking (Buzsáki et al., 2012). That is, an increase in 
dACC-LFP power may synchronise the activity of more dACC 
neurons. Spike-field coherence (SFC) provides a way to assess 
the relationship between changes in spiking activity and changes 
in spectral power. That is, SFC would be expected to increase 
when both spiking and field potential power increases.

To understand the changes in SFC with patch residence time, 
for an example session we binned the data into early, medium, 
and late residence time bins and the coherence in these bins were 
plotted separately (Figure 6(a)). SFC in all the bins was greater 
than chance (dashed horizontal line, Figure 6(a)). Furthermore, 
SFC increased with patch residence time: SFC for late residence 
time (magenta, Figure 6(a)) was higher than for medium (blue, 
Figure 6(a)) and early residence time (black, Figure 6(a)), espe-
cially at higher frequencies (>80 Hz). In fact, increase in SFC 
with patch residence time was significant by regression (p < 0.05, 
linear mixed effects model) in 12/55 recording sites, especially in 
high gamma band (80–300 Hz). Increase in SFC with patch resi-
dence time was observed in fewer sites and at lower frequencies: 
2/55 sites in the delta band, 6/55 sites in theta band, 5/55 sites in 
alpha, beta, and low gamma band.

Data were binned into low, medium, and high travel time bins 
to study the effects of travel time on SFC. In the example session 
shown in Figure 6(b), SFC decreased with increasing travel time. 
That is, SFC was higher for low travel time trials (Figure 6(b), 
black) than for medium travel time trials (Figure 6(b), blue) and 
high travel time trials (Figure 6(b), magenta). However, signifi-
cant changes in SFC with travel time were only observed in a few 
sites: 5/55 sites in delta, theta, and alpha band; 3/55 in beta band; 
and 4/55 sites in low and high gamma bands. In general, regres-
sion models that included patch residence time could account for 
changes in SFC better than ones that only included travel time 
(Akaike information criteria (AIC): AIC (patch residence time) 
– AIC (only travel time) < 0; Figure 6(c)).

Discussion
To determine the optimal time to leave a patch, foragers should 
track both immediately available reward in the patch and the 
time costs associated with travelling to a new one. Firing rates of 
neurons in dACC encode both immediately available reward 
rate and the long-term average reward rate, which takes into 
account time costs (Hayden et al., 2011; Kolling et al., 2012, 
2016a,b; Wittmann et al., 2016). Whether the time-reward inte-
grated signal observed in dACC neuron firing rates is inherited 
from other brain areas or arises from local processing remained. 
By simultaneously monitoring LFPs and spiking outputs from 
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dACC, we observed that LFPs, which have been hypothesised to 
dominantly reflect inputs and local processing (Buzsáki et al., 
2012; Einevoll et al., 2013), were in fact dissimilar to spike 
rates. LFP spectral bands at a majority of recording sites reflected 
only immediately available reward whereas spikes at the same 
sites signalled both reward and time costs. The disjunction 
between information contained in spiking and LFPs can con-
strain models of foraging-related processing. These findings 
endorse a role for dACC in integrating immediate rewards and 
time costs into a single decision variable – reflective of cost–
benefit calculations (Blanchard and Hayden, 2014; Croxson 
et al., 2009) – central to patch foraging.

ERPs recorded from the scalp and localised to dACC are 
strongly modulated by the value of received rewards (Emeric 
et al., 2008; Gehring and Willoughby, 2002). Consistent with 
these observations, we found significant changes in intracranial 
LFPs around the time of reward that changed with reward magni-
tude. Increases in theta and gamma band LFPs in ACC have been 
observed when stimulus-response mappings change (Womelsdorf 
et al., 2010). Increases in theta and beta band activity also have 
been observed in ACC when participants exert cognitive control 
(Babapoor-Farrokhran et al., 2017). In our study, as within patch 
reward declined, we observed an increase in theta, beta, and 
gamma band spectral power. This increase might reflect increas-
ing effort or control needed to override a default stay decision 
and leave the patch. The increase in spectral power we observed 
was accompanied by an increase in neuronal firing rates in dACC 
(Hayden et al., 2011). Increases in theta band power have been 

shown to be accompanied by increased firing rates of dACC neu-
rons in a phase-locked fashion (Womelsdorf et al., 2010), sug-
gesting LFP spectral power mediates the increase in dACC firing 
rates during foraging.

Local oscillations in LFP also tend to synchronise local neu-
ronal spiking (Buzsáki et al., 2012). Thus, an increase in LFP 
power in dACC may increase synchronised firing among dACC 
neurons. Although, as patch residence time increases, we report 
an increase in the number of sites showing an increase in spectral 
power, more conclusive evidence for neuronal synchrony could 
only come from simultaneous recordings from multiple neurons 
in dACC as well as LFPs.

Interestingly, LFPs at a few dACC sites reflected time costs. 
This observation invites the possibility that other unrecorded sites 
in dACC also may reflect time costs and/or reward modulated by 
time costs. Furthermore, we selected dACC recording sites based 
on task-related spiking activity, potentially biasing our LFP results. 
Future studies that examine dACC spiking activity and field poten-
tials with a multielectrode array spanning different cortical layers 
may further clarify the role of this brain region.

PCC is reciprocally connected with ACC (Heilbronner and 
Haber, 2014), receives locus coerulus norepinephrine input 
(Aston-Jones and Cohen, 2005; Joshi et al., 2016), and is impli-
cated in cognitive control (Botvinick et al., 2004; Hayden et al., 
2010; Pearson et al., 2009, 2011). During foraging, travel-time 
discounted reward signals in dACC could be transmitted to PCC. 
vmPFC provides a source of information on immediately availa-
ble reward value for PCC as well (Kolling et al., 2012; McGuire 

Figure 6. Influence of patch residence time and travel time on spike–LFP coherence. Spike–LFP coherence from an example site binned by patch 
residence time (a) and travel time (b). Coherence increases with increase in patch residence time and decrease in travel time. Dashed horizontal line 
at the bottom represents p = 0.05 confidence line. (c) Generalised linear mixed effects models with patch residence time and travel time as fixed 
effects, respectively, were fit to the spike–LFP coherence data. In general, changes in patch residence time explained the changes in coherence 
better as indicated by lower Akaike information criteria (AIC). All sites in which the model fit well were used for this plot (see section ‘Results’).
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and Kable, 2015; Shenhav et al., 2014; Strait et al., 2014). 
Foraging decisions require integrating reward and time costs 
across multiple decisions, a strategic process associated with fir-
ing rates in PCC (Barack et al., 2017; Barack and Platt, 2017).

Some recent work has highlighted the possible existence of a 
hierarchical sequence of processing related to economic choices, 
which include foraging decisions (Chen and Stuphorn, 2015; 
Cisek, 2012; Hunt et al., 2012, 2017; Hunt and Hayden, 2017; 
Strait et al., 2016; Yoo and Hayden, 2018). The proposed hierar-
chy may begin with orbitofrontal cortex and conclude with motor 
outputs. Each individual step is small or subtle, but the aggregate 
effect, along the hierarchy, results in the generation of actions. 
Our work provides evidence in favour of this viewpoint by pro-
viding a rare glimpse of the processes by which two forms of 
action-relevant information are combined into one.

In summary, foraging requires a core set of computations, 
which are observed across a wide array of animals (Stephens and 
Krebs, 1986). The fundamental nature of these computations has 
placed strong selective pressure on the evolution of cognition and 
behaviour (DeCasien et al., 2017; González-Forero and Gardner, 
2018; Hayden, 2018; Kolling and Akam, 2017; Kolling et al., 
2016a,b; Mobbs et al., 2018; Pearson et al., 2014) which in turn 
has shaped the organisation of the brain (Genovesio et al., 2014; 
Murray et al., 2017; Passingham and Wise, 2012). These consid-
erations invite the hypothesis that foraging has sculpted the ways 
that brains make more formal economic decisions, including 
decision-making under risk and temporal discounting (Bateson 
and Kacelnik, 1996; Hayden, 2016; Heilbronner, 2017; Kacelnik 
et al., 2011; Pearson et al., 2010; Santos and Rosati, 2015; 
Stephens, 2001). According to this line of reasoning, it is not sur-
prising that dACC, which is so central to so many cognitive func-
tions, plays a pivotal role in economic decisions (Ebitz and 
Hayden, 2016; Kolling et al., 2012, 2016a,b; Shenhav et al., 
2013, 2014, 2016). Our findings raise the possibility that local 
processing within dACC may serve to integrate the value of 
immediately available rewards and travel time costs, which when 
combined determine profitability, the core decision variable 
underlying both foraging and economic decisions.

Methods

Surgical procedures

All procedures were approved by the Duke University 
Institutional Animal Care and Use Committee and were designed 
and conducted in compliance with the Public Health Service’s 
Guide for the Care and Use of Animals.

Behavioural task

The task is described in detail in a previous publication (Hayden 
et al., 2011). Every trial began with a central fixation spot turning 
on (‘Fix ON’ in Figure 1). The targets were presented on the 
screen when the fixation spot turned ON. Following a 500 ms 
delay, the central fixation square turned off and the monkey was 
free to select either of the two targets by shifting gaze to it (±2° 
from the centre of the rectangle). Following choice of either tar-
get, the rectangle began to shrink at a constant rate (65 pixels per 
s) until it disappeared. A reward was then given if the blue ‘stay’ 
target was chosen and the ITI began (1 s). Because the rate of bar 

shrinkage was constant, the height of the bar provided an unam-
biguous cue to the delays associated with the two options on every 
trial. The delay associated with the blue stay (i.e. remain in patch) 
rectangle occurred before the reward and was isomorphic to the 
handling time in foraging decisions (set at 400 ms). The delay 
associated with the grey ‘switch’ (i.e. leave the patch) rectangle 
was analogous to the travel time in foraging decisions (ranging 
from 0.5 to 10.5 s in this experiment). It was set at a random value 
on each patch, but did not vary in a patch. The fixed delay (inter-
trial interval (ITI)) between trials was uncued, but was always the 
same (1 s). Following the first choice of the blue stay rectangle in 
each patch, the monkey received 306 µL of water. On subsequent 
choices of the ‘stay’ target, the reward decreased by 19 µL 
(although we introduced a small variance in this amount, ε = s.e.m. 
- standard error of the mean of 1.9 µL). If the monkey continued to 
choose the blue stay option, its value would eventually reach 0 
and remain 0 thereafter. On choosing the grey switch rectangle, 
the location of the blue and grey rectangles would alternate and 
the value of the blue rectangle would reset to 306 µL. On choosing 
the grey rectangle, the size of the grey rectangle and the associated 
travel time would reset to a new value, chosen from a uniform 
distribution between 0.5 and 10.5 s.

Horizontal and vertical eye positions were sampled at 1000 Hz 
by an infrared eye-monitoring camera system (SR Research). 
Stimuli were controlled by a computer running MATLAB 
(MathWorks) with Psychtoolbox (Brainard, 1997) and Eyelink 
Toolbox (Cornelissen et al., 2002). Visual stimuli were small col-
oured rectangles on a computer monitor placed directly in front 
of the animal and centred on his eyes. A standard solenoid valve 
controlled the duration of juice delivery.

Microelectrode recording

Single electrodes (Frederick Haer), lowered using a microdrive 
(Kopf), were used to record LFPs and spiking activity. Neurons 
were selected for recording on the basis of the quality of isolation 
only and not on task-related response properties. We approached 
ACC through a standard recording grid. ACC was identified by 
structural magnetic resonance images taken before the experi-
ment (Hayden and Platt, 2010). Neuroimaging was performed at 
the Center for Advanced Magnetic Development at Duke 
University Medical Center, on a 3 T MR Imaging Instrument 
using 1 mm slices. We confirmed that electrodes were in ACC 
using stereotactic measurements, as well as by listening for char-
acteristic sounds of white and grey matter during recording. 
Recordings were made between the position of 26 and 30 mm 
anterior to the interaural plane, with most occurring between 27 
and 29. Electrophysiological recordings were made in areas 24c 
(and possibly 6/32) in the cingulate sulcus, corresponding closely 
to what is called dorsal anterior cingulate cortex (dACC). The 
signals were amplified and digitised using a Plexon system 
(Hayden and Platt, 2010).

Pre-processing LFPs and spikes

Spike and field potential signals were recorded using a Plexon 
system (2009). The preamplifier box had 16 spike channels 
(Passband: 150 Hz–8 kHz) and 16 field potential channels 
(Passband: 0.7 – 300 Hz). Since the field potential signal occupy-
ing 0.7–300 Hz was digitised at 1000 Hz, we first low-pass  
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filtered it. The line noise (at 60 Hz) and its harmonics (at 120 and 
180 Hz) were modelled using sine waves on small chunks of data 
(1s windows) and removed from the filtered LFP signal using 
‘rmlinesmovingwinc’ from the Chronux toolbox version 2.12 
(Bokil et al., 2010). Trials with LFP signals that differed by more 
than 100 μV between successive sample points (<5% of trials) 
were removed. Spikes were determined and pre-processed as 
mentioned in the previous study (Hayden et al., 2011). Spike 
timestamps were binned using 1 ms bins and then convolved with 
a Gaussian waveform of σ = 20 ms to obtain a continuous spike 
density function. The smoothness of the spike density function 
was determined to match the LFP signal in its overall frequency 
profile to aid comparison.

Spectrum and spectrogram

Power spectrum analyses were done using Chronux toolbox. 
LFP spectral power and time-frequency spectrograms were 
obtained using the multitaper methods available in Chronux 
toolbox (Thomson, 1982). Spectral power was determined 
using ‘mtspecgramc’ function. The taper bandwidth was set to 
5 Hz, and 1 s of the data was used for analysis. A moving win-
dow sampled the next set of data after moving by 10 ms. 
Spectrograms calculated in this way were normalised by sub-
tracting the log of each value with the log of the baseline power 
spectrum, in the respective frequency ranges, to get the change 
in power for each frequency component with respect to time. 
Power in frequencies ranging from 1.5 through 4 Hz was con-
sidered delta band, 3 through 9 Hz was considered theta band, 
8 through 13 Hz was considered alpha band, 13 through 30 Hz 
was considered beta band, 30 through 80 Hz was considered 
low gamma band, and 80 through 300 Hz was considered high 
gamma band for all analyses.

Analyses

All the statistical analyses were conducted in MATLAB. 
Correlations reported are all Pearson’s correlations (default 
option for ‘corrcoef()’ in MATLAB) unless otherwise mentioned. 
Data were checked for normality a priori.

ANOVA

One-way ANOVA was performed using ‘Anova1’ comparing 
LFPs segregated by early, medium, late patch residence times 
(in Figures 2 and 3), and low, medium, and high travel times (in 
Figure 4). For the e-LFPs, the average LFP in a 200 ms bin was 
determined and compared, then the window was moved by 
50 ms, and the procedure was repeated. For the spectral data in 
Figures 3 and 4, average spectral content in a 5 Hz bin was deter-
mined and compared, then the window was moved by 1 Hz and 
the procedure was repeated. ANOVAs were performed for every 
session separately. Within each session, since the number of tri-
als per bin was variable, trials were resampled with replacement 
(N = 1000; bootstrap) before performing ANOVA. Resampling 
ensured the groups that were being compared had equal number 
of trials and the data distribution was nearly normal. Following 
ANOVA, post hoc, pairwise comparisons – between bins – were 
performed using Tukey’s honest significant difference criterion 
using ‘multcompare’.

Linear discriminant analysis

Each LFP spectral band – delta, theta, alpha, beta, low gamma, 
high gamma – served as predictors for this analysis (Figure 5(a) 
and (b); first six bars from the left). ERPs – average time domain 
LFPs (Figure 5(a) and (b); bar 7), spike density (spikes, Figure 
5(a) and (b); bar 8), and finally all spectral bands (LFP-f, all six 
frequency bands together, Figure 5(a) and (b); bar 8) – were used 
as predictors to classify patch residence time and travel times. 
Both patch residence time and travel time were divided into quar-
tiles. The number of samples in each quartile was the same, 
which ensured that sampling was unbiased for classification. The 
LFP spectral bands and the spike density data were log-trans-
formed to approximate normal distributions. ERPs were not 
transformed. Outliers – data beyond 3 standard deviations from 
the median –were removed prior to classification. Following 
these pre-processing steps, a fitted discriminant analysis model 
was obtained using ‘fitcdiscr’. We then performed 10-fold cross-
validation using ‘crossval’. Area under the ROC was determined 
using ‘perfcurve’ for each class against all others (1 vs 2, 3, 4; 2 
vs 1, 3, 4; and 3 vs 1, 2, 4). The average ROC was then estimated 
and shown in Figure 5 (each grey dot). For the shuffle control, the 
predictors were randomly shuffled before classification. Fifty 
shuffled classifications were performed and an average across 
these runs was determined for each site.

Generalised linear model with mixed effects

To understand the relationship between the neural activity (spikes 
and LFPs) and the patch residence time and travel time, we 
developed and tested generalised linear models (with mixed 
effects).

The following models were tested:

1. Activity ~ TT + (1|patch) + (TT – 1|patch)
2. Activity ~ RT + (1|patch)
3. Activity ~ RT + TT + (1|patch) + (TT – 1|patch)

where Activity stands for the spiking activity or LFPs ate a 
recording site, TT denotes travel time and RT denotes residence 
time. TT and RT are the fixed effects terms in the models.

Patch is a nominal variable that denoted the patch number. 
‘1|patch’ is the random intercept that accounted for baseline dif-
ferences in activity between patches. ‘TT – 1|patch’ is the random 
slope term that accounted for differences in activity between 
patches that was a function of travel time.

Other combinations – including interactions terms for fixed 
effects, random effects for the residence time, and so on – are 
not included since those models did not add value when empiri-
cally tested. Since the LFP spectral data and smoothened spike 
rate data were right skewed and all-positive, they were mod-
elled using a ‘Gamma’ distribution with a ‘reciprocal’ link func-
tion. All analyses were carried out in MATLAB using the 
‘fitglme’ function.

SFC

Spike data was binned into 100 ms bins to match the sampling 
rate of the field potential data. Spectral power was determined for 
the field potential data. Then, SFC was computed using the 
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‘coherencycpb’ function in the Chronux toolbox. To test whether 
coherence changed with residence time or travel time, a general-
ised linear models were developed. The models were similar to 
the ones utilized to understand the influence of residence time 
and travel time on the field potential and spiking activity.

The following models were tested:

1. Coherence ~ TT + (1|patch) + (TT – 1|patch)
2. Coherence ~ RT + (1|patch)
3. Coherence ~ RT + TT + (1|patch) + (TT – 1|patch)

where TT denotes travel time and RT denotes residence time. TT 
and RT are the fixed effects terms in the models.

Patch is a nominal variable that denoted the patch number. 
‘1|patch’ is the random intercept that accounted for baseline dif-
ferences in activity between patches. ‘TT – 1|patch’ is the random 
slope term that accounted for differences in activity between 
patches that was a function of travel time.

Coherence computed using the above models is shown in 
Figure 6. Akaike information criteria (AIC) was calculated for 
each of the models. AIC was determined by computing 
[2 log L + kp], where L is the likelihood function, p is the number 
of parameters in the model, and k is 2. A lower AIC means a 
model is considered to be closer to the truth.
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