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Abstract
Abnormal autophagic levels have been implicated in the pathogenesis of multi-
ple cancers, however, its role in tumors is complex and has not yet been explored 
clearly. Hence, we aimed to explore the prognostic values of autophagy-related 
genes (ARGs) for kidney renal clear cell carcinoma (KIRC). Differentially expressed 
ARGs and transcription factors (TFs) were identified in KIRC patients obtaining 
from the The Cancer Genome Atlas (TCGA) database. Then, networks between TFs 
and ARGs, gene ontology functional annotations and Kyoto Encyclopedia of Genes 
and Genomes pathway enrichment analysis were conducted. Next, we performed 
consensus clustering, COX regression analysis and Lasso regression analysis to iden-
tify the prognostic ARGs. Finally, an individual prognostic index (PI, riskScore) 
was established. Based on TCGA cohort and ArrayExpress cohort, Survival analysis, 
ROC curve, independent prognostic analysis, and clinical correlation analysis were 
also performed to evaluate this PI. Based on differentially expressed ARGs, KIRC 
patients were successfully divided into two clusters (P = 5.916e-04). AS for PI, it 
was constructed based on 11 ARGs and significantly classified KIRC patients into 
high-risk group and low-risk group in terms of OS (P = 4.885e-15 for TCGA cohort, 
P = 6.366e-03 for ArrayExpress cohort). AUC of its ROC curve reached 0.747 for 
TCGA cohort and 0.779 for ArrayExpress cohort. What's more, this PI was proven 
to be a valuable independent prognostic factor in both univariate and multivariate 
COX regression analysis (P <  .001). Prognostic nomograms were also performed 
to visualize the relationship between individual predictors and survival rates in pa-
tients with KIRC. By means of connectivity map database, emetine, cephaeline and 
co-dergocrine mesilate related to ARGs were found to be negatively correlated with 
KIRC. This study provided an effective PI for KIRC and also displayed networks 
between TFs and ARGs. KIRC patients were successfully divided into two clusters 
based on differentially expressed ARGs. Besides, small molecule drugs related to 
ARGs were also identified for KIRC.
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1 |  INTRODUCTION

Autophagy as a conservative metabolic way to maintain the 
homeostasis of the cell environment in the body, it can be 
expressed in all cells and selectively recover necrotic, injured 
and genetically deficient cells or tissues, providing energy 
for the body or regulating the stability of organ function.1 
However, the definite role of autophagy in tumors is complex 
and has not yet been explored clearly. Autophagy has differ-
ent mechanisms in different types of cancer, tumor microen-
vironments, tumor stages and so on.2,3 Jan Karlseder of the 
Salk Institute in the United States in a recent study further 
explained the mechanism by which autophagy inhibits can-
cer in the early stages of cancer that it was closely related 
to the ‘replication crisis’ caused by telomere fusion during 
cell division.4 With the development of cancer, the role of 
autophagy in tumor would change from inhibiting cancer to 
promote cancer survival.5,6 Even in established tumors, au-
tophagy could also help tumor cells resist a variety of drug 
treatments.7,8

Globally, there were 404,300 new cases of renal cell 
cancer and 175,100 new deaths of this tumor in 2018, 
ranking 16th in morbidity and mortality among all can-
cers, making it the third most common tumor in the urinary 
system.9 Although most renal cell carcinoma (RCC) devel-
oped slowly, many patients would already have metastasis 
at the time of detection due to the lack of typical symp-
toms.10 Moreover, renal cancer cells lacked sensitivity 
to radiotherapy and chemotherapy. Surgery remained the 
mainstay of therapy, however there were still 1/4 of these 
patients having a recurrence or metastasis after surgical 
treatment.11,12 Due to the lack of accurate predictive mark-
ers for the prognosis of patients with RCC, the establish-
ment of an effective prognosis prediction model is of great 
significance for the management of patients in the whole 
course of the disease.

Thanks to the availability of high-throughput expres-
sion data nowadays, it has become feasible for us to use 
public database data for analyzing the associations be-
tween autophagy-related genes (ARGs) and the clinical 
outcomes of kidney renal clear cell carcinoma (KIRC) pa-
tients. Here, we explored the associations between ARGs 
and transcription factors (TFs) and constructed prognosis 
prediction indexes for KIRC, based on related transcrip-
tome profiling data and clinical information downloaded 
from the The Cancer Genome Atlas (TCGA) database. Our 
study was anticipated to provide new insights of autophagy 
for future work.

2 |  MATERIALS AND METHODS

2.1 | Acquisition and preparation of data

Transcriptome profiling data and related clinical informa-
tion of KIRC were downloaded from TCGA Data Portal 
(https://tcga-data.nci.nih.gov/tcga/; accessed August 2019) 
and ArrayExpress (https://www.ebi.ac.uk/array expre ss/; 
accessed March 2020). The Human Autophagy Database 
(HADb, http://autop hagy.lu/clust ering/ index.html) is a dedi-
cated database reserving human ARGs. We did an overlap by 
comparing the obtained RNA-seq data with the HADb da-
tabase. Then, the RNA-seq data were background corrected 
and standardized by the R programming language.

2.2 | Identification and enrichment 
analysis of differently expressed ARGs

Differently expressed ARGs were carried out by using 
“Lima” package in R statistical software between KIRC and 
solid tissue normal samples. The threshold for identification 
of ARGs was set as adjusted P-value (FDR) < .05 and |log-
2fold changes (FC)| > 1. Gene functional enrichment analy-
ses, including gene ontology (GO) functional annotations 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis, were conducted to analyze 
the biological functions, cellular localization, and signaling 
pathways of targeted genes. In this study, we performed GO 
and KEGG enrichment analysis on differentially expressed 
ARGs by using the “clusterProfiler” R package.

2.3 | Identification of differently expressed 
TFs and construction of a network between 
TFs and ARGs

The Cistrome database (http://www.cistr ome.org/) is a com-
prehensive resource for predicted TF targets and enhancer 
profiles in cancers. The prediction was from integrative 
analysis of TCGA expression profiles and public ChIP-seq 
profiles. Differently expressed TFs were carried out by using 
“Lima” package in R statistical software between KIRC and 
solid tissue normal samples. Correlation test between differ-
ently expressed TFs and ARGs was performed by R program-
ming language. Moreover, correlation coefficient at least 0.4 
corresponding to a P < .01 were selected as the significantly 
correlated.

K E Y W O R D S

autophagy-related genes, kidney renal clear cell carcinoma, prognostic index
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2.4 | Cluster analysis

In order to show whether autophagy has an important impact 
on the overall prognosis of patients with KIRC, consensus 
clustering was performed to divide patients into clusters based 
on the differently expressed ARGs. “ConsensusClusterPlus” 
package in R statistical software was adopted to perform the 
Consensus clustering.

2.5 | Establishment of an independent 
prognostic index (PI, riskScore) based on ARGs

In order to identify the key ARGs, a univariate COX re-
gression analysis was firstly performed by us to exclude 
some ARGs with little prognostic value. Subsequently, a 
multivariate Cox regression analysis was utilized to re-
move the genes that might not be an independent indicator 
in prognosis monitoring. In addition, in order to prevent 
the occurrence of overfitting, we also used Lasso regres-
sion to remove key ARGs highly correlated with one other. 
According to the weight of each gene in Lasso regression 
analysis, we finally obtained the correlation coefficient 
in the model formula for predicting the prognosis of pa-
tients. Combined with the expression of various prognosis-
related genes, we established an independent prognostic 
model. The PI (riskScore) was calculated using the follow-
ing formula β1 × gene1 expression + β2 × gene2 expres-
sion + ⋯ + βn × genen expression, where β corresponded 
to the correlation coefficient.

2.6 | Evaluation of the prognostic index in 
TCGA cohort and ArrayExpress cohort

According to our prognostic model, each patient in TCGA 
cohort and ArrayExpress cohort will get a risk score. In each 
cohort, we set the median risk score as the cutoff value for 
dividing KIRC patients into a high-risk group and a low-risk 
group, respectively. Kaplan-Meier (K-M) method was uti-
lized to plot the survival curves, and the log-rank test was 
performed to assess differences in the survival rates between 
high-risk group and low-risk group. The receiver operating 
characteristic curves (ROC) were created by the “survival-
ROC” package, and the area under the curve (AUC) values 
was calculated to evaluate the specificity and sensitivity of 
the model. The riskScore distribution of patients in differ-
ent risk groups, the number of censored patients, and the 
heatmap of prognosis-related ARGs were also displayed. A 
prognostic nomogram was also performed to visualize the 
relationship between individual predictors and survival rates 
in patients with KIRC based on the Cox proportional hazard 
regression model by means of “rms” package of R software. 

C-index and the Calibration curves were used to evaluated 
the performance of the prognostic nomogram.

To further evaluate whether our model can be used as 
an independent prognostic factor, we included age, gender, 
stage, race, grade, T, M, N, and PI as independent variables. 
And then we did univariate cox regression analysis and mul-
tivariate cox regression analysis on the changes of survival 
time and survival outcome. Multivariate ROC curves were 
also made to evaluate the prognostic value of each variable. 
Finally, we combined various clinical variables and riskScore 
to make a new nomogram to predict the survival outcome of 
patients in different cohorts.

In addition, we also made a clinical correlation analysis to 
analyze the correlation between PI and clinical features such 
as age, gender, stage, race, grade, T, M, N. Besides, the cor-
relation between each prognosis-related ARGs and clinical 
features such as age, gender, stage, race, grade, T, M, N were 
also analyzed.

2.7 | Identification of candidate small 
molecule drugs

Connectivity map (cMap), as a gene expression profiles 
database led by Todd Golub and Eric Lander, it facilitated 
researchers to quickly identify molecule drugs highly corre-
lated with diseases and discover its possible mechanism.13 
Up-regulated and down-regulated ARGs related to KIRC 
were uploaded and then functional connection between genes 
and bioactive chemicals was explored. Connectivity scores 
ranging from −1 to 1 were utilized to estimate how closely a 
compound is connected to the query signature. Positive score 
indicated that the query signature could be promoted by a 
drug, while a negative score could be repressed by a drug in 
cMap.

2.8 | Statistical analysis

Statistical analyses of all data utilized in this article were 
completed by R software (version 3.4.1, https://www.r-
proje ct.org/). When the difference met a joint satisfaction 
of FDR < 0.05 and |log2FC| > 1, it was regarded to be sta-
tistically significant. “ConsensusClusterPlus” package was 
adopted to perform the Consensus clustering. The univari-
ate and multivariate COX regression analysis were used to 
evaluate the relationship between ARGs expression and sur-
vival data to establish a prognostic model. “rms” package of 
R software was used to create the nomogram. The receiver 
operating characteristic curves were created by the “surviv-
alROC” package of R and AUC values were also calculated 
by this package too. All statistical tests were two-sided and 
P < .05 was considered to be statistically significant.

https://www.r-project.org/
https://www.r-project.org/
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3 |  RESULTS

3.1 | Differentially expressed ARGs

The flow diagram for this study was displayed in Figure S1. 
Through the online TCGA database, we obtained the RNA 
sequences and clinical information of 539 KIRC samples 
and matched 72 solid tissue normal samples. By comparing 
autophagy-related genes from HADb, we finally obtained 
the expression of 232 relevant genes. In order to further 
screen out valuable differentially expressed ARGs, we set 
the joint satisfaction of FDR < 0.05 and |log2FC| > 1 to the 
filtration condition. Heatmap of differently expressed ARGs 
was presented in Figure 1A. Figure 1B was a volcano map 
showing 9 down-regulated and 36 up-regulated differen-
tially expressed ARGs. Boxplot of these ARGs was detailed 
in Figure 1C.

3.2 | Functional annotation of differentially 
expressed ARGs

In order to better understand the functions and mechanisms 
of these ARGs, we analyzed the enrichment of GO terms 
function and KEGG pathway. The results of the func-
tional enrichment analysis are summarized in Figure  2. 
Table  1 lists the top 10 main GO entries and the KEGG 
pathways. In terms of biological processes, these differ-
ential genes are mainly concentrated in autophagy, regu-
lation of peptidase, and endopeptidase activity and so on. 
Separately, autophagosome is the highest enrichment level 
in GO terms for cellular components, protein heterodimeri-
zation activity, and peptidase regulator activity were most 
enriched GO terms for molecular function (Figure  2A; 
Table 1). In addition, the results of KEGG pathway enrich-
ment analysis were shown in Figure 2B, which shows that 

F I G U R E  1  Differentially expressed autophagy-related genes (ARGs); A, Heatmap of differentially expressed ARGs; B, Volcano map of 
differentially expressed ARGs; C, Boxplot of differentially expressed ARGs
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these differentially expressed ARGs were closely related 
to Human cytomegalovirus infection, Autophagy animal, 
HIF-1 signaling pathway, and other functional pathways. 
We also show the correlation between these differentially 
expressed ARGs and the related pathways in the form of 
heatmap (Figure 2C).

3.3 | Differentially expressed TFs

By comparing genetic sequences data with TFs from 
Cistrome, we finally obtained the expression of 317 rel-
evant TFs. In order to further screen out valuable differ-
entially expressed TFs, we set the joint satisfaction of 
FDR < 0.05 and |log2FC| > 1 to the filtration condition. 
Heatmap of differently expressed ARGs was presented 
in Figure 3A. Figure 3B was a volcano map showing 19 
down-regulated and 41 up-regulated differentially ex-
pressed TFs. Networks between TFs and ARGs were de-
tailed in Figure 3C.

3.4 | Identification of clusters for KIRC 
based on ARGs

Furthermore, we did consensus clustering for patients with 
KIRC based on ARGs. Figure 4A-C suggested that satisfac-
tory clustering effect could be obtained when k = 3. However, 
Figure 4D-E suggested that k = 2 is the best option. Finally, 
patients with KIRC were divided into two groups (cluster 1 
and cluster 2). Then, the clinical characteristics and survival 
curves of these two groups were analyzed. From Figure 4G, 
we found that there was a significant correlation between 
tumor stage, grade, age, fustat, and clustering. According to 
Kaplan-Meier analysis, we noticed that the survival of pa-
tients in cluster 2 was worse than that in cluster 1 (Figure 4H). 
Considering the distribution of clinical features and survival 
curve, this clustering method had a certain significance.

3.5 | Construction of a prognostic model 
index (PI, riskScore) based on ARGs

Based on the obtained differentially expressed ARGs, we carried 
out univariate and multivariate COX regression analysis, respec-
tively, to evaluate the prognostic value of these ARGs (Figure 
S2A,B). According to the results of multivariate cox regression 
analysis, we obtained 11 risk ARGs. To avoid overfitting the 

model, we further took Lasso regression (Figure 2C-D). Finally, 
11 risk ARGs were obtained. According to the coefficient of 
each differentially expressed ARGs in Lasso regression, we then 
constructed a PI to predict the prognosis of patients with KIRC. 
The 11 prognostic ARGs related PI formula was as follows: 
riskScore = CASP4 expression × 0.409410245939865 + IFNG 
expression × 0.247091026343113  +  BAG1 expression ×  
(−0.31339800616801) + BNIP3 expression × (−0.312754657 
270375) + ERBB2 expression × 0.230285057472967 + RGS19 
expression × (−0.336769784907294) + BID expression × 0.553 
711988544078  +  EIF4EBP1 expression × 0.2390299696 
5133 + CX3CL1 expression × (−0.26126419480746) + PRKCQ  
expression × (−0.409509859853768) + ATG16L2 expression ×  
0.241519437514572.

After obtaining the PI (riskScore) based on ARGs for 
predicting the prognosis of KIRC patients, we got the riskS-
core of each patient in TCGA cohort. Then, we divided pa-
tients into two groups (high-risk group and low-risk group) 
according the median riskScore. Next, we evaluated this 
model in TCGA cohort from the following aspects: clinical 
characteristics, survival curve, ROC curve, and prognostic 
nomogram (Figures  5 and 6). Figure  5E showed that the 
higher the risk scores, the higher the patients in high-risk 
group, and the higher the numbers of dead persons. The 
heatmap of these 11 key genes expression profiles in the 
TCGA dataset was also detailed in this figure. Kaplan-
Meier plot represents that patients in the high-risk group 
had significantly shorter overall survival time than those in 
the low-risk group (P = 4.885e-15, Figure 5A). From the 
ROC curve of Figure 5C, AUC of this model for predict-
ing prognosis reached 0.747, having a moderate prediction 
accuracy. In addition, a prognostic nomogram was created 
to quantify the relationship between these risk genes and 
survival. From this nomogram, we could obtain the total 
points and estimate the 1-year, 2-year, and 3-year survival 
rate of each patient (Figure 6A). Table 2 showed the evalu-
ation results for this nomogram (the C-index and the AUC). 
The Calibration curves (Figure 6C-D) further clarified the 
accuracy of this nomogram.

3.6 | Verification of the model in 
external cohort

In order to verify whether our model was reliable, we 
used it to analyze the external cohort from ArrayExpress 
database (E-MTAB-1980). The external cohort con-
tained 101 KIRC patients. Similarly, we calculated the 

F I G U R E  2  Functional annotation of differentially expressed autophagy-related genes (ARGs); A, The bubble plot of enriched gene ontology 
(GO) terms. Greed circles correspond to the biological process, red indicates the cellular component, and blue shows the molecular function 
category. B, Circle diagram of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Red circles display up-regulation and blue ones 
down-regulation; C, Heatmap of KEGG pathways; The color of each block depends on the logFC values
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T A B L E  1  Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed autophagy-
related genes (ARGs)

Category ID Term P-value Genes

BiologicalProcess GO:0043 281 Regulation of cysteine-type 
endopeptidase activity involved in 
apoptotic process

.0000000 BAX/FAS/CASP4/NLRC4/MYC/VEGFA/
TP63/CASP1/BID/RACK1/BIRC5

BiologicalProcess GO:0052 548 Regulation of endopeptidase activity .0000000 BAX/FAS/CASP4/NLRC4/MYC/VEGFA/
TP63/CASP1/BID/GAPDH/RACK1/
BIRC5/SERPINA1

BiologicalProcess GO:2000 116 Regulation of cysteine-type 
endopeptidase activity

.0000000 BAX/FAS/CASP4/NLRC4/MYC/VEGFA/
TP63/CASP1/BID/RACK1/BIRC5

BiologicalProcess GO:0052 547 Regulation of peptidase activity .0000000 BAX/FAS/CASP4/NLRC4/MYC/VEGFA/
TP63/CASP1/BID/GAPDH/RACK1/
BIRC5/SERPINA1

BiologicalProcess GO:0006 914 Autophagy .0000000 RAB24/IFNG/ATG12/BNIP3/CASP1/
RGS19/HIF1A/VMP1/GAPDH/ATG9B/
ATG16L2/MTOR/GABARAPL1

BiologicalProcess GO:0061 919 Process utilizing autophagic 
mechanism

.0000000 RAB24/IFNG/ATG12/BNIP3/CASP1/
RGS19/HIF1A/VMP1/GAPDH/ATG9B/
ATG16L2/MTOR/GABARAPL1

BiologicalProcess GO:0097 193 Intrinsic apoptotic signaling pathway .0000000 BAX/CASP4/BNIP3/TP73/P4HB/ERO1A/
TP63/HIF1A/BID/RACK1

BiologicalProcess GO:0070 482 Response to oxygen levels .0000000 FAS/MYC/BNIP3/P4HB/VEGFA/ERO1A/
CXCR4/CASP1/HIF1A/MTOR

BiologicalProcess GO:2001 233 Regulation of apoptotic signaling 
pathway

.0000000 BAX/FAS/BNIP3/TP73/P4HB/TP63/
HIF1A/BID/CX3CL1/RACK1

BiologicalProcess GO:1904 951 Positive regulation of establishment 
of protein localization

.0000002 IFNG/TP73/ERBB2/TP63/CASP1/HIF1A/
BID/GAPDH/EGFR/RACK1

CellularComponent GO:0005 776 Autophagosome .0000001 RAB24/ATG12/VMP1/ATG9B/ATG16L2/
GABARAPL1

CellularComponent GO:0000 421 Autophagosomemembrane .0000010 VMP1/ATG9B/ATG16L2/GABARAPL1

CellularComponent GO:0061 702 Inflammasomecomplex .0000058 CASP4/NLRC4/CASP1

CellularComponent GO:0000 407 Phagophore assembly site .0000740 ATG12/VMP1/ATG9B

CellularComponent GO:0005 741 Mitochondrialouter membrane .0008724 BAX/BNIP3/BID/MTOR

CellularComponent GO:0031 968 Organelle outer membrane .0013680 BAX/BNIP3/BID/MTOR

CellularComponent GO:0019 867 Outermembrane .0014187 BAX/BNIP3/BID/MTOR

CellularComponent GO:0005 774 Vacuolarmembrane .0030639 VMP1/ATG9B/ATG16L2/MTOR/
GABARAPL1

CellularComponent GO:0005 793 Endoplasmicreticulum-
Golgiintermediatecompartment

.0032226 P4HB/VMP1/SERPINA1

CellularComponent GO:0044 445 Cytosolicpart .0032461 CASP4/NLRC4/CASP1/RACK1

MolecularFunction GO:0046 982 Proteinheterodimerizationactivity .0000248 BAX/BNIP3/P4HB/VEGFA/ERBB2/
HIF1A/BID/EGFR

MolecularFunction GO:0061 134 Peptidase regulatoractivity .0000143 NLRC4/CASP1/GAPDH/RACK1/BIRC5/
SERPINA1

MolecularFunction GO:0004 857 Enzyme inhibitor activity .0003877 NLRC4/CDKN2A/GAPDH/RACK1/
BIRC5/SERPINA1

MolecularFunction GO:0005 126 Cytokine receptor binding .0005663 IFNG/VEGFA/BID/CX3CL1/CCR2

MolecularFunction GO0031 625 Ubiquitin protein ligase binding .0009118 CXCR4/HIF1A/BID/EGFR/GABARAPL1

MolecularFunction GO0044 389 Ubiquitin-like protein ligase binding .0011111 CXCR4/HIF1A/BID/EGFR/GABARAPL1

(Continues)
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riskScore of each patient based on PI, and divided the pa-
tients into high-risk group and low-risk group according 
to the cut-off value we obtained in the TCGA cohort. A 
Kaplan-Meier curve based on the log-rank test and the 
ROC curve were created to visualize the prognostic value 
of our established prognostic model in external cohort 
(Figure 5B,D). The areas under the ROC (AUC) values of 
PI was 0.779. Figure 5F showed that the higher the risk 
scores, the higher the patients in high-risk group, and the 
higher the numbers of dead persons. The heatmap of these 
11 key genes expression profiles in the external cohort 
was also detailed in this figure. In addition, a prognostic 
nomogram was also created to quantify the relationship 
between these risk genes and survival in external cohort 

(Figure 6B). The corresponding evaluation results of this 
nomogram are shown in Table 2 and Figure 6E, F.

3.7 | Independent prognostic factor 
evaluation and correlation with clinical 
characteristics

To further evaluate whether our model could be used as an 
independent prognostic factor, we included age, gender, 
stage, race, grade, T, M, N and riskScore as independ-
ent variables. By means of univariate and multivariate 
cox regression analysis, our established PI (riskScore) 
remained significant (both P < .001, Figure 7A,B, Table 

Category ID Term P-value Genes

MolecularFunction GO0048 018 Receptor ligand activity .0057178 IFNG/IL24/VEGFA/CX3CL1/NRG3

MolecularFunction GO0019 903 Protein phosphatase binding .0002023 SPHK1/ERBB2/EGFR/RACK1

MolecularFunction GO0019 902 Phosphatasebinding .0007477 SPHK1/ERBB2/EGFR/RACK1

MolecularFunction GO0004 866 Endopeptidaseinhibitoractivity .0008342 NLRC4/GAPDH/BIRC5/SERPINA1

KEGG PATHWAY hsa05163 Humancytomegalovirusinfection .0000000 BAX/FAS/CDKN2A/MYC/VEGFA/
CXCR4/BID/EIF4EBP1/CX3CL1/EGFR/
MTOR

KEGG PATHWAY hsa04140 Autophagy - animal .0000000 ATG12/BNIP3/HIF1A/VMP1/ATG9B/
PRKCQ/ATG16L2/MTOR/GABARAPL1

KEGG PATHWAY hsa04066 HIF-1 signaling pathway .0000000 IFNG/VEGFA/ERBB2/HIF1A/EIF4EBP1/
GAPDH/EGFR/MTOR

KEGG PATHWAY hsa01524 Platinum drug resistance .0000013 BAX/FAS/CDKN2A/ERBB2/BID/BIRC5

KEGG PATHWAY hsa05219 Bladdercancer .0000015 CDKN2A/MYC/VEGFA/ERBB2/EGFR

KEGG PATHWAY hsa05212 Pancreaticcancer .0000015 BAX/CDKN2A/VEGFA/ERBB2/EGFR/
MTOR

KEGG PATHWAY hsa01521 EGFR tyrosine kinase inhibitor 
resistance

.0000021 BAX/VEGFA/ERBB2/EIF4EBP1/EGFR/
MTOR

KEGG PATHWAY hsa05167 Kaposisarcoma-
associatedherpesvirusinfection

.0000026 BAX/FAS/MYC/VEGFA/HIF1A/BID/
MTOR/GABARAPL1

KEGG PATHWAY hsa04012 ErbB signaling pathway .0000032 MYC/ERBB2/EIF4EBP1/EGFR/MTOR/
NRG3

KEGG PATHWAY hsa04136 Autophagy - other .0000164 ATG12/ATG9B/MTOR/GABARAPL1

T A B L E  1  (Continued)

T A B L E  2  Evaluation results of nomograms

Cohort

Nomogram composed of risk genes
Nomogram composed of clinical characteristics and 
riskScore

C-index
AUC of 1-y 
ROC

AUC of 3-y 
ROC

AUC of 
5-y ROC C-index

AUC of 1-y 
ROC

AUC of 3-y 
ROC

AUC of 
5-y ROC

TCGA cohort 0.7149080 0.744 0.729 0.760 0.8033716 0.861 0.806 0.800

ArrayExpress 
cohort

0.8278069 0.800 0.850 0.834 0.8726003 0.895 0.897 0.861
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3). Figure 7C presented the multiple ROC curves accord-
ing to riskScore, age, gender, race, grade, stage, T, N, M. 
The AUC of the ROC curve made by riskScore and stage 
was among the largest two (0.747 and 0.800 respectively). 
We next made a prognostic nomogram to quantify the 

relationship between clinical traits and survival in TCGA 
cohort and in external cohort, respectively, and its evalua-
tion (Figure 8; Table 2).

In order to further evaluate the relationship between 11 
prognostic ARGs, riskScore, and clinical characteristics, 

F I G U R E  3  Differentially expressed transcription factors (TFs); A, Heatmap of differentially expressed TFs; B, Volcano map of differentially 
expressed TFs; C, A network shows the relationship between TFs and ARGs
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we further made the independent t tests. Table 4 detailed 
the riskScore is significantly related to stage, T, M, and 
grade (P  <  .05). Besides, the correlation between 11 

prognosis-related ARGs and clinical features such as age, 
gender, stage, race, grade, T, M, N was also analyzed. Bold 
fonts represented that P value was <.05.

F I G U R E  4  Identification of two clusters of kidney renal clear cell carcinoma (KIRC) patients that exhibited distinct ARG features and clinical 
outcomes using consensus clustering; A, Cumulative distribution function for k = 2 to 9; B, Relative change in the area under the CDF curve for 
k = 2 to 9. C, Tracking plot for k = 2 to 9. D–F, Consensus clustering matrix for k = 2, 3, and 4. G, Heatmap of the consensus matrix. *P < .05; 
***P < .001; H, Kaplan-Meier OS curves for the KIRC patients stratified by two clusters
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3.8 | Identification of relevant small 
molecule drugs

cMap database was utilized to screen out candidate small 
molecule drugs related to ARGs of KIRC. Based on differ-
ently expressed ARGs of KIRC, the most significantly related 
small molecule drugs were identified. P < .05, |mean| > 0.5 
and n ≥ 4 were set as the threshold. As detailed in Table 5, 10 
small molecule drugs were negatively correlated with KIRC 
containing emetine, cephaeline, co-dergocrine mesilate, to-
bramycin, fluvastatin, piribedil, pivampicillin, saquinavir, 
methylprednisolone, and ifenprodil, indicating the poten-
tial to repress this disease. Four small molecule drugs were 
positively correlated with KIRC containing thioproperazine, 
copper sulfate, carbachol, and bambuterol, indicating the po-
tential to promote this disease.

4 |  DISCUSSION

The concept of transformational medicine was first put for-
ward in  <  lancet>, emphasizing clinical application as the 
center, to transform the results of basic scientific research 
into valuable clinical applications.14 Currently, surgical re-
section remained the main method for the treatment of renal 
cell carcinoma, however these postoperative patients still 
had a high possibility of recurrence and their survival status 
varied differently.15,16 Hence, an effective way to predict the 
prognosis of renal cell carcinoma was of great significance 
to guide the whole process managing patients with renal cell 
carcinoma.

At present, TMN staging, UISS risk grading system and 
SSIGN scoring system provided a certain reference value for 
evaluating the prognosis of renal cell carcinoma patients [17-19]. 

F I G U R E  5  Evaluation of prognostic index (riskScore) based on autophagy-related genes (ARGs) for kidney renal clear cell carcinoma 
(KIRC) patients; A, Kaplan-Meier plot based on TCGA cohort; B, Kaplan-Meier plot based on ArrayExpress cohort; C, ROC curve based on 
TCGA cohort; D, ROC curve based on ArrayExpress cohort; E, Clinical characteristics in TCGA database (in order from top to bottom): The risk 
score distribution of KIRC patients in high and low risk groups; The overall survival status distribution of KIRC patients with increasing risk score; 
The heatmap of the 11 key genes expression profiles in the TCGA dataset; F, Clinical characteristics in ArrayExpress database (in order from top 
to bottom): The risk score distribution of KIRC patients in high and low risk groups; The overall survival status distribution of KIRC patients with 
increasing risk score; The heatmap of the 11 key genes expression profiles in the ArrayExpress dataset
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Moreover, some prognostic molecular markers such as p53 
and PTEN had also been further explored by researchers,20 
but their efficiency was not so satisfactory. Due to the devel-
opment of high-throughput sequencing, it had become feasible 
for us to use public database (TCGA, GEO or other databases) 
data for analyzing the associations between different key genes 
and the clinical outcomes of KIRC. Not long ago, a study by 
Wang et al have successfully established an autophagy-clinical 
prognostic index in bladder cancer patients.21 In this article, we 
not only constructed a prognosis prediction index for KIRC in 
both TCGA and ArrayExpress databases, but also explored as-
sociations between ARGs and TFs. Moreover, we successfully 

divided KIRC patients into two clusters based on differentially 
expressed ARGs. Our study was anticipated to provide new in-
sights of autophagy for future work.

We made full use of the RNAseq data in the TCGA da-
tabase to find autophagy related genes with high correlation 
with KIRC survival. Finally, we obtained 45 differentially 
expressed ARGs, and analyzed their functions including GO 
analysis and KEEG pathways. Preliminary analysis showed 
that the expression of these ARGs is mostly up-regulated in 
some of the most important pathways, which provided us 
with a reference that autophagy might play a role in promot-
ing tumor development. However, the expressions of some 

FIGURE 6 Diagnostic nomograms to clarify the relationship between risk genes and overall survival; A, A nomogram for TCGA cohort; B, A 
nomogram for ArrayExpress cohort; C, the Calibration curve of nomogram-predicted probability of 3-Year survival based on TCGA cohort; D, the Calibration 
curve of nomogram-predicted probability of 5-year survival based on TCGA cohort; E, the Calibration curve of nomogram-predicted probability of 3-year 
survival based on ArrayExpress cohort; F, the Calibration curve of nomogram-predicted probability of 5-year survival based on ArrayExpress cohort
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ARGs were down-regulated, which might be related to the 
complex mechanism of autophagy in tumors.22 Interestingly, 
we also performed a consensus clustering analysis of exist-
ing renal cancer patients based on these ARGs, and KIRC 
patients were successfully divided into two clusters with sig-
nificant differences in overall survival, indicating that ARGs 
might play an important role in the prognosis of patients with 
KIRC. By means of cMap database, 10 small molecule drugs 
were negatively correlated with KIRC containing emetine, 
cephaeline, co-dergocrine mesilate, tobramycin, fluvastatin, 

piribedil, pivampicillin, saquinavir, methylprednisolone, and 
ifenprodil, indicating the potential to repress this disease. 
Four small molecule drugs were positively correlated with 
KIRC containing thioproperazine, copper sulfate, carbachol, 
and bambuterol, indicating the potential to promote this 
disease.

By means of univariate COX regression analysis, mul-
tivariate COX regression analysis and Lasso regression 
analysis, we ultimately obtained 11 key ARGs (CASP4, 
IFNG, BAG1, BNIP3, ERBB2, RGS19, BID, EIF4EBP1, 

F I G U R E  7  Independent prognostic factor evaluation based on TCGA dataset; A, Univariate cox regression analysis; B, Multivariate cox 
regression analysis; C, Multiple ROC curves according to risk score, age, gender, race, grade, stage, T, N, M

T A B L E  3  Univariate and multivariate analyses of OS for kidney renal clear cell carcinoma patients based on TCGA

Characteristics

Univariate Cox Multivariate Cox

HR HR.95L HR.95H P-value HR HR.95L HR.95H P-value

Age 1.03091297 1.0173015 1.04470657 7.14E-06 1.03111693 1.01631139 1.04613815 3.29E-05

Gender 0.93989482 0.68296808 1.2934752 .70359364 1.05777612 0.75494048 1.48209077 .74412445

Race 1.17571796 0.70579892 1.95850782 .53411201 1.06556943 0.63023642 1.8016068 .81264081

Grade 1.97156097 1.64097145 2.36875092 4.20E-13 1.20198028 0.95240081 1.51696279 .12131815

STAGE 1.88044574 1.66452924 2.12437012 3.38E-24 1.88332306 1.33728269 2.65232308 .00029047

T 2.04314639 1.7242097 2.42107858 1.57E-16 0.95256084 0.72346258 1.25420746 .7291504

M 2.1356788 1.68860772 2.70111518 2.42E-10 0.67454412 0.36606895 1.24296195 .20676067

N 0.86208791 0.73740524 1.00785231 .06262676 0.86765667 0.73651849 1.02214418 .08951048

riskScore 2.83466442 2.34467305 3.42705452 5.28E-27 2.06352682 1.66755103 2.55353082 2.67E-11

Notes: Bold fonts represents that P value is <.05.
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CX3CL1, PRKCQ, and ATG16L2). Most of these ARGs 
had been reported and were consistent with the role in our 
study. Therein, BNIP3 was an interacting protein of BCL2, 
which was considered to be a surface receptor of mitochon-
dria, regulating cell death and promoting survival in some 
diseases.23,24 BID played a similar role by activating BAX/
BAK 25 and ERBB2, also known as HER2, was a mem-
ber of the human epidermal growth factor receptor family, 
promoting cell proliferation, survival, and playing an im-
portant role in the occurrence and development of tumor. 

Clinically, ERBB2 mutation had become an important tar-
get for cancer therapy. CX3CL1 was the ligand of chemok-
ine CX3CR1, which could promote tumor infiltrating cells 
into tumor microenvironment and play the role of immu-
notherapy.26 As for IFNG, it was believed that IFNG could 
affect the blocking of immune checkpoints.27 Eukaryotic 
initiation factor 4e binding protein (EIF4EBP1), as an im-
portant gene regulating autophagy, had been found to be 
highly expressed in many cancers with poor prognosis of 
tumor.28 PRKCQ was an important kinase in the activation 

F I G U R E  8  Diagnostic nomograms to clarify the relationship between clinical characters, riskScore and prognosis; A, A nomogram for 
TCGA cohort; B, A nomogram for ArrayExpress cohort; C, the Calibration curve of nomogram-predicted probability of 3-year survival based on 
TCGA cohort; D, the Calibration curve of nomogram-predicted probability of 5-year survival based on TCGA cohort; E, the Calibration curve of 
nomogram-predicted probability of 3-year survival based on ArrayExpress cohort; F, the calibration curve of nomogram-predicted probability of 
5-year survival based on ArrayExpress cohort
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of T cells. Its phosphorylation induced the activation of 
Fra-1 and played an important role in tumor recurrence and 
invasion.29,30 CASP4, as a kind of human apoptotic prote-
ase, was considered to be related to inflammation, immune 
activity and apoptosis.31,32 It has also been found to be re-
lated to the poor prognosis of esophageal cancer, colorectal 
cancer and breast cancer.33-35 Contrary with the reported 
results, the HR value of BAG1 was <1 suggesting that it 
was associated with a better prognosis,.36,37 ATG16L2 had 
been found to be associated with positive prognosis.38-40 
However, the results of our multivariate COX regression 
analysis suggested that ATG16L2 played an opposite role 
in KIRC patients. This also brought us new thinking about 
the roles of BAG1 and ATG16L2 in kidney cancer.

Further, based on these 11 prognostic ARGs and clinical 
characteristics in both TCGA and ArrayExpress databases, 
an individualized KIRC PI (riskScore) was established. The 
strength of this article was that we performed a systematic 
analysis of the roles of autophagy in KIRC with a robust sta-
tistical approach. The KIRC PI was successfully established 
and carefully evaluated in TCGA cohort and ArrayExpress 
cohort. Moreover, networks between ARGs and TFs were 
constructed for future basic research. Last but not least, 
tumor clustering based on ARGs was effective, indicating 
that ARGs played a vital role in KIRC. However, the limita-
tions of the present article should not be ignored. On the one 
hand, we only discussed the relationship between ARGs and 
the prognosis of KIRC patients, without further clarifying 
the specific mechanism. On the other hand, the results of 
our study were only validated in the KIRC patient data in the 
TCGA database and ArrayExpress database. Retrospective 
data analysis made our prediction model valuable in the 

training set. Whether it had real application value or not, 
required more data support from clinical patients.

5 |  CONCLUSIONS

Taken together, an individualized KIRC PI (riskScore) was 
successfully established in both TCGA and ArrayExpress 
databases. Based on clinical characteristics and 11 key ARGs 
(CASP4, IFNG, BAG1, BNIP3, ERBB2, RGS19, BID, 
EIF4EBP1, CX3CL1, PRKCQ, and ATG16L2), our study 
realized the transformation of a large number of sequencing 
data and clinical features to the clinical diagnosis and treat-
ment methods. Besides, networks between TFs and ARGs 
were also displayed and KIRC patients were successfully 
divided into two clusters based on differentially expressed 
ARGs. Last but not least, small molecule drugs related to 
ARGs were also identified for KIRC. Our findings were 
anticipated to provide new insights of autophagy for future 
work.
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T A B L E  5  Results of connectivity map (cMap) analysis

Rank cMap name Mean n Enrichment P Specificity
Percent 
on-null

1 Emetine −0.654 4 −0.788 .0041 0.0824 100

2 Cephaeline −0.628 5 −0.78 .0009 0.1145 100

3 Co-dergocrine mesilate −0.569 4 −0.762 .00656 0.0226 100

4 Tobramycin −0.549 4 −0.813 .00229 0 100

5 Fluvastatin −0.549 4 −0.788 .00408 0 100

6 Piribedil −0.545 4 −0.781 .00475 0.01 100

7 Pivampicillin −0.535 4 −0.767 .00593 0 100

8 Saquinavir −0.527 4 −0.744 .00851 0.0114 100

9 Methylprednisolone −0.522 4 −0.733 .01026 0.0223 100

10 Ifenprodil −0.502 4 −0.717 .01313 0.0402 100

11 Thioproperazine 0.547 5 0.826 .00032 0 100

12 Copper sulfate 0.612 4 0.877 .0003 0.0057 100

13 Carbachol 0.613 4 0.897 .0001 0 100

14 Bambuterol 0.728 4 0.872 .00036 0 100
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