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In the last decade, noninvasive prenatal diagnosis (NIPD) has emerged as an effective procedure for early detection of in-

herited diseases during pregnancy. This technique is based on using cell-free DNA (cfDNA) and fetal cfDNA (cffDNA) in

maternal blood, and hence, has minimal risk for the mother and fetus compared with invasive techniques. NIPD is currently

used for identifying chromosomal abnormalities (in some instances) and for single-gene disorders (SGDs) of paternal origin.

However, for SGDs of maternal origin, sensitivity poses a challenge that limits the testing to one genetic disorder at a time.

Here, we present a Bayesian method for the NIPD of monogenic diseases that is independent of the mode of inheritance and

parental origin. Furthermore, we show that accounting for differences in the length distribution of fetal- and maternal-de-

rived cfDNA fragments results in increased accuracy. Our model is the first to predict inherited insertions–deletions

(indels). The method described can serve as a general framework for the NIPD of SGDs; this will facilitate easy integration

of further improvements. One such improvement that is presented in the current study is a machine learning model that

corrects errors based on patterns found in previously processed data. Overall, we show that next-generation sequencing

(NGS) can be used for the NIPD of a wide range of monogenic diseases, simultaneously. We believe that our study will

lead to the achievement of a comprehensive NIPD for monogenic diseases.

[Supplemental material is available for this article.]

Noninvasive prenatal diagnosis (NIPD) has become increasingly
popular in the last few years. Typically, it is achieved by analyzing
cell-free DNA (cfDNA) in the maternal plasma, which contains fe-
tal cfDNA (cffDNA) derived from the placenta. Its main use is for
identifying chromosomal abnormalities, for example, trisomy 21
(Lo et al. 2007; Fan et al. 2008). Other clinical applications are fetal
sex determination (Hill et al. 2012; Lewis et al. 2012) and Rhesus D
genotyping (Finning et al. 2004; Minon et al. 2008). NIPD of sin-
gle-gene disorders (SGDs) is considered the next frontier in this
field. Genetic diagnosis of SGDs is regularly achieved by using
many clinical tools andmethods. These range from the phenotyp-
ic description and a linkage analysis, through various laboratory
tests, such as polymerase chain reaction (PCR) and DNA microar-
rays for known mutations, to Sanger sequencing for confirmation
of results and next-generation sequencing (NGS) for a deeper in-
vestigation (Mahdieh and Rabbani 2013), usually using whole
exome/genome sequencing (WES/WGS) (Isakov et al. 2013; Yang
et al. 2013). Because the cost of WGS is still high and the implica-
tions of its results are less studied, WES, which covers ∼2%–3% of
the genome and is less costly, remainsmore commonly used.WES
of infants suspected of genetic disorders was recently shown to be
more likely to affect medical care (Meng et al. 2017), and WES of
DNA obtained by amniocentesis was reported to assist prenatal
diagnosis in several cases (Mackie et al. 2014; Vora et al. 2017).

TheapplicationofNGS to theNIPDofmonogenicdiseaseshas
already demonstrated feasibility, yet some improvements may still

be possible. Identification of the paternally transmitted allele in
cfDNA is considered to be straightforward (Fan et al. 2012;
Kitzman et al. 2012) and is already used clinically for specific genes
(Hill et al. 2015). However, maternally transmitted alleles pose a
greater challenge, since in sites where the mother is heterozygous,
both alleles are found in her plasma. The current solution, relative
mutation dosage (RMD), is based on allelic imbalance, that is, a
slightlyhigher amount of one allelewhen the fetus is homozygous.
Unfortunately, due to the low amounts of cfDNA, and even lower
amounts of cffDNA, such determination is restricted to ultra-accu-
rate devices such as digital PCR (Lun et al. 2008). Moreover, when
more than a few genomic sites are tested, this method becomes
less feasible. NGS can be used as well, but requires very deep
coverage and therefore, is still limited to targeted genomic loci
(Lam et al. 2012).

For the aforementioned reasons, to date, only a few attempts
to noninvasively genotype a fetus have been made (Lo et al.
2010; Fan et al. 2012; Kitzman et al. 2012; Chen et al. 2013;
Chan et al. 2016; Snyder et al. 2013). To overcome the required
deep coverage, most of these studies included haplotyping of one
orbothparents, similar towhat is done in relativehaplotypedosage
(RHDO) analysis (Lo et al. 2010). However, high-throughput tech-
niques for genome-wide haplotyping are still sparse, they require
laboriousprocedures, and limit the resolutionof the inferred inher-
itance (Snyder et al. 2015;Chanet al. 2016; Jenkins et al. 2018). Fan
et al. (2012) also tried to use WES to provide deeper coverage and
showed promising results. In their study, they managed to recon-
struct a high percentage of the fetal exome, when using deep
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WES,221×and631×, in the secondand third trimesters, respective-
ly. In their work, stringent data filtering was applied before the
analysis. In the latest attempt to genotype a fetus by Chan and co-
workers, a 270×WGS was performed, and a sequential probability
ratio test (SQRT)was appliedper site in lociwhere themother ishet-
erozygous, with no haplotyping of the parents (Chan et al. 2016).
This method was termed genome-wide relative allele dosage
(GRAD), which is a genome-wide application of the RMD ap-
proach. Together with improvements such as accurate detection
of de novo mutations, this study showed the highest accuracy
achieved so far for site-by-site inheritance prediction, however,
with some limitations. First, the sequenced samplewas froma third
trimester pregnancy, in which both the amount of cfDNA and the
fraction of cffDNAwithin it are high. Second, the applied method
does not utilize available information about the paternal inheri-
tance. Third, it is not clear whether a sequential test has an advan-
tage when genotyping a single position, since the information in
this case is not cumulative. Fourth, no results were presented for
loci for which both parents were heterozygous. Finally, in their
study, accuracy was calculated from a relatively low number of
only 6.5 ×105 sites where themother was heterozygous and the fa-
ther was homozygous.

An approach that can assist in improving noninvasive fetal
genotyping could rely on inherent differences in features of fetal
and maternal cfDNA fragments. For example, fetal-derived frag-
ments have generally been reported to be shorter (Chan et al.
2004; Fan et al. 2010), and the pattern of their size distribution in-
dicates a relationship with nucleosome positioning (Lo et al. 2010;
Yu et al. 2014). Attempts to utilize these size differences have been
made, but this was done mainly for chromosomal abnormalities
(Cirigliano et al. 2017; Sun et al. 2017), with a hard threshold set
in order to enrich for cffDNA (Sillence 2016). However, since the
two size distributions largely overlap, such a threshold could
lead to loss of relevant information (Fan et al. 2010), a problem
that can be addressed through more sophisticated use of the size
distributions (Arbabi et al. 2016).

In this study, we present a novel framework for the NIPD of
SGDs. We introduce the widely practiced concepts of NGS-based
variation analysis to this field, because we suggest that it is a
unique case of variant calling.Weuse a Bayesian algorithm that in-
corporates information of each DNA fragment separately and uti-
lizes unique features of fetal-maternal origin, such as the
fragment length. This is done usingweights, rather than by setting
a hard threshold, thus utilizing all fragments. Ourmethod extends
to small insertions and deletions (indels), and to loci for which
both parents are heterozygous, thus supporting its generalizabili-
ty. We developed Hoobari, the first software tool for noninvasive
prenatal genotyping. Hoobari is straightforward, easy to use, and
produces output that is compatible with existing tools for down-
stream analyses. Hoobari’s results can be further improved using
a machine learning–based step that leverages previously analyzed
data, similar to the existing variant recalibration algorithms. We
demonstrate the ability of our model to resolve the diagnosis of
SGDs using NGS; this will lead to a straightforward NIPD of a
wide range of SGDs.

Results

Utilizing fragment sizes for fetal genotyping

Touse the inherent properties of fetal andmaternal cfDNA,we first
attempted to determine whether the differences in size between

these cfDNA fragments can improve genotyping accuracy. We
were specifically interested in SNPs where the mother is heterozy-
gous, but also tested the same model over SNPs where only the fa-
ther is heterozygous, to demonstrate generalizability to all loci in
the genome. In loci where themother is heterozygous, both alleles
are present in the plasma, making it impossible to determine
whether a fragment is fetal or maternal. In our algorithm, each
fragment has a certain probability of being fetal, depending on
its length. To this end, wemeasured two empirical length distribu-
tions, fetal and maternal, using sites at which the parents are ho-
mozygous for different alleles (Fig. 1; Supplemental Fig. S1). In
these sites, a cfDNA fragment that presents the paternal allele is
considered to be fetal-derived. Next, we calculated the total fetal
fraction, which is the fraction of cffDNA within all maternal
cfDNA, as previously described (Chan et al. 2016). Then, we calcu-
lated a fetal fraction for each fragment size, using all fragments
with the same length. During the genotyping step, each read was
assigned the corresponding per-size fetal fraction. Accordingly,
shorter fragments generally received a higher probability of being
fetal, and a stringent size threshold could be avoided.

We used the sequencing data of the parents and cfDNA as in-
put for our pipeline (Fig. 2). This workflow differs from regular var-
iant calling in two main aspects: (1) The prior probabilities can be
calculated using the existing parental sequencing data; therefore,
an initial genotyping of the parents is required; and (2) cfDNA is
an unbalancedmixture of two similar genomes and requires a ded-
icated algorithm for calculating the likelihoods in the Bayesian
model. This algorithm uses the aforementioned calculation of
the per-size fetal fraction (Methods).

Hoobari returned three posterior probabilities, one for each
possible fetal genotype: homozygous to the reference allele (0/0),
heterozygous (0/1), and homozygous to the alternate allele (1/1).
The predicted genotype in each site is the onewith the highest pos-
terior probability. Fetal variants that were found using pure fetal
tissue, such as amniotic fluid, chorionic villi, and umbilical cord
blood were used as the ground truth.

Twomain factors were formerly shown to affect the accuracy
of NIPD: the fetal fraction and the cfDNA sequencing depth. We
tested our algorithm on whole-genome data of four family trios
with different fetal fraction values,whichwere sequenced to differ-
ent depths of coverage in two previous studies (Kitzman et al.
2012; Chan et al. 2016). In the first two families, G1 and G2, the
sequencing depth of the cfDNA and the fetal fraction were very

Figure 1. Length distributions of fetal and maternal fragments in
family G1.
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high (Table 1), and their sequencing was performed using a PCR-
free library preparation protocol, which is considered to be more
accurate. These families were selected to measure our model’s per-
formance with the best sequencing and biological settings avail-
able. Families G3 and G4, in which the depth and the fetal
fraction were considerably lower, were selected to estimate our
model’s performance in more challenging sequencing settings,
but with a fetal fraction that is more clinically relevant. We com-
pared our results to those obtained from methods that do not ac-
count for size distribution: (1) a fixed fetal fraction-based version
of Hoobari (Methods); and (2) GRAD analysis, which, in addition,
does not utilize the paternal information and is based on a sequen-
tial statistical test.

For each family we calculated the area under the receiver op-
erating characteristic curve (ROC-AUC) and the accuracy (Table 2;
Fig. 3A–C). Each tested case was divided into three categories of
loci using the parental genotypes: maternal-only heterozygous
(the father was homozygous), paternal-only heterozygous (the
mother was homozygous), and double-heterozygous, in which
both parents were heterozygous.

In all families, the accuracy was the highest among paternal-
only heterozygous loci, followed by maternal-only heterozygous,
and last, double-heterozygous loci. However, for a locus in one
of the first two categories, the baseline accuracy is 0.5 since the out-
come is either homozygous or heterozygous; whereas in a double-
heterozygous locus the baseline is 0.33 since all three genotypes
are possible. The utilization of fragment length information im-
proved both the AUC and the accuracy. We compared our results
to the original study in which G1–G2 were sequenced and ana-
lyzed using GRAD analysis (Chan et al. 2016). In that study,
GRAD was tested over maternal-only heterozygous SNPs and not
on double-heterozygous SNPs. The authors reported 610,084 cor-
rect predictions of 656,676 loci in family G1 (92.9%) and
∼511,112/775,456 in family G2 (65.9%). However, an individual
is expected to have ∼3 million heterozygous SNPs in the genome,
and∼1.3millionmaternal-only heterozygous SNPs are expected to
be found (Kitzman et al. 2012; Li 2014). To test GRAD over the
complete set of loci, we applied it on the variant set produced by
Hoobari’s pipeline. Hoobari outperformed GRAD in all groups of
positions and all families (Table 2). To demonstrate filtering of
Hoobari’s results, we applied basic criteria at maternal-only hetero-
zygous loci: a cfDNA depth of 100–1000 and posterior probability
>0.99. This enabled achieving accuracies of 1,194,916/1,221,304
(97.84%) and 954,980/980,983 (97.35%) in families G1 and G2,
respectively, thus further improving our results while maintaining
a higher number of loci than the reported GRAD results. Families
G3 and G4 showed considerably lower prediction results and the
contribution of the information on fragment length was less con-
sistent. We achieved 67.5% using site-by-site prediction of mater-
nal-only heterozygous loci in family G3, slightly higher than the
64.4% achieved in the original study (Kitzman et al. 2012).
These results support the explanation of Kitzman et al. (2012) of

insufficient data to achieve confident calls within these samples.
Therefore, we focused on families that were sequenced to a higher
depth.

Noninvasive prenatal indel calling

Next,we tested theperformanceof our algorithmover indels, using
the same data of the aforementioned families. We used the same
categories of loci and tested the utilization of fragment length in-
formation. Among the families at different categories, the results
were similar to those described for SNPs, but with lower accuracy
(Fig. 3D–F). The decreased accuracy was prominent across the
maternal- and double-heterozygous loci, andmild across the pater-
nal-heterozygous category. Utilization of the fragment lengths
resulted in major improvement across the maternal- and double-
heterozygous loci, and a smaller improvement in the paternal-het-
erozygous group. This effectwas less consistent for familiesG3–G4.

Subsampling of the fetal fraction and sequencing depth

Our results confirm that fetal fraction and sequencing depth are
important factors that affect the accuracy of our model. Because
the fetal fraction in the first trimester is low, we aimed to examine
the robustness of our model at low fetal fractions with high se-
quencing depth. However, the sequencing depth and fetal frac-
tion in the previously sequenced families were either both low or
both high. Therefore, we used family G1 to simulate 36 cfDNA
samples, with a large range of values of fetal fraction and se-
quencing depth (Methods). At the highest fetal fraction with the
greatest depth, results showed high accuracy for each loci category:
94.5% for maternal-only heterozygous loci; 98.6% for paternal-
only heterozygous loci; and 82.3% for loci where both parents
were heterozygous (Fig. 4). For fetal fraction values that are more
common in the first trimester, that is, 10%–15%, accuracy values
at the greatest sequencing depth were ∼87.1%, 98.5%, and
72.7% for the preceding categories, respectively. Results were
achieved prior to any parental- and true-fetal-based filtering of
loci. The simulations also revealed a pattern of decreasing accuracy
over the three site categories. Maternal-only heterozygous loci
depend on both the sequencing depth and the fetal fraction.

Figure 2. Hoobari’s pipeline for noninvasive prenatal variant calling.

Table 1. Summary of samples from previous studies

Family Individual Sample
Depth of
coveragea

Fetal
fraction
(%)

G1 Mother White blood cells 40
Plasma (38 wkb) 270 30.2

Father White blood cells 45
Offspring Umbilical cord blood 50

G2 Mother White blood cells 40
Plasma (18 wk) 195 23.19

Father White blood cells 60
Offspring Placental tissues 60

G3 Mother White blood cells 32
Plasma (18.5 wk) 78 14.04

Father Saliva 39
Offspring Umbilical cord blood 40

G4 Mother White blood cells 25
Plasma (8.2 wk) 56 8.69

Father Saliva 33
Offspring Umbilical cord blood 44

aMedian, on target.
bGestational age.
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Table 2. Performance metrics for families G1–G4

Family Heterozygous Type

Fragment lengths
utilized

Fragment lengths
ignored

GRADa

Number of lociAUC ACC AUC ACC ACC

G1 Mother only SNPs 98.15 96.83 97.61 95.98 91.81 1,262,455
Indels 91.09 79.91 88.20 75.10 58.70 152,166

Father only SNPs 99.35 99.03 99.34 99.01 NA 1,265,861
Indels 94.80 94.44 94.70 94.29 NA 147,667

Both parents SNPs 87.98 83.49 83.75 80.10 76.58 894,082
Indels 81.37 64.47 75.49 55.96 48.29 108,659

G2 Mother only SNPs 96.34 92.30 94.97 90.30 58.00 1,359,153
Indels 89.50 75.20 86.30 71.89 42.45 152,115

Father only SNPs 99.32 99.76 99.32 99.75 NA 1,358,716
Indels 94.73 93.30 94.63 93.16 NA 161,665

Both parents SNPs 76.62 75.86 70.94 72.09 47.68 943,328
Indels 74.49 57.00 68.38 50.70 30.60 111,331

G3 Mother only SNPs 73.24 67.51 72.61 66.76 NA 1,340,897
Indels 73.32 64.90 72.37 63.85 NA 140,789

Father only SNPs 96.73 92.34 97.05 92.67 NA 1,347,005
Indels 83.77 81.44 83.52 81.77 NA 160,328

Both parents SNPs 52.80 52.04 50.45 50.77 NA 855,998
Indels 54.08 45.77 51.57 43.72 NA 102,380

G4 Mother only SNPs 60.84 57.92 61.05 57.93 NA 1,310,198
Indels 67.32 60.46 67.52 60.41 NA 126,948

Father only SNPs 86.83 81.20 87.29 82.03 NA 1,629,061
Indels 78.07 75.43 78.13 76.07 NA 141,667

Both parents SNPs 45.17 44.33 44.50 44.75 NA 846,453
Indels 49.65 45.99 48.94 46.46 NA 96,310

Results correspond to autosomes only. Bold entries correspond to highest accuracy or AUC, compared among the three methods.
(ACC) Accuracy corresponds to the total accuracy, that is, at a threshold posterior probability value of 0; (AUC) area under the receiver operating char-
acteristic curve.
aGRAD’s accuracy was calculated as the number of correct predictions from the total loci tested; incorrect classifications include loci in which GRAD
returns a different classification compared to the true fetal genotype, as well as “unknown” answers. NAs correspond to loci that are not suitable for
GRAD analysis, that is, where the mother is homozygous. In families G3–G4, GRAD analysis could not return a result for most of the loci. GRAD analysis
does not utilize the paternal genotype, but was originally demonstrated by Chan et al. (2016) only over maternal-only heterozygous loci. Added here
are GRAD results also for double-heterozygous loci, as well as results over indels, tested in our study.

A B C

D E F

Figure 3. Performance of the model over SNPs and indels in families G1–G4. Presented in the ROC curves are results for families G1–G4, in three cate-
gories of either SNPs (A–C) or indels (D–F ), as described. In positions where only one parent was heterozygous, we examined whether the shared allele was
transmitted to the fetus (based on the true fetal genotype). If both parents were heterozygous, we examined whether the true fetal genotype was hetero-
zygous or homozygous. The corresponding AUC and accuracy values are shown in Table 2.
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Paternal-only heterozygous loci are robust even at low fetal frac-
tions and depths, but not under both conditions simultaneously.
Double-heterozygous loci are sensitive to both factors, and some-
whatmore to the sequencing depth. Similar results were presented
on indels (Supplemental Fig. S2), except for an improved accuracy
at double-heterozygous indels, with a fetal fraction <0.2 at lower
depths.

Analysis of first trimester cases

After better defining the sequencing settings required to achieve
high accuracy, we attempted to test our model over first trimester
families,whichwere sequenced to ahigh coverage. Three addition-
al families were sequenced using different methods that aimed to
achieve a high depth of coverage (Table 3). In two families, E1
and E2, the cfDNA sample was sequenced using WES, that is,
∼2%–3% of the genome (Methods). In family E2, the parents and
the chorionic villus sample were sequenced using WGS as an at-
tempt to decrease the rate of errors that are not related to the
cfDNA. Family G5 was sequenced using deep WGS with a PCR-
free library preparation protocol in order to avoid errors that are re-
lated to amplification or WES. However, three cycles of PCR were
required after the library preparation step. The cfDNA sequencing
depths and fetal fraction values for families E1–E2 and G5 are pre-
sented in Table 3.

As done earlier, the algorithmwas tested over SNPs and indels
in maternal-only heterozygous loci, paternal-only heterozygous
loci, and double-heterozygous loci (Table 4; Fig. 5). The overall ac-
curacy was limited in the WES-sequenced families E1–E2, and this
was especially noticeable in double-heterozygous sites. Family G5
results were considerably better at all settings and aspects. Results
again showed improvement subsequent to the addition of the frag-
ment length information in all comparisons.

Among the predicted SNPs, three deleterious mutations were
examined. In family E1, the parents were carriers of a mutation in
the SLC26A3 gene, causing congenital chloride diarrhea, an auto-
somal recessive (AR) condition. In family G5, two mutations were
detected, for which both parents were carriers: one mutation in
PCCA causing propionic acidemia, and another mutation in
FKBP10 causing osteogenesis imperfecta; both are AR conditions.

The parents in family E2 were carriers of a structural mutation in
SMN1, which was not in the scope of our study, and were not car-
riers of either of the other mutations. Therefore, it served as a neg-
ative control. Families E1 andG3 also served as negative controls of
each other. We successfully predicted that the fetus in family E1 is
homozygous to themutant allele, a result thatmatched theWES of
the chorionic villus sampling (CVS) and was further validated us-
ing Sanger sequencing (Supplemental Fig. S3). In the relevant site,
the posterior probability of the predicted genotype increased from
56.5% to 61.7% when fragment length information was utilized.
In family G5, we successfully predicted the fetus to be a carrier of
the PCCAmutation, as predicted by the CVS’sWGS and Sanger se-
quencing results (Supplemental Fig. S3). The posterior probability
of this result increased from 83.9% to 99.4% when the fragment
lengths were used. We were not able to successfully predict the
genotype in FKBP10; although Sanger and WES sequencing
showed the fetus to be a carrier, our results showed homozygosity
to the mutant allele. Utilizing the fragment lengths resulted in
lower probability of this false positive result, 84.6% compared to
96.0%, while the probability of heterozygosity increased from

A B C

Figure 4. Performance of the model in SNPs, with different depths and fetal fractions. Heat maps A–C present the accuracy as a function of both the
median sequencing depth and the fetal fraction, at the three categories of loci.

Table 3. Summary of sequenced samples

Family Individual Sample
Sequenced

area

Depth
of cover-
agea

Fetal
fraction
(%)

E1 Mother White blood cells WES 99
Plasma (11 wkb) WES 735 15.48

Father White blood cells WES 93
Offspring Chorionic villus WES 97

E2 Mother White blood cells WGS 36
Plasma (11 wk) WES 664 12.38

Father White blood cells WGS 35
Offspring Chorionic villus WGS 36

G5 Mother White blood cells WGS 38
Plasma (11 wk) WGS 310 18.45

Father White blood cells WGS 41
Offspring Chorionic villus WGS 38

aMedian, on target.
bGestational age.
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4.0% to 15.4%. In all cases, none of the negative controls were pre-
dicted as carriers or as homozygous to the testedmutations. GRAD
analysis correctly predicted the mutation in FKBP10, and was not
able to return a prediction for the other mutations.

Machine learning–based variant probability recalibration

Popular variant analysis pipelines include a step of variant recal-
ibration, in which the results of previously analyzed data are
used for finding and correcting error patterns in a new sample
(Van der Auwera et al. 2013). During this step, a machine learning
model is trained based on features that are not directly modeled
by the variant caller and that typically include its sequencing
depth, strand balance, and other information. The output is a
score that corresponds to each variant, which better represents
the sensitivity, specificity and accuracy. This score can then be
used for filtering, depending on the desired level of confidence.
Current variant recalibration methods cannot be fitted to the
unique cfDNA case in a straightforward manner, predominantly
because they do not utilize important parental information that
is available in the context of noninvasive fetal genotyping.
Therefore, we sought to demonstrate how a new model can adjust
Hoobari’s results in a way that would improve the accuracy and
ROC-AUC.

For the first training set, we chose family G1, for whom the
sequencing depth and fetal fraction were the highest. Family G2
was randomly divided: 75% of the variants were used as a valida-
tion set throughout the training process, and the remaining 25%
served as a test set at the end of the training. To demonstrate
that our model can be generalized to other data sets, we used fam-
ily G5 as a second test set. The features in our model were taken
from themetadata that are available when genotyping the parents
and the cfDNA, as well asHoobari’s classifications and probabilistic
results for each possible genotype (Supplemental Table S1).
Various models were compared, and the Random Forest algorithm
was found to yield the best results in terms of accuracy, running

time, and ROC-AUC (Methods; Supplemental Table S2). At first,
the model for each category of variants was trained based on vari-
ants from the same group only, for example, a model for maternal-
only heterozygous SNPs was trained over maternal-only heterozy-
gous SNPs. We found that in the categories of maternal-only and
double-heterozygous SNPs, this suffices to improve the accuracy
and AUC. However, in paternal-only heterozygous SNPs, improve-
ment was achieved only when SNPs from all three categories were
used for training. This may be due to the low error rate within this
group. To dealwith the lownumber of indels in the training set, we
trained their models on both SNPs and indels within the same
category.

The trained models were then tested once on the remaining
25% of G2. The same model architecture was trained again on
the combined data of families G1 and G2, and then tested once
on family G5. The results showed that previous data can indeed
be applied to improve performance for a new family. The AUC
was improved in all categories of loci, and accuracy was improved
in almost all cases (Fig. 6). Prominent improvement was seen in
loci where both parents were heterozygous, a condition that orig-
inally presented low accuracy. This opens the possibility of per-
forming post-genotyping filtering of loci using the probability
output of the recalibration step rather than setting stringent
thresholds for specific features (Supplemental Fig. S4). As an exam-
ple, we checked the results when filtering out all variants with a re-
calibration score <0.7 and found that the accuracy in family G5
improved to 98.3%–99.8% over SNPs, from a total of 722,630 re-
maining maternal-only heterozygous; 1,358,503 paternal-only
heterozygous; and 358,114 double-heterozygous SNPs. Indel pre-
diction accuracy improved to 94%–97%, from 42,726 maternal-
only heterozygous; 142,577 paternal-only heterozygous; and
20,388 double-heterozygous indels. Last, we found that Hoobari-
derived features, such as the posterior probabilities, the likeli-
hoods, and the predicted genotype have the greatest importance,
followed by features related to the allelic balance in the cfDNA
(Supplemental Table S3).

Table 4. Performance metrics for families G5, E1, and E2

Family Heterozygous Type

Fragment lengths
utilized

Fragment lengths
ignored

Number of lociAUC ACC AUC ACC

G5 Mother only SNPs 95.32 90.88 94.38 89.54 1,400,376
Indels 87.64 77.26 85.51 74.90 200,918

Father only SNPs 99.31 98.81 99.32 98.82 1,433,083
Indels 86.10 85.46 85.78 85.16 209,126

Both parents SNPs 80.93 78.64 77.56 76.20 941,810
Indels 73.85 61.21 70.04 56.99 141,624

E1 Mother only SNPs 78.12 70.63 76.33 69.33 25,457
Indels 72.48 65.91 71.45 65.05 1625

Father only SNPs 98.30 94.50 98.21 94.13 26,292
Indels 90.73 86.07 90.90 85.88 1572

Both parents SNPs 54.72 54.22 52.81 53.07 15,574
Indels 51.52 47.59 50.88 46.65 1059

E2 Mother only SNPs 82.51 74.50 80.85 73.15 35,279
Indels 71.55 62.46 70.84 62.14 3719

Father only SNPs 98.42 94.95 98.55 95.20 34,764
Indels 87.01 83.55 87.10 83.39 3702

Both parents SNPs 57.43 55.41 54.79 53.52 22,089
Indels 53.05 44.54 51.76 43.27 2346

Results correspond to autosomes only. Bold entries correspond to highest accuracy or AUC, compared among the three methods.
(ACC) Accuracy corresponds to the total accuracy, that is, at a threshold posterior probability value of 0; (AUC) area under the receiver operating char-
acteristic curve.
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A B C

D E F

Figure 6. Results of the machine learning–based variant recalibration step. ROC curves of the two test sets, before and after the machine learning–based
variant recalibration step, are presented for three categories of either SNPs (A–C) or indels (D–F), as described. For each curve, themicroaveraged area under
the curve (AUC) and the total accuracy (ACC) are presented. In contrast to the results presented in Figures 3–5, no filtering was applied to parental and true
fetal variants prior to this analysis.

A B C

D E F

Figure 5. Performance of the model over SNPs and indels in families G5, E1, and E2. Presented in the ROC curves are results for families G5, E1, and E2 in
three categories of either SNPs (A–C) or indels (D–F), as described. In positions where only one parent was heterozygous, we examined whether the shared
allele was transmitted to the fetus (based on the true fetal genotype). If both parents were heterozygous, we examinedwhether the true fetal genotype was
heterozygous or homozygous. The corresponding AUC and accuracy values are shown in Table 4.
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Discussion

In this study, we performed upgraded noninvasive fetal genotyp-
ing, using a novel approach and an improved algorithm, which
was implemented as Hoobari, the first software tool for noninva-
sive prenatal variant calling. We showed that certain characteris-
tics, such as the size differences between maternal- and fetal-
derived fragments improve cfDNA-based fetal genotyping. State-
of-the-art results were achieved at sites where themother is hetero-
zygous, which currently pose the greatest identification challenge.

Using the same algorithm, we also predicted inherited indels,
although with lower accuracy. Adding the fragment size informa-
tion and recalibrating the results using machine learning im-
proved these results, but the accuracy remained lower than that
achieved for SNPs. Indels are the secondmost common type of var-
iants and can be deleterious, especially when they affect the read-
ing frame (Mullaney et al. 2010; Neuman et al. 2013). Compared to
SNPs, which are much more common and easier to predict, indel
calling in individuals still lags behind, and detectionmethods dis-
play considerable discrepancy (Jiang et al. 2015; Hwang et al.
2016). Reasons for this may be the higher rate of alignment errors,
and the larger number of possible alleles in the parents, which all
lead to lower prediction confidence. Nevertheless, any solution for
NIPD of SGDs will have to address this issue, and our study pre-
sents one way of accomplishing it.

We suggest that a Bayesian approach, which is the core of this
study, ismost suitable for our task. One advantage of this approach
is that it is modular, in the sense that it enables adding available
information. In our case, we only used fragment size information
for the probabilistic separation of fetal- and maternal-derived
reads; however, other featuresmight help in asserting the probabil-
ity of each read being fetal. These could be other characteristics of
cffDNA, which have been recently described. For example, it has
been shown that fetal-derived fragments tend to arrive from clus-
ters of preferred ending positions (Chan et al. 2016). Haplotype in-
formation can also be integrated into the model when it becomes
more widely available. This will enable determining the origin of
each fragment with greater confidence. These features can be inte-
grated into a more sophisticated classifier that performs a probabi-
listic separation of the reads.

Filtering the called variants is based on continuous parame-
ters that require a cutoff value; however, determining this value
is usually not clear. To avoid arbitrary thresholds, we focused on
describing a distribution of genotyping probabilities. We aim to
predict the fetal genotype at all parental sites that passed a very le-
nient set of filters, to achievehigh sensitivity.Only at this point are
different annotations, statistical tests, andmachine learning recal-
ibrationmethods applied, so that the low confidence results can be
filtered out and the specificity improved. This consistency with
the accepted process of variant calling is another advantage of
the Bayesian approach, because the posterior probabilities can be
used as a filtering parameter.

In our method, DNA is collected, shifted, and sequenced in a
straightforwardmanner, without haplotype reconstruction or oth-
er unique protocols. This demonstrates that a simultaneous NIPD
of a large range of SGDs is feasible with available technology. We
showed that this is possible at 11 weeks of gestation by performing
the deepest first trimester WGS of cffDNA to date. However, WES
resulted in lower accuracy than PCR-free WGS, even with a greater
sequencing depth. These results can be explained by the amplifi-
cation steps required for both the WES library preparation and
low-input protocols; these affected the length distributions (Sup-

plemental Fig. S1) and increased the number of sequencing errors.
WESwas previously shown to be less powerful thanWGS, even for
exome variants (Belkadi et al. 2015). Nevertheless, the probabilistic
scaling used in our model ensures that even when using WES, a
proportion of the sites will be genotyped with high confidence.
Just as with regular variant discovery, these sites can be used in
downstream analysis to identify rare variants that are yet to be dis-
covered. Moreover, if a more accurate WES or any other targeted
NGS technique is used, accuracy might improve without having
to rely on deep WGS. While conducting our study, we noticed
that the fragment length frequencies are similar across pregnan-
cies. Consequently, the fetal fraction at each fragment length
can be theoretically approximated by using only these frequencies
and the total fetal fraction. Because the total fetal fraction itself can
be approximated using a relatively small number of loci, we sug-
gest that our method is scalable, that is, can be applied over small
or large sequenced regions. Finally, owing to its low cost, with
WES, it is currentlymore feasible to create a large data set of family
trios that can be further analyzed to improve NIPT of SGDs.

Our study and method have some limitations. First, some
types of sites are not yet supported. These include variant sites
that are not biallelic and de novo mutations. For other types of ge-
nomic sites, such as those where only the father is heterozygous,
our algorithmapplies aswell; however, optimization is still needed.
Second, we intentionally avoid haplotyping of the parents; yet it
might be required for assessing compound heterozygosity. Third,
our method currently requires a specific variant calling software,
and was tested using an off-the-shelf read alignment method. The
combination with alternative methods, as well as careful realign-
ment and local reassembly,might improve its performance. An ex-
ample of a consequence of such is the highnumber of false positive
indel calls that was previously shown in FreeBayes (https://github
.com/ekg/freebayes) andthatmightbe lower inothervariantcallers
(Cornish andGuda 2015). DNA extraction, library preparation and
sequencing methods should be further optimized as well. Family
G5, for example, was sequenced using a PCR-free library prepara-
tion protocol, yet three PCR cycles were still required prior to se-
quencing. This raises the possibility of added bias, as implied by
the lengthdistribution (Supplemental Fig. S1). Fourth, ourmethod
was tested on seven trios from three to four data sets with varying
sequencing settings, only four of them were first trimester cases.
Although this is more than previous methods, which tested on
only one to two families from one data set, more families should
be sequenced to further evaluate our model. Moreover, even fewer
families were assessed in the recalibration step; this could reduce
thegeneralizabilityof themethod.The recalibrationstep is, howev-
er, a proof-of-concept for the ability to improveHoobari’s results us-
ingexternaldata, that is fromother families, similar toothervariant
recalibration methods. We believe that with time, accumulating
data will improve this step and further demonstrate generalizabili-
ty. Lastly,wehavenot addressed themajor ethical concerns related
to the subject. The increasing availability of genome sequencing
has already given rise to many ethical disputes. Turning prenatal
WES/WGS into a simple and available test requires that it be used
responsibly. For instance, the results obtained need to be filtered,
and only sites of interest and well-described variants should be
used so as to prevent incidental findings and variants of unknown
significance. Ingeneral,maintaininghighaccuracy in smaller areas
of the genome, such as gene panels, could contribute to the clinical
relevance of the method.

In summary, we present a general approach for fetal variant
detection, in which we used cfDNA and parental sequencing
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data together with a novel algorithm. These concepts can be ex-
tended to other fields, such as cancer detection and monitoring,
using circulating tumor DNA (Mouliere et al. 2018). In this study
we laid the infrastructure for noninvasive prenatal variant calling;
we foresee a future in which sequencing of the fetal genome from
maternal blood will be commonly performed for diagnosing dis-
eases caused by single mutations.

Methods

Fetal fraction and depth reduction

We define f as the observed fetal fraction at a given variant site,
fTOTAL as the mean f value over all sites, and d as the desired fetal
fraction. Of the fetal reads covering each site, 1− d/f should be-
come maternal-like by assigning them a different fragment size,
and in some instances, also a different represented allele (d< f, oth-
erwise we use fTOTAL) (Supplemental Fig. S5). At sites where a
fetal-specific allele could be recognized, we randomly discarded
N=1− d/f of the reads presenting the fetal allele, andNwas round-
ed by ceiling or floor functions randomly. Then, we sampled N
reads presenting the shared allele and changed their lengths to val-
ues from thematernal length distribution. The probability of sam-
pling each observed read length corresponded to its frequency
within the fetal length distribution. The probability of assigning
each new length corresponded to its frequency within the mater-
nal length distribution. This enabled us to increase the rate of ma-
ternal-like fragment lengths within the group of shared allele
reads. Finally, we generated N more reads presenting the shared
allele and assigned them with lengths from the maternal length
distribution. Again, the probability of assigning each length corre-
sponded to its frequency in thematernal distribution. At positions
in which the fetal-specific allele could not be recognized (where
the mother is heterozygous), we sampled d/f of the reads using
the fetal length distribution and assigned them with lengths
from the maternal distribution. To down-sample the depth, the
coding region of familyG1was used, and itsmedian depthwas cal-
culated. To calculate the proportion of reads to sample, the desired
median depth was divided by the measured median depth. For
each loci, reads were randomly sampled by this proportion.

Preprocessing of cell-free DNA data

FreeBayes was run on the cfDNA sample only at variant sites that
were identified in the parental genomes. Using Hoobari, the allele
that was observed by each read, together with the read insert-size,
was saved in a separate database.

Noninvasive fetal variant calling

Hoobariwas run using the parental variants and the cfDNA prepro-
cessing results database as input. The output was a variant call for-
mat (VCF) file.

Bayesian noninvasive genotyping

At each site of interest, a Bayesian approach was applied. For each
possible fetal genotype,

P(G|data) = P(data|G)P(G)
∑n

i=1 P(data|Gi)P(Gi)
,

where G is the fetal genotype; and Gi is the ith possible fetal geno-
type of n possibilities. For biallelic variants, it would be either ho-
mozygous for the reference allele (AA), heterozygous (Aa), or
homozygous for the alternate allele (aa). The prior probability of
each genotype is denoted as P(G) and is calculated by Mendelian

laws. The data are the reads that cover a site and P(data|G) is the
likelihood function, which is a product of the likelihood of each
read-observation:

P(data|G) =
∏m

j=1

P(rj |G, GM , f )

=
∏m

j=1

(P(rj|fet)P(fet)+ P(rj|mat)P(mat)).

The likelihood of a read rj depends on the fetal genotype and is cal-
culated using the maternal genotype and the fetal fraction. P(rj|fet)
and P(rj|mat) are the probabilities of a read-observation that sup-
ports a certain allele, given that the read is fetal and maternal, re-
spectively. This depends on the tested fetal genotype Gi, the
maternal genotype GM, and the observed allele. P(fet) and P(mat)
are the probabilities of observing a fetal or maternal read based
only on the fetal fraction, regardless of the allele that it supports.
For example, if the mother is heterozygous, the fetus is homozy-
gous to allele a, the fetal fraction is f, and the observed read sup-
ports allele A; then the calculation is

P(rj = A |G = aa, GM = Aa, f ) = 0 · f + 0.5 · (1− f ),

since none of the fetal reads and half thematernal reads are expect-
ed to support allele A.

To utilize the size differences between fetal andmaternal frag-
ments, a fragment length-dependent fetal fraction was used with
each observed read. The length-dependent fetal fractions were cal-
culated by first grouping the cfDNA reads by their fragment
lengths, then calculating the fetal fraction per group, similar to
the calculation described in the Results section. Eventually, if the
fragment size (rTLEN) of a read is 140 bp, then

P(rj = A |G = aa, Gmother = Aa, rTLEN = 140)

= 0 · f140 + 0.5 · (1− f140).

Since the peak of the fetal length distribution is at 140 bp
(Supplemental Fig. S1), it is expected that f140 > f. The peak of the
maternal length distribution is at 166 bp; therefore f166 < f. For
reads that were not properly paired or have a fragment size of
>500, the total fetal fraction f was used.

Ethics statement

All methods were performed in accordance with the relevant
guidelines and regulations of the Institutional Review Board
(IRB). IRB request 0825-RMC was submitted and approved under
the national reference number 920160014.

Supplemental methods

Processing of data sequenced in this study is covered in the
Supplemental Methods; this includes sample collection, DNA ex-
traction, library preparation, sequencing, alignment, and variant
calling of the parents and fetus. Also included are methods used
in the machine learning–based variant recalibration step.

Data access

The sequence data from this study have been submitted to
the NCBI database of Genotypes and Phenotypes (dbGaP; http://
www.ncbi.nlm.nih.gov/dbgap) under accession number
phs001659.v1.p1. Hoobari software source code is available at
GitHub (https://github.com/nshomron/hoobari) and as Supple-
mental Code.
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