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Background: The farnesoid X receptor (FXR) is a key factor regulating hepatic bile acid
synthesis and enterohepatic circulation. Repression of bile acid synthesis by the FXR is a
potential strategy for treating cholestatic liver disease. However, the role of intestinal FXR
on the intestinal barrier and intestinal microbiota needs further investigation.

Materials: Intestinal tissues were collected from patients with biliary atresia or without
hepatobiliary disease. Then, intestinal mRNA levels of FXR-related molecules were
determined. To investigate the effect of FXR activation, bile-duct-ligation rats were
treated with obeticholic acid [OCA (5 mg/kg/day)] or vehicle (0.5% methyl cellulose) per
oral gavage for 14 days. The mRNA levels of intestinal FXR, SHP, TNF-α, FGF15 and bile
acid transporter levels were determined. In addition, the intestinal permeability,
morphologic changes, and composition of the intestinal microbiota were evaluated.
Gut Microbiome was determined by 16S rDNA MiSeq sequencing, and functional
profiling of microbial communities was predicted with BugBase and PICRUSt2. Finally,
the role of OCA in injured intestinal epithelial cell apoptosis and proliferation was examined
by pretreatment with lipopolysaccharide (LPS) in Caco-2 cells.

Results: The downstream of the FXR in ileum tissues was inhibited in biliary obstruction.
Activation of the FXR signaling pathway by OCA significantly reduced liver fibrosis and
intestinal inflammation, improved intestinal microbiota, and protected intestinal mucosa in
BDL rats. OCA also altered the functional capacities of ileum microbiota in BDL rats.
Significant differences existed between the controls and BDL rats, which were attenuated
by OCA in the alpha diversity analysis. Principal coordinates analysis showed that microbial
communities in BDL rats clustered separately from controls, and OCA treatment
attenuated the distinction. Bugbase and PICRUSt2 analysis showed that OCA
changed the composition and structure of the intestinal microbiota and improved the
metabolic function of the intestinal microbiota by increasing the relative abundance of
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beneficial bacteria and reducing the relative abundance of harmful bacteria. Moreover,
OCA reduced the apoptosis induced by LPS in Caco-2 cells.

Conclusion: The FXR agonist, OCA, activates the intestinal FXR signaling pathway and
improves the composition and structure of the intestinal microbiota and intestinal barrier in
BDL rats.

Keywords: FXR, biliary atresia, intestinal microbiota, obeticholic acid, bile duct ligation

Graphical Abstract | The FXR agonist, OCA, activates the intestinal FXR signaling pathway and improves the composition and structure of the intestinal microbiota and
intestinal barrier in BDL rats.

INTRODUCTION

Biliary obstruction is a pathologic condition of intrahepatic
cholestasis caused by partial or complete obstruction of the
intra- and extra-hepatic bile ducts that restricts bile flow into
the intestinal tract. Biliary atresia (BA) is the most common cause
of biliary obstruction in newborns. The most common cause of
BA is inflammation and fibrosis of extrahepatic bile ducts, which
reduces the passage of bile into the intestine (Asai et al., 2015;
Wang et al., 2020). The reduction of bile acids in the intestine
results in apoptosis of intestinal epithelial cells and atrophy of the

intestinal mucous (Assimakopoulos et al., 2004). When the
intestinal mucosal barrier is injured, the intestinal bacteria and
endotoxin enter the blood, resulting in bacteremia and
endotoxemia, respectively (Sorribas et al., 2019).

Bile acids are produced from cholesterol through oxidation
reactions in hepatocytes, then conjugated with glycine and
taurine. The bile acid enterohepatic circulation is strictly
regulated by a large number of enzymes and transporters, of
which the most important regulatory factor is the farnesoid X
receptor (FXR) (Gonzalez et al., 2017). Bile acids in the body are
natural ligands of the FXR (Cariello et al., 2018), including the
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primary bile acids [chenodeoxycholic acid (CDCA) and cholic
acid (CA)], the secondary bile acids [deoxycholic acid (DCA) and
lithocholic acid (LCA)], and their conjugates with taurine and
glycine (Makishima et al., 1999; Trabelsi et al., 2017). The FXR
also plays an important role in the reabsorption of bile acids by
regulating the bile acid transporter in the ileum (Trauner and
Fuchs, 2022). Activation of the FXR pathway in the ileum
influences expression of the apical sodium-BA transporter
(ASBT), intestinal BA-binding protein (I-BABP), and organic
solute and steroid transporter alpha-beta (OSTα/β), thus,
increasing bile acid reabsorption into the blood (Dawson,
2011). In addition, intestinal FXR increases the expression of
FGF19, a hormone secreted into the portal blood and transported
to the liver to suppress CYP7A1 expression (Kong et al., 2012; Liu
et al., 2020). Therefore, the FXR has an important effect on
regulating bile acid synthesis and enterohepatic circulation.

The intestinal microbiota is closely related to bile acid
metabolism via interaction with bile acids (Fiorucci and
Distrutti, 2015; Schneider et al., 2018). Accumulation of bile
acids in the liver leads to hepatocyte apoptosis and changes in the
diversity of the intestinal microbiota (Wang et al., 2020). Bile
acids and bacteria have a two-way regulation relationship;
specifically, bile acids affect the survival and growth of
bacteria, while bacteria regulate the consistency of intestinal
bile acids (Stojancevic et al., 2012). The mechanism underlying
bile acid toxicity on bacteria is multifactorial, and includes
membrane effects, DNA damage, RNA structure changes, and
protein denaturation (Assimakopoulos et al., 2007). Patients with
BA do not have normal bile acids in the intestinal tract, which has
a significant impact on the intestinal microbiota (Song et al.,
2021). In mice, the intestinal microbiota not only regulates
secondary bile acid metabolism but also regulates bile acid
metabolism by reducing the level of T-βMCA, which improves
intestinal FGF15 production and reduces BA synthesis (Sayin
et al., 2013). Gut microbial dysbiosis results in endotoxin
translocation into the portal vein, where activation of the
NLRP3 inflammasome contributes to increased liver injury
(Keitel et al., 2019). Besides, transferring the intestinal
microbiota of cholestatic mice to healthy mice leads to severe
liver damage (Kwong and Puri, 2021). Therefore, regulation of
the intestinal microbiota is a potential treatment for liver disease
secondary to BA.

The regulatory function of hepatic and intestinal FXR on bile
acid metabolism has been extensively studied, but the role of
intestinal FXR on the intestine has not been established. The
activation of FXR has been proved to increase the expression of
the tight-junction proteins claudin-1 and occluding in bacterial
translocation (Verbeke et al., 2015). The present study
determined the influence of the FXR agonist, obeticholic acid
(OCA), in protecting the intestinal barrier in rats with obstructive
jaundice by blocking the entry of bile into the intestine, excluding
the indirect effect of bile on the intestine, then determining the
effect of intestinal FXR on the intestine. We showed that OCA
partly restored the enterohepatic circulation by increasing FGF19
expression. In addition, we demonstrated that the FXR has a
protective effect on cholestatic liver injury and improves
intestinal epithelial cell apoptosis in BDL rats, thus providing
a new potential target for clinical prevention of intestinal mucosal
barrier injury in patients with obstructive jaundice.

MATERIALS AND METHODS

Tissues and Gut Microbial Collection
The current study involved 24 infants without hepatobiliary
disease and 16 BA patients at the Children’s Hospital of
Nanjing Medical University from November 2017 to
December 2020. All BA patients were diagnosed based on
intraoperative cholangiograms and pathologic evaluation of
liver biopsies at the Children’s Hospital of Nanjing Medical
University. Tissue samples were collected from BA patients
undergoing the Kasai procedure. Matched controls were
derived from patients without liver failure or malignancies,
and were confirmed to not have BA or other congenital
malformations. No study subjects were recently treated with
antibiotics. All tissue samples were immediately frozen in
liquid nitrogen and stored at −80°C. We acquired written
informed consent from the subjects or their legal guardians.

TABLE 1 | Primers for qRT-PCR evaluation of gene expression levels in human.

Human primer sequence
(5’ to 3’)

FXR F: GGGACAGAACCTGGAAGTGG
R:GCCAACATTCCCATCTCTTTGC

GAPDH F: GCACCGTCAAGGCTGAGAAC
R: GGATCTCGCTCCTGGAAGATG

SHP F: CTCACTGGGTGCTGTGTGAA
R: AAGAAGGCCAGCGATGTCAA

TNF-α F : GATCGGTCCCAACAAGGAGG
R : GCTTGGTGGTTTGCTACGAC

FGF19 F : TGTGTGGTGGTCCACGTATG
R : CGGATCTCCTCCTCGAAAGC

TABLE 2 | Primers for qRT-PCR evaluation of gene expression levels in rats.

Rat primer sequence
(5’ to 3’)

fxr F: GGGACAGAACCTGGAAGTGG
R: GCCAACATTCCCATCTCTTTGC

gapdh F: GCACCGTCAAGGCTGAGAAC
R: GGATCTCGCTCCTGGAAGATG

shp F: CTCACTGGGTGCTGTGTGAA
R: AAGAAGGCCAGCGATGTCAA

tnf-α F: GATCGGTCCCAACAAGGAGG
R: GCTTGGTGGTTTGCTACGAC

fgf15 F: TGTGTGGTGGTCCACGTATG
R: CGGATCTCCTCCTCGAAAGC

i-babp F: TATGGCCTTCACCGGCAA
R: TACGTCCCCTTTCAATCACA

ostα F: GGGCAGATCGCTTGCTCACC
R: TCAGGCTTTGAGCGTTGAGT

asbt F: TGGGTTTCTTCCTGGCTAGACT
R: TGTTCTGCATTCCAGTTTCCAA
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Ethics approval was given by the Research Ethics Committee of
the Children’s Hospital of Nanjing Medical University.

Animals Experiment Design
Animals were randomized into three groups and fed a regular
diet. For the bile duct ligation (BDL) model, rats were
anesthetized with chloral hydrate, then the bile duct was
exposed and ligated with two non-resorbable surgical sutures.
Rats that underwent BDL were divided into two groups (n = 6–7).
After the procedure, rats received the treatment with vehicle
(0.5% methylcellulose) or OCA (5 mg/kg/day dissolved in 0.5%
methylcellulose) by daily gavage for 2 weeks. Two weeks later, all
animals were sacrificed under anesthesia. Ileum content, the
ileum, serum, and fecal samples were collected and
immediately stored at −80°C.

Serum Measurements
Alanine aminotransferase (ALT) and aspartate aminotransferase
(AST) were measured using an automated bioanalyzer (Thermo
Scientific Indiko Plus, Wuhan, China). The serum
lipopolysaccharide (LPS) levels were determined using
enzyme-linked immunosorbent assay (ELISA) kits
(RayBiotech, Inc., United States).

Intestinal Gene Expression
Ileum tissues (3–5 cm) were collected at 0.5–1.5 cm proximal to
the ileocecal flap for gene expression studies. The process of tissue
homogenates, RNA extraction and real-time quantitative
polymerase chain reaction followed the protocol. The primer
sequence is shown in Table 1, 2.

Western Blot Analysis
The frozen tissues and cells were lysed on ice with RIPA buffer
(Solarbio). The expression levels of target proteins in the ileum were
detected by respective primary antibodies. For protein density, each
band was determined and then quantified by using Image J software.
Primary antibodies involved in this study includes: anti-cleaved
caspase-3 (1:2000, Cell Signaling Technology), anti-PCNA (1:
1,000, Santa Cruz), anti-β-actin (1:1,000, Santa Cruz).

Gut Microbiota Sequencing and Microbial
Analysis
Genomic DNA was extracted from fecal samples using a E. Z.N.A.

®Stool DNA Kit (D4015, Omega, Inc., United States) according to
manufacturer’s instructions. Amplicons of the V3–V4 region of the
16S rDNA gene were conducted by using a 341F/805R primer pair.
Sequencing was carried out on aNovaSeq PE250 platform. Sequence

data analyses were mainly conductd by using Quantitative Insights
Into Microbial Ecology2 (QIIME2) and R packages (v3.5.2). For
dereplication, feature table and feature sequence were obtained by
DADA2. The raw data of 16Sr DNA gene sequencing and
metabolomic sequencing quality control in each sample are
provided in the supplementary materials. Bugbase was used for
the predictions of the functional profile of a microbial community
based on 16S rDNA sequence data. Based on Kyoto Encyclopedia of
Genes and Genomes (KEGG) functional pathways, PICRUSt2 was
used to analyze the metabolic networks of ileummicrobiota, with an
emphasis on the enriched pathways.

Cell Culture and Treatments
The human intestinal epithelial cell line, Caco-2, was cultured in
RPMI-1640 medium supplemented with 10% fetal bovine serum
(FBS), 0.1 mg/ml of streptomycin, 100 U/mL of penicillin, and
2 mmol/L L-glutamine. Caco-2 cells were incubated in a humid
atmosphere (5% CO2 and 95% air) at 37°C. Caco-2 cells were
treated with LPS (100 μg/ml) for 24 h to induce intestinal
epithelial injury followed with the FXR agonists, OCA (10 μM)
an additional 24 h.

Cell Viability Assay
Cell viability was detected with a CCK8 kit (Beyotime, Nantong,
China). After the above treatment, cells were cultivated in 96-well
microplates at a concentration of 1 cells/well × 104 cells/well and
incubated in medium containing 5% FBS for 12 h. CCK-8 (10 μl/
well) was then added to the wells and 96-well microplates were
incubated at 37°C for 1–4 h. The absorbance at 450 nm was
measured using a Tecan Infinite M200 multimode microplate
reader (Tecan, Mechelen, Belgium).

Cell Apoptosis Analysis
The TdT-mediated dUTP nick-end labeling (TUNEL) assay was
used in rat ileum sections to measure apoptosis of intestinal
epithelial cells according to the manufacturer’s instructions
(Beyotime, Shanghai, China). To detect Caco-2 cell apoptosis,
cells were harvested and stained with the Annexin V-FITC/
propidium iodide kit (KeyGen Biotech, Nanjing, China)
following the manufacturer’s instructions. Apoptosis rates were
analyzed using FlowJo V7 software.

Statistical Analysis
All statistical analyses are conducted using GraphPad Prism
(version 8; GraphPad Software Inc., San Diego, CA,
United States). Data are presented as the mean ± SEM.

TABLE 3 | Demographic clinical features of study subjects.

Information Control (n = 24) Biliary
Atresia (n = 16)

p t

Age (days, mean SE) 70.81 (20.25) 55.63 (6.11) 0.5535 0.5979
Male (%) 15 (62.5) 8 (50)
Female (%) 9 (37.5) 8 (50)

TABLE 4 | Liver function.

Indicator Control (n = 24) Biliary
Atresia (n = 16)

p t

ALT (U/L) 35.25 ± 4.416 161.2 ± 18.34 <0.0001 7.579
AST (U/L) 40.75 ± 2.837 245.5 ± 34.61 <0.0001 7.020
ALP(U/L) 320 ± 21.06 577.6 ± 45.22 <0.0001 5.599
DBIL (μmol/L) 2.068 ± 0.1772 131.8 ± 8.741 <0.0001 17.21
TBIL (μmol/L) 5.599 ± 0.4707 167.6 ± 11.43 <0.0001 16.41
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Statistical comparisons were made using the one-way analysis of
variance (ANOVA) with tukey’s post hoc test or double-sided
Student’s t-test where appropriate. p value < 0.05 was considered
significant. The qualitative data represent three independent
experiments.

RESULTS

Clinical Information Analysis
Clinical information, including age, gender, and biochemical
indicators, was obtained from 16 BA patients and 24 healthy
controls. The mean ages of BA patients and controls were
55.63 ± 6.11 and 70.81 ± 20.25 days, respectively; there was no

significant difference in mean age between the BA patients and
healthy controls (Table 3). The serum alanine
aminotransferase (ALT), aspartate aminotransferase (AST),
alkaline phosphatase (ALP) direct bilirubin (DBIL), and
total bilirubin (TBIL) levels were significantly increased in
the BA group (Table 4).

The Farnesoid X Receptor-FGF19 Signaling
Pathway and Intestinal Barrier Are Impaired
in Patients With Biliary Atresia
First, FXR-related molecule expression in the 16 BA and 24
control samples was determined. The FXR was highly
expressed in BA patients, while the small heterodimer partner

FIGURE 1 | The FXR-FGF19 signaling pathway and intestinal barrier are impaired in patients with biliary atresia. (A–C) The expression of intestinal FXR, SHP, and
FGF19 mRNA in BA tissues (n = 16) and controls (n = 24). (D–G) The levels of PCNA and cleaved caspase-3 protein expression in BA tissues and controls. (H) Serum
LPS detected by ELISA. (I) Intestinal expression of TNF-α mRNA. The data are expressed as the mean ± SEM. (*p < 0.05, **p < 0.01, ***p < 0.001).
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(SHP) and FGF19 were significantly lower than in the control
group (Figures 1A–C). The FXR-FGF19 signaling pathway was
damaged in biliary obstruction, which might be involved in the

development of BA. We also evaluated the apoptosis,
proliferation and inflammatory response in intestinal tissues.
The protein level of cleaved caspase-3 was greatly increased in

FIGURE 2 | OCA modulates the FXR signaling pathway and attenuates intestinal injury in BDL rats. (A) Representative images of intestinal sections stained with
hematoxylin and eosin. (B,C) Serum and intestinal content of LPS detected by ELISA. (D) Intestinal mRNA expression of TNF-α. (E–G) Ileum expression of FXR, SHP,
and FGF15 mRNA. (H–J) The bile acid transporter mRNA expression in ileum. The data are expressed as the mean ± SEM (n = 7–9). (OCA [5 mg/kg/day]) (*p < 0.05,
**p < 0.01, ***p < 0.001)
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BA samples (Figures 1D,E). Meanwhile, the expression levels of
PCNA was significantly decreased in BA (Figures 1F,G). Serum
LPS and intestinal TNF-α were significantly increased in BA
patients (Figures 1H,I).

Obeticholic Acid Modulated Farnesoid X
Receptor Signaling Pathway and
Attenuated Intestinal Injury in Bile Duct
Ligation Rats
To gain further insight into the effect of OCA, we determined
the expression of FXR-related molecules and the impact on

BDL rat intestines. HE staining revealed impaired intestinal
mucosal architecture in BDL rats, in which intestinal villi were
short, thick, and edematous, as shown by the red arrow. The
mucosal injury was significantly decreased in BDL rats treated
with OCA (Figure 2A). The serum and intestinal level of LPS
were significantly increased in BDL rats compared with the
control group, whereas OCA caused a marked decrease in the
serum levels of these markers (Figures 2B,C). Intestinal TNF-
α was also significantly increased in BDL rats, which was
reduced by OCA (Figure 2D). Then, we examined the ileum
FXR signaling pathway in the BDL rats and the changes
produced by OCA. Expression of FXR in BDL rats ileum

FIGURE 3 | OCA attenuates BDL-induced apoptosis of ileum epithelial cells. (A) TUNEL assay of small ileum sections. (B) The number of TUNEL-positive cells in
the intestinal epithelium is shown. (C,D) Western blots of cleaved caspase-3 in ileum tissues from rats. (E,F) The protein expression level of PCNA in three groups. Bar
graphs represent the mean ± SEM (n = 7–9). (OCA [5 mg/kg/day]) (*p < 0.05, **p < 0.01, ***p < 0.001)
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FIGURE 4 |OCA ameliorates dysbiosis of the ileum microbiota in BDL rats. (A) Venn diagram showing exclusive features per group. (B,C) Alpha-diversity analysis
of ileum microbiota (Shannon and Chao1 index). (D) Differences of ileum microbial β-diversity. Beta-diversity was analyzed by principal coordinates using weighted
Unifrac distances. (E,F) Composition of ileum microbiota at the phylum and genus levels. (G,H) Bacterial phyla and genera in ileum microbiota that were significantly
changed in three groups and corresponding relative abundance. The data are expressed as the mean ± SEM (n = 6–7). (OCA [5 mg/kg/day]) (*p < 0.05, **p < 0.01,
***p < 0.001).
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was higher than controls (Figure 2E). However, the reduced
activity of the FXR signaling pathway was indicated by the
decreased ileum expression of the FXR target gene, such as
SHP and FGF15. OCA effectively modulated the ileum FXR
signaling pathway in BDL rats (Figures 2F,G). Furthermore,
lack of bile acid in ileum contributde to the decreased trend of
bile acid transporter mRNA expression, and FXR activation
partially reversed this change (Figures 2H–J).

OCA attenuated BDL-induced apoptosis of ileum
epithelial cells.

Previous studies have shown that bile acids stimulate
intestinal epithelial proliferation (Yasuda et al., 2007). A
lack of bile acid in the intestinal lumen is mainly attributed
to impaired cell proliferation and increased apoptosis
(Assimakopoulos et al., 2007). To determine whether the
OCA-mediated protective effect against BDL-induced
disruption of intestinal barrier function was due to an
inhibition of cell apoptosis, we performed the TUNEL assay
in ileum sections. Compared with controls, intestinal epithelial
cell apoptosis was significantly increased in BDL rats, as shown

FIGURE 5 | Obeticholic acid ameliorated the dysbiosis of the ileum microbiota in bile duct ligation rats. (A) Relative abundances of four potential phenotypes
predicted by BugBase. (B) Predicted functional profiles in all groups. (C,D) Relative abundance of the subordinate pathways of lipid and carbohydrate metabolism. (E)
Comparison of gene sets associated with lipopolysaccharide biosynthesis and lipopolysaccharide biosynthesis proteins. The data are expressed as the mean ± SEM
(n = 6–7). [OCA (5 mg/kg/day)].
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by the white arrow (Figure 3A). The number of apoptotic cells
was clearly greater than controls (Figure 3B). As expected,
intestinal epithelial cell apoptosis was markedly inhibited by
OCA. Similar results were observed in a Western blot analysis,
the levels of cleaved caspase-3 protein detected by western blot

were increased in BDL rats compared with controls, and OCA
attenuated BDL-induced upregulation of cleaved caspase-3
(Figures 3C,D). Consistent with these results, Treatment
with OCA increased the expression of the PCNA in BDL
rats (Figures 3E,F).

FIGURE 6 | OCA protected against LPS-induced apoptosis in vitro. (A,B) cell viability evaluated by CCK8 in the Caco-2 cell line. (C) LDH released in the
supernatant of cultured cells was measured at the indicated time. (D) Cell apoptosis assay detected by flow cytometry in the Caco-2 cell line. (E,F) The level of cleaved
caspase-3 protein expression in the Caco-2 cell line. (G–I) Real-time PCR analysis of FXR and its target genes FGF-19 and SHP. (OCA [10 μM], LPS [100 μg/ml]) (*p <
0.05, **p < 0.01, ***p < 0.001)
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Obeticholic Acid Ameliorated the Dysbiosis
of the IleumMicrobiota in Bile Duct Ligation
Rats
To determine themechanism involved in OCA-mediated protection
against BDL-induced intestinal injury, we assessed the effects of BDL
andOCAonmicrobiota composition in the ileum by amplifying and
analyzing amplicons from the V3-V4 region of the 16S rDNA gene.
A Venn diagram showed 75 features in the controls, 678 features in
BDL rats, and 93 features in BDL rats treatedwithOCA (Figure 4A).
The Shannon andChao1 indexwas calculated to assess α-diversity in
bacterial diversity. Significant differences existed between the
controls and BDL rats, which were attenuated by OCA (Figures
4B,C). Principal coordinates analysis showed that microbial
communities in BDL rats clustered separately from controls, and
OCA treatment attenuated the distinction (Figure 4D). Differences
in the microbiota community composition, ordered by relative
abundance in the samples, were observed at the phylum and
genus levels (Figures 4E,F).

As shown in Figure 4G, BDL rats had a reduced relative
abundance of phylum Firmicutes that harbor bacteria with high
bile salt hydrolase activity, which was increased by OCA
treatment (Jones et al., 2008). In contrast, Bacteroidetes, a
major bacterial phylum harboring bacteria with low bile salt
hydrolase (BSH) activity, was significantly increased in BDL rats
and attenuated by OCA treatment. At the genus level, the
abundance of Lactobacillus was significantly decreased, and the
abundance of the Lachnospiraceae NK4A136 group, Alistipes,
Eubacterium_ruminantium_group, Intestinimonas,
Ruminococcus_1, and Ruminococcaceae_NK4A214_group was
significantly increased in BDL rats; however, OCA changed the
unique enteric microbiome of BDL rats (Figure 4H). Compared
with BDL rats, OCA-treated rats had fewer
Lachnospiraceae_NK4A136_group,
Eubacterium_ruminantium_group, Ruminococcus_1, and
Intestinimonas, and more abundance of Lactobacillus.

Obeticholic Acid Altered the Functional
Capacities of Ileum Microbiota in Bile Duct
Ligation Rats
Four potential phenotypes (anaerobes, containing mobile
elements, gram-negatives, and potentially pathogenic) were
predicted to be significantly different in the three groups using
BugBase. At the microbial community level, gene functions
related to anaerobes, gram-negatives, and potentially
pathogenic were increased in BDL rats. OCA treatment
reduced the enrichment of gram-negatives and potentially
pathogenic, possibly attributed to a decrease in the abundance
of Bacteroidetes (Figure 5A). In addition, we gained functional
prediction of the fecal bacteria through PICRUSt2 based on a
KEGG database. The primary identified pathway of ileum
microbiota was related to metabolism (Figure 5B), which was
significantly decreased in BDL rats; however, OCA treatment
improved enrichment of metabolism compared to BDL rats.

Furthermore, the relative abundances of ileum microbiota
involved in primary and secondary bile acid biosynthesis-

associated lipid metabolism were lower in BDL rats than
controls, which may have been associated with lower bile acid
levels (Figure 5C). Compared with BDL rats, OCA-treated BDL
rats had an increased abundance of primary and secondary bile
acid biosynthesis. The relative abundances of ileum microbiota
related to sphingolipid metabolism and steroid hormone
biosynthesis, which are involved in lipid metabolism, and were
more significant in BDL rats than in other groups (Figure 5C).
Subordinate pathways of carbohydrate metabolism were also
analyzed and compared. Pyruvate metabolism, glycolysis/
gluconeogenesis, an amino sugar, and nucleotide sugar
metabolism were enriched in three groups of ileum microbiota
(Figure 5D); however, there was an insignificant difference
between the three cognitive groups in lipopolysaccharide
biosynthesis and lipopolysaccharide biosynthesis proteins
(Figure 5E).

Obeticholic Acid Protected Against
Lipopolysaccharide-Induced Apoptosis in
Vitro
The presence of bile acid in the intestine contributes to a normal
gut barrier function by promoting intestinal epithelial cell
proliferation. In biliary obstruction, intestinal mucosal injury is
mainly due to more LPS caused by intestinal flora disorder
(Assimakopoulos et al., 2007; Luo et al., 2022). To further
confirm the effect of OCA on the proliferation and apoptosis
of intestinal mucosal epithelial cells, Caco2 cells were incubated
with LPS and OCA in vitro. OCA promoted the proliferation of
Caco-2 cells based on concentration (Figure 6A). OCA improved
the inhibitory effect of LPS on cell viability and cell proliferation
rates (Figure 6B). OCA gradually reduced the released LDH in
Caco-2 cells incubated with LPS as the OCA concentration
increased (Figure 6C). Next, treatment of OCA significantly
prevented apoptosis of Caco-2 cells incubated with LPS
(Figure 6D-F). In addition, we determined whether OCA
directly activates FXR by RT-PCR. OCA restored LPS-
suppressed FXR expression in Caco-2 cells (Figures 6G–I).

DISCUSSION

Because biliary obstruction not only causes inflammation and
fibrosis of the liver, biliary obstruction can also cause damage to
the intestinal barrier, leading to endotoxemia. Therefore,
protecting the intestinal mucosal barrier during biliary
obstruction is an important treatment strategy. Indeed, our
study showed that intestinal permeability, inflammation, and
intestinal epithelial apoptosis was increased during biliary
obstruction.

It is well-accepted that the FXR regulates the synthesis,
transport, and enterohepatic circulation of bile acids by
modulating the expression of related genes in the liver and
small intestine (Liu et al., 2020). The main finding of this
study showed that the relationship between the FXR pathway
and the intestinal mucosal barrier during biliary obstruction. In
BDL rats, the intestinal FXR signaling pathway was inhibited after
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bile duct ligation, and the restoration of the FXR pathway
improved intestinal barrier damage and intestinal microbiota
imbalance. This finding provides new insight into the role of
the FXR pathway in intestinal barrier injury.

Protection of the activated FXR pathway on intestinal barrier
integrity was associated with reduced liver fibrogenesis. Hepatic
accumulation of bile acid plays a pivotal role in the apoptosis of
hepatocytes and bile duct hyperplasia, and eventually leads to
liver fibrosis and cirrhosis in biliary obstruction (Fickert and
Wagner, 2017). The decrease in intestinal bile leads to a deficiency
in intestinal FXR activity, which weakens the inhibitory effect of
CYP7A1 and leads to increased bile acid production and
aggravation of liver fibrosis (Liu et al., 2020). In agreement
with previous studies (Liu et al., 2020; Tsai et al., 2020;
Modica et al., 2012), our results showed that OCA reduced
liver fibrosis in rats with cholestasis by BDL (Supplementary
Figure S1). The mechanisms underlying improved hepatic
fibrosis by OCA remain unclear, although there are several
explanations. Previous research has shown that bile acid
activates intestinal FXR and elevates FGF15/19, which binds
the FGF receptor and the β-Klotho complex on the surface of
hepatocytes to inhibit CYP7A1 expression (Hartmann et al.,
2018; Lee et al., 2018). In our study, biliary obstruction
reduced intestinal bile acid concentration, leading to a
significant reduction of SHP and FGF15 expression. Moreover,
OCA significantly promoted the expression of SHP and FGF15,
which inhibited CYP7A1 expression and decreased the
production of bile acids. In addition, mitigation of liver
fibrosis caused by OCA may be achieved by regulating the
intestinal microbiota and restoring the intestinal barrier,
thereby improving the “gut-liver axis” circulation, reducing
liver inflammation, and ultimately alleviating liver fibrosis.
Previous studies have shown that antibiotics which improve
liver function in cholestatic patients indicate an active role of
the microbiome in mediating liver injury during cholestasis
(Tabibian et al., 2013). In previous study, decreased LPS
production from the gut by OCA treatment activated TLR-4
and TLR-9, thus promoting inflammation, steatosis, and fibrosis,
which might have contributed to reduced liver fibrosis (Lichtman
et al., 1990).

The presence of bile in the intestine promotes intestinal
epithelial cell proliferation and protects against apoptotic cell
death, which contributes to the integrity of the intestinal barrier
(Keitel and Häussinger, 2011). With the absence or reduction of
bile in the intestine, the intestinal mucosal barrier is damaged,
and the intestinal permeability is increased so that pathogenic
bacteria and LPS translocate into the blood, causing bacteremia
and endotoxemia (Iida et al., 2009; Wang et al., 2010). More LPS
production facilitates liver and intestinal mucosal barrier damage
through the LPS-TLR4 signaling pathway (An et al., 2022).
Activation of the FXR pathway or the FXR agonists protects
the mucosal integrity by regulating the expression of downstream
genes related to mucosa protection and defense against
inflammation in rodents (Vavassori et al., 2009; Gadaleta
et al., 2011). Interestingly, in the case of bile duct obstruction,
adding OCA can activate the FXR like bile acid, promoting the
proliferation of intestinal epithelial cells and preventing cell

apoptosis. Moreover, similar results were demonstrated
in vitro, in which OCA attenuated LPS-induced apoptosis of
Caco-2 cells. In the other hand, the increase of LPS disruptes bile
acid metabolism (Xiong et al., 2017; Zhang et al., 2020), and
contributes to the damage of liver and intestinal barrier. In the
study of Sai Wang et al., LPS inhibited the expression of FXR
signaling pathway in mouse primary hepatocytes (Wang et al.,
2022), and we also found that OCA actived the FXR signaling
pathway in lps-incubated Caco-2 cells, which may be involved in
the mechanisms affecting the proliferation and apoptosis of
Caco-2 cells. Our results extend the reparative effect of OCA
on impaired intestinal barrier function; however, we only
detected the expression of FXR-related genes, the mechanism
by which the FXR promoted intestinal epithelial proliferation and
inhibited apoptotic cell death warrants further study.

Microbiota and intestinal mucosal barrier are mutually
influenced. Normal microbiota applies trophic effects on the
intestinal mucosa, which display a significant role in mucosal
protection and epithelial regeneration. Recently, the role of
microbiota in maintaining the intestinal barrier has
increasingly attracted more research attention. Probiotics and
fecal microbiota transplantation are widely used in intestinal
inflammatory diseases (Al-Sadi et al., 2021; Dou et al., 2021).
The PICRUST2 analysis showed no difference in functional
microbiota profiles of the LPS biosynthesis pathway among
the three groups. These results implied that the elevation of
plasma LPS in the BDL group and BA patients were primarily
attributable to intestinal barrier dysfunction and microbiota
dysbiosis, which has been associated with an increase in the
levels of Gram-negative microbiota. Our results suggest that
increased LPS produced by intestinal dysbiosis might damage
intestinal barrier function, in which OCA treatment improved the
intestinal barrier in biliary obstruction bymodulating microbiota.
In response to OCA, the increased bacterial load was normalized
and intestinal dysbiosis improved in BDL rats, which showed that
the beneficial effects of OCA on intestinal epithelial apoptosis in
biliary obstruction are likely due to remodeling of intestinal
microbiota. BSH is a principal enzyme that stimulates the
“gateway” reaction in the bacterial metabolism of conjugated
bile acid to produce deconjugated bile acid. OCA treatment
rectifies the rising relative abundance of Bacteroidetes and the
decreased relative richness of Firmicutes at the phylum level,
which increases enrichment of the gut microbiota with BSH-
containing phyla. Furthermore, Lactobacillus plays a key role in
maintaining the intestinal mucosal barrier by increasing
immunoglobulin secretion (Liu et al., 2021; Niu et al., 2021;
Yang et al., 2021; Zhang et al., 2021). Our results showed that
OCA treatment exhibited more abundance of Lactobacillus,
thereby protecting against an impaired intestinal mucosal
barrier in obstructive jaundice.

Intestinal microbiota displays various potential phenotypes
and functions in response to changes in a different environment.
Against colonization of potentially harmful bacteria in the
intestine is a major function for normal intestinal microbiota
(Dai and Walker, 1999). We observed that the OCA treatment
significantly decreased the high abundance of potentially
pathogenic and gram-negative microflora in the BDL group,
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mostly attributed to the change in the abundance of
Bacteroidetes. LPS derived from gram-negative bacteria can
cause inflammatory responses and liver injuries (Rietschel
et al., 1994; Machida et al., 2006; Aloman et al., 2007). This
result is consistent with the level of LPS and TNF-α in the current
study. In addition, analysis of KEGG pathway enrichment
showed that OCA treatment greatly influences genes belonging
to lipid metabolism pathways, including steroid hormone
biosynthesis, sphingolipid metabolism, and primary and
secondary bile acid biosynthesis.

Furthermore, it was concluded that the changed pathways in
lipid metabolism were associated with biliary obstruction and
OCA treatment. Biliary obstruction decreased bile acid
metabolism-related genes, which were thought to be involved
with inhibition of the FXR pathway. OCA treatment greatly
stimulated activity of the FXR pathway, increasing the
expression of bile acid metabolism-related genes. Recent
studies have shown that intestinal FXR plays an indispensable
role in glycolipid metabolism regulation, and intestinal-specific
FXR agonists or antagonists participate in glucose and lipid
metabolism regulation in vivo (Jiang et al., 2015a; Jiang et al.,
2015b; Grundy, 2016). Our results also demonstrated that OCA
attenuated the relative abundances of the genes involved in
carbohydrate metabolism in biliary obstruction. The results of
KEGG metabolic pathway analysis suggested that OCA had
beneficial effects on BDL rats, which may be closely related to
effective regulation of microbial metabolic pathways.

In general, OCA improved mucosal barrier function, down-
regulated the concentrations of TNF-α and LPS, decreased the
richness and diversity of the gut microbiota in the ileum, and
reversed metabolic disorders.

CONCLUSION

Our study indicated that the active FXR pathway by OCA had
beneficial effects on the intestinal barrier in BDL rats. Specifically,
OCA changed the composition and structure of the intestinal
microbiota and improved the metabolic function of the intestinal
microbiota by increasing the relative abundance of beneficial
bacteria and reducing the relative abundance of harmful bacteria.
Moreover, OCA promoted the recovery of the intestinal barrier
function of BDL rats by downregulating the levels of inflammatory
cytokines and LPS. Therefore, this research provides a theoretical

and application basis for developing the FXRpathway as a functional
target to alleviate intestinal barrier injury in biliary obstruction.
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