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Abstract

Both rectal and vaginal mucosal surfaces serve as transmission routes for pathogenic 

microorganisms. Vaccination through large intestinal mucosa, previously proven protective for 

both mucosal sites in animal studies, can be achieved successfully by direct intra-colorectal (i.c.r.) 

administration, which is, however, clinically impractical. Oral delivery seems preferable, but risks 

vaccine destruction in the upper gastrointestinal tract. Therefore, we designed a large intestine-

targeted oral delivery with pH-dependent microparticles containing vaccine nanoparticles, which 

induced colorectal immunity in mice comparably to colorectal vaccination and protected against 

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Corresponding authors: J.A.B (berzofsj@mail.nih.gov) or Q.Z. (qing20892@gmail.com). 

AUTHOR CONTRIBUTIONS
Q.Z., R.J.M., and J.A.B. designed the experiments, interpreted the data and wrote the manuscript. Q.Z. executed many of the 
experiments, Z.W. conducted some of experiments, and J.T., R.C.W., J.K. and B.E. produced micro/nanoparticles containing vaccines 
and were involved in micro- and nanoparticle characterization and in vitro release experiments. T.C. participated in experiment design 
and the initial experiments. G.Z. performed electron microscopy. D.M.K. provided CpG ODN and contributed to analysis and 
discussion. I.M.B., S.G., and Y.S. participated in planning and discussion. J.A.B. oversaw the overall execution of the projects.

COMPETING FINANCIAL INTERESTS
J.T. is the CEO and J.K. and B.E. are employees of Nanotherapeutics Inc., a for-profit company with patent rights to the NanoDRYR 

technology (US Patent Application 20050175707) used herein.

HHS Public Access
Author manuscript
Nat Med. Author manuscript; available in PMC 2013 July 25.

Published in final edited form as:
Nat Med. 2012 August ; 18(8): 1291–1296. doi:10.1038/nm.2866.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rectal or vaginal viral challenge. Conversely, vaccine targeted to the small intestine induced only 

small intestinal immunity and provided no rectal or vaginal protection, demonstrating functional 

compartmentalization within the gut mucosal immune system. Therefore, using this oral vaccine 

delivery system to target the large intestine, but not the small intestine, may represent a feasible 

novel strategy for immune protection of rectal and vaginal mucosa.

INTRODUCTION

Mucosal immunization has proven to be critical to induce mucosal protection1–5 and 

contributes to rapid and long-lasting mucosal protection in contrast to systemic 

immunization6. It has been shown that antigen-specific functional CD8+ cytotoxic T cells in 

the mucosa are critical to protect from CD4+ T cell depletion by SHIV3, while human 

studies indicate that a higher frequency of the antigen-specific mucosal CD8+ T cells 

correlates with a lower degree of herpes simplex viral infectivity as well as reduced severity 

of the disease7. In the mucosal tissues of HIV-infected long-term nonprogressors, there exist 

immunodominant CD8+ T cells and their presence is strongly correlated with HIV-1 

control5,8. A variety of approaches have been proposed and employed to induce protective 

mucosal immunity against viral transmission through either the rectal or vaginal 

route1–3,9–11. However, potent but clinically practical genitorectal vaccination strategy 

remains unestablished for the following reasons.

Large intestinal mucosa is an optimal site to induce both rectal and vaginal immunity. Intra-

colorectal (i.c.r.) vaccination directly at the large intestinal mucosa induces robust cellular 

and humoral immune responses in the regional lymph nodes4, more effectively than 

vaccination at a distant mucosa (e.g., intranasal) or by a parenteral route1–5. However, for 

mass human vaccination, i.c.r. administration appears to be clinically too cumbersome and 

unpalatable. In addition, this procedure could potentially be traumatic without adequate 

caution. Given that the intranasal route, although practical and relatively easy, poses the risk 

of inoculum invasion into the central nervous system by olfactory nerve transport12, a truly 

safe vaccine delivery route is needed. The oral route is the safest and most practical. 

However, except for a few live attenuated vaccines inducing systemic responses, simple oral 

delivery is ineffective at protecting either rectal or genital mucosa13. The failure is mostly 

attributed to the enzymatic destruction in the proximal gut and likely inadequate antigen 

uptake in the large intestine.

We here aimed to discover a way to selectively deliver a vaccine to the large intestinal 

mucosa through the oral route, which has not previously been accomplished. To mimic the 

“gold standard” i.c.r. immunization while circumventing the limitations of oral delivery, we 

encapsulated a peptide or protein vaccine into biologically compatible poly(DL-lactic-co-

glycolic acid) (PLGA) nanoparticles14,15 to be used for site-specific immunization. The 

depot effect of PLGA nanoparticles offers an additional feature that controlled release of 

entrapped vaccines over extended time periods provides a longer antigen exposure to the 

immune system. PLGA particle size, adjustable during manufacturing, was engineered in 

nanometers because size-dependent mucosal uptake is most effective within nanometer 

ranges and impeded when the size is over 1 micron16. Selective combinations of TLR 
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ligands can induce synergistic activation of T cells17–19. We adjuvanted the vaccine with 

MALP-2, poly(I:C) and CpG ODN, which have been shown to synergistically induce 

mucosal anti-viral protection after i.c.r. immunization20.

To bypass the harmful effects of digestive low pH and enzymatic destruction and to 

selectively deliver the particles to the lower gastrointestinal (GI) tract intact, the PLGA 

nanoparticle surface was coated with methacrylate-based polymer Eudragit FS30D21, an 

anionic tripolymer comprising poly(methyl acrylate, methyl methacrylate, methacrylic acid) 

in a 7:3:1 ratio. The ratio of free carboxyl groups to ester groups is ~1:10. It is pH sensitive 

and soluble in intestinal fluids at pH > 7.0, seen only in the terminal ileum, thereby 

preventing contents from degradation more proximally. These coated particles are ≥ 10 

micrometers in diameter in order to avoid premature uptake in the small intestine primarily 

by Peyer’s patches, which can significantly take up particles up to 1 μm16. Our design is 

shown in Supplementary Fig. 1.

RESULTS

Proof of principle study on the PLGA nanoparticle vaccine

Uncoated PLGA nanoparticles were manufactured in the range from 300 500 nm (418 nm ± 

88 SD) (Supplementary Fig. 2a), with 90% encapsulation efficacy (Supplementary Fig. 2b). 

We first conducted a proof of principle experiment in which fluorescent fluorescein-

containing PLGA/FITC-BSA nanoparticles were delivered directly to the colon of mice by 

i.c.r. administration. At day 3, a proportion of the cells isolated from the large intestinal 

lamina propria were detected positive for fluorescence expression (Fig. 1a), indicating an 

uptake of the nanoparticles. Nanoparticle uptake was primarily found in CD11b+B220int 

macrophages and secondarily in CD11c+CD11b+ dendritic cells (DCs) in the lamina propria 

of the large intestine (Supplementary Fig. 3a). Transmission electron microscopy indicates 

PLGA nanoparticles in the cytoplasm (Supplementary Fig. 3b). Uptake of PLGA 

nanoparticles by DCs (derived from bone marrow) was also confirmed in vitro by flow 

cytometry (Supplementary Fig. 4a), fluorescence microscopy (Supplementary Fig. 4b) and 

transmission electron microscopy (Supplementary Fig. 4c).

We subsequently confirmed that antigen-specific T cells responses could be induced in the 

colon after a single i.c.r. delivery (Fig. 1b), but not after s.c. administration (Supplementary 

Fig. 5), of PLGA nanoparticles encapsulating PCLUS3-18IIIB (CD4+ T cell helper epitopes 

fused with HIV Env CD8+ CTL epitope) and TLR ligands (MALP2+poly(I:C)+CpG)20. 

Therefore, PLGA nanoparticles can serve as an effective vaccine delivery system when they 

are deposited in the large intestinal lumen.

Oral delivery of nanoparticle-releasing microparticle vaccines

The Eudragit served to make 10 50 μm particles and released contents substantially as early 

as 1 h at pH 7.4, in contrast to at pH 2.5 at which the particles were stable (Supplementary 

Fig. 6). After oral delivery of Eudragit FS30D containing PLGA/FITC-BSA nanoparticles, 

nanoparticle uptake was found almost exclusively in the large intestine (Fig. 1c,d). The 

cecum is the first part of the large intestine encountered, but in humans, where the cecum is 
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relatively small, the balance between cecum and colon may be different. We further 

contrasted FS30D with L100-55 microparticles containing the same nanoparticles for lower 

pH release (pH > 5.5) in the small intestine and found that oral administration of Eudragit 

L100-55-coated nanoparticles resulted in primary uptake rather in the small intestine (Fig. 

1c,d). Likewise, uncoated PLGA nanoparticles, to the extent any successfully traversed the 

stomach, were primarily delivered to the small intestine (Supplementary Fig. 7). Thus, the 

distribution of nanoparticles was altered by coating them with FS30D, such that a majority 

now reached and were taken up by cells in the large intestine (Fig. 1c,d and Supplementary 

Fig. 7). These results validate the approach of coating PLGA nanoparticles with FS30D to 

protect them during transit through the upper GI tract for increased delivery to the large 

intestine.

We next used a luciferase reporter system to confirm the large intestine targeted delivery 

with FS30D. Luciferase expression was measured in intestinal sections after oral 

administration of FS30D/PLGA containing a luciferase DNA plasmid (Supplementary Fig. 

8).

After confirming that formulated vaccine components within the micro/nanoparticles 

retained TLR agonist activity in in vitro settings or after oral administration (Fig. 2a), we 

examined intestinal immune responses in mice after two immunizations with the two 

different Eudragit coatings of the PLGA nanoparticle vaccine given orally with a two-week 

interval. Three weeks after the second immunization, tetramer positive CD8+ T cells were 

detected in the large intestine, indicating successful induction of colorectal immunity with 

the oral FS30D-coated vaccine (Fig. 2b,c). In contrast, the L100-55-coated vaccine induced 

a minimal level of colonic antigen-specific CD8+ T cells (Fig. 2b,c). In fact, the L100-55-

coated vaccine induced a T cell response primarily in the small intestine, where the FS30D-

coated vaccine was only marginally effective (Fig. 2d). Without Eudragit coating, PLGA 

nanoparticle vaccines did not elicit significant immune responses in the large intestine but 

did induce responses in the small intestine (Fig. 2e,f). The results affirm that the enteric 

coating with FS30D is essential for oral delivery of PLGA nanoparticles to the large 

intestine.

Induction of T-cell immunity against viral infection

To evaluate the protective efficacy of this vaccine, after prime and boost oral immunization, 

we challenged mice rectally with a replication-competent vaccinia virus vPE-16, which 

expresses the HIV Env epitope P18-I10 used in the peptide vaccine. Mice immunized with 

the L100-55-coated vaccine were not protected from the virus challenge. However, the 

FS30D-coated vaccine reduced viral load almost equally as well as the peptide vaccine 

given i.c.r. (Fig. 3a). Therefore, oral delivery of FS30D-coated PLGA vaccine targeting the 

large intestine is effective for local colorectal vaccination against viral infection.

It has been previously shown that i.c.r. vaccination with adenovirus-based vaccines induced 

effective protection against virus challenge (vaccinia and HSV-2) not only in the rectal but 

also in vaginal mucosa4. To determine whether vaginal mucosal protection can be induced 

by the orally administered FS30D-coated PLGA vaccine, we immunized mice orally with 

the vaccine (FS30D/PLGA/PCLUS3-18IIIB+TLR ligands) twice with a two-week interval, 
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followed by intravaginal (i.vag.) challenge with vPE-16. Compared to i.c.r. immunization, 

oral delivery of FS30D-coated vaccine induced almost equal clearance of virus after vaginal 

challenge (Fig. 3b), whereas, again, the L100-55 formulation that delivers the vaccine to the 

small intestine was not effective. Thus, delivery to the large intestine was more effective 

than to the small intestine in protecting against both genital and rectal challenge. This 

efficacy was largely T-cell mediated, as the virus does not incorporate gp160 into virions 

and is not sensitive to anti-gp160 neutralization.

Induction of antibody immunity against viral infection

The humoral response also plays an important role in protection in the gut and genital 

mucosal immunity. Therefore, we examined whether encapsulating whole viral proteins in 

the FS30D-coated PLGA vaccine can induce antibody-mediated protective immunity at both 

mucosal sites after challenging mice with pathogenic vaccinia strain WR. Vaccinia A33 and 

L1 are immunogens of the extracellular enveloped virion and intracellular mature virion, 

respectively. Antibody responses induced by the combination of both types of viral antigens 

encoded by plasmid DNA22 or as recombinant proteins23 can protect animals from lethal 

challenge of WR. Of note, CTLs specific for the vaccinia protein A33 or L1 have not been 

reported in BALB/c mice24. TLR ligands have been shown to activate B cells directly and 

contribute to antigen-specific antibody responses25,26, including in the gut27. Here we found 

that the triple TLR ligands previously shown to synergistically activate naïve T cells20 could 

also synergistically activate B cells (Supplementary Fig. 9a) as determined by CD6928. I.c.r.. 

immunization with the combination of recombinant A33 and L1 mixed with the triple TLR 

ligands in DOTAP induced antibody responses in the blood (Supplementary Fig. 9b).

The ability of PLGA nanoparticles containing the above vaccine components to induce 

antibody responses was assessed by immunization through either the i.c.r. or s.c. routes 

(Supplementary Fig. 10a), and the results further showed that CD4+ T cells were also 

activated by such a vaccine regimen (Supplementary Fig. 10b). We therefore constructed 

FS30D-coated PLGA/A33+L1+TLRL vaccine microparticles and administered them orally. 

Vaccinia-specific IgA and IgG antibody responses were significantly induced in both the 

large intestine (tested in tissue homogenates) and vaginal tracts (tested in vaginal washes) 

(Fig. 4a). Further, orally immunized mice resisted the WR virus challenge by either the 

rectal or vaginal route (Fig. 4b) as determined by weight loss and by 0 vs 75% or 50% 

mortality, respectively. Therefore, the FS30D-coated PLGA vaccine system can also be used 

to induce antibody-mediated mucosal protection at both mucosal transmission sites.

DISCUSSION

As direct rectal or vaginal vaccine delivery may be impractical for mass human vaccination, 

despite the efficacy of the i.c.r route, oral delivery is a desirable alternative route potentially 

allowing safe, simple, and rapid delivery. We hypothesized that if the vaccine is able to 

survive the passage to, and is not absorbed before reaching the large intestine, the 

vaccination should mimic the efficacy of i.c.r. vaccination. Accordingly, we designed a two-

part FS30D/PLGA nanoparticle-releasing microparticle system and showed that this novel 

system can bypass the small intestine and deliver orally administered vaccines highly 
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specifically into the large intestinal mucosa and induce almost equal protective immunity 

not only in the rectal but also vaginal mucosa.

Uncoated PLGA particles given orally either failed to traverse the stomach or reached only 

the small intestine, and did not elicit significant colonic responses, but only small intestinal 

immune responses. These results underline the need for combinatorial use of Eudragit 

FS30D and PLGA to ensure specific targeting of the large intestine by orally delivered 

vaccine. Our study also indicates that TLR ligand activity was maintained after 

encapsulation within PLGA, and thus, PLGA is an ideal delivery vehicle for vaccines 

containing TLR agonists.

Further, we designed a contrasting vaccine coated nanoparticle (L100-55/PLGA) that 

delivered antigen to and induced T cell responses in the small intestine selectively,, whereas 

conversely FS30D-coated vaccines induced responses in the large but not small intestine, 

providing a comparison of these sites for the first time with the same vaccine. Thus, we have 

made a fundamental discovery of cellular immune compartmentalization within the gut 

mucosal immune system, which is reminiscent of the sub-compartmentalized gut humoral 

immunity29, highlighting the need for site-specific delivery of vaccines to the large intestinal 

mucosa for protection against infections transmitted by the rectal or vaginal route, and we 

demonstrated a novel way to accomplish this via the more practical oral route. Our findings 

thus strengthen the conception that the common mucosal immune system is somehow sub-

compartmentalized.

There are many potential applications of our delivery technology beyond the vaccination 

against viral infection. This novel strategy is applicable for many forms of vaccines such as 

DNA, recombinant proteins, peptides, and a wide variety of adjuvants, and may be adapted 

in the development of vaccination strategies combating certain sexually transmitted 

infections caused by not only viruses but possibly also other types of pathogens. It also 

suggests a new approach to the development of a preventive or therapeutic vaccination 

against mucosal malignancies such as colorectal as well as cervical cancer. With this 

technology, in-depth study of the mucosal immunological subcompartmentalization between 

the large and small intestines can be easily conducted. For example, besides vaccination, one 

could use this approach to localize the site of induction of oral tolerance. The technology 

may be incorporated with other technologies to devise therapies in which selective targeting 

within the gut mucosa is needed.

Our targeted micro/nanoparticle system lends itself to practical large-scale clinical 

applications because of its 1) great stability in a dry-powder formulation; 2) easy shipment 

and storage without refrigeration, and long shelf life; and 3) economical large batch GMP 

processing. These features would be highly desired for effective industrial manufacturing 

and clinical management. PLGA is contained in several FDA-approved products. Although 

fine tuning of the formulation may be necessary to account for longer transit times in the gut 

of non-human primates and humans, as well as slightly higher pH values (around 7.3) in the 

distal small intestine of humans, this study demonstrates a promising proof of concept that 

this type of formulation may be practical and effective for oral vaccination to induce lower 

GI immunity without the need for intrarectal delivery. Capsules either coated with or 
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comprised of Eudragit have been investigated in humans for site-targeted release in the 

distal GI tract30–32. Clinical approaches would be extended to consider packaging PLGA 

nanoparticles with these colon-specific capsules, which may represent a preferable carrier 

for targeted colon vaccination in humans.

In conclusion, we have demonstrated functional immune compartmentalization of the gut 

mucosa and developed a nanoparticle-releasing microparticle oral delivery system and 

demonstrated that it is an easy, non-invasive vaccination strategy effective against viral 

infection occurring through the rectal or vaginal mucosa. Such a vaccination strategy would 

represent a conceptually novel approach to the development of vaccines against mucosal 

infections and potentially against mucosal cancers and to advanced study of 

immunobiological mechanisms involving mucosal compartmentalization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
I.C.R. delivered nanoparticles enter the large intestinal mucosa and orally delivered FS30D/

PLGA nanoparticle-releasing microparticles selectively targets the large intestinal mucosa 

for uptake. (a) Colorectal mucosal uptake of PLGA nanoparticles after i.c.r. delivery of 

PLGA/FITC-BSA nanoparticles. Cells were isolated from the colorectum 3 days after 

administration and measured for fluorescence-positive cells. (P < 0.01 between PLGA/

FITC-BSA and PBS treated. Representative of three independent experiments, n = 12 15 per 

group). (b) Induction of antigen-specific colorectal mucosal T cells after i.c.r. delivery of 

PLGA nanoparticles encapsulating PCLUS3-18IIB and MALP2+poly(I:C)+CpG vaccine 

(PLGA/PeptAg+TLRL). Three weeks after one immunization, colorectal cells were isolated 

and measured for P18-I10 specific CD8+ T cells by tetramer staining. P < 0.01 between 

PLGA/PeptAg+TLRL and PLGA alone. Representative of two independent experiments. n 

= 10 per group. (c) Gut mucosal uptake of PLGA particles after oral delivery of FS30D/
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PLGA or L100-55/PLGA. Cells were isolated from the small and large intestine at day 2 for 

measurement of fluorescence-positive cells. **P < 0.02 on white bar indicates the difference 

from small intestine. ***P < 0.001 on black bar indicates the difference from the small 

intestine. n = 9 12 per group. (d) Representative examples of flow cytometry from 

experiments shown in c.
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Figure 2. 
Orally delivered FS30D-coated PLGA nanoparticle vaccine induces antigen-specific T cells 

in the large intestine, while L100-55-coated vaccine induces the T cells in the small 

intestine. (a) Activation of DC after 20-h incubation with supernatants from FS30D-coated 

PLGA containing PCLUS3-18IIIB+TLRL (FS30D/PLGA/PeptAg+TLRL), antigen (FS30D/

PLGA/PeptAg) or vaccine only (PeptAg+TLRL) dissolved in PBS at pH 7.4 for 16 h (upper 

panels). Intracellular IL-12 was measured by flow cytometry (n = 6 per group). The micro/

nanoparticles were also given orally and DC activation in vivo was assessed ex vivo (lower 

panels), n = 5 per group. (b–d) Induction of T cell responses after oral delivery of FS30D/

PLGA/PeptAg+TLRL or L100-55/PLGA/PeptAg+TLRL. Oral administration was 

conducted twice with a two-week interval. Tetramer positive cells in the colorectum (b and 

c) or upper part of the small intestine (d) were measured three weeks after. The i.c.r. group 

was immunized with vaccine only without nanoparticles but formulated in DOTAP. **P < 

0.01, ***P < 0.001 indicate the significant difference between the group with asterisks and 

each of the groups without asterisks. There are no differences between the two groups with 

asterisks. Representative of experiments (c) is summarized in b. In d, P < 0.001 for L100-55 

vs other groups. n = 8 12 per group. (e and f) T cell responses induced after oral delivery of 

uncoated or FS30D-coated PLGA/PeptAg+TLRL. Tetramer positive cells in the upper small 

intestine (e) or the colorectum (f) were measured. **P < 0.01 indicates the significant 

difference between groups (n = 7 per group).
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Figure 3. 
Orally delivered FS30D-coated PLGA nanoparticle peptide vaccine confers T-cell mediated 

resistance to virus infection in the rectal or vaginal tract. FS30D/PLGA/PeptAg+TLRL or 

L100-55/PLGA/PeptAg+TLRL was given orally to mice twice with a two-week interval, 

followed by i.c.r. (a) or i.vag. (b) challenge with 2×107 or 1×107 PFU of vPE16, 

respectively, three weeks after the last immunization. Ovaries (where this virus primarily 

replicates) were removed at day 6 for viral titer assessment. **P < 0.01, ***P < 0.001 

indicate the significant difference in viral titer between the group with asterisks and each of 

the groups without asterisks (n = 12 15 per group).
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Figure 4. 
Orally delivered FS30D-coated PLGA nanoparticle protein vaccine confers antibody-

mediated resistance to virus infection in the rectal or vaginal tract. FS30D-coated PLGA 

containing antigen proteins A33 and L1 and TLR ligands (ProtAg+TLRL) was administered 

orally with a two-week interval. (a) Serum and local IgA (top) and IgG (bottom) antibodies 

against both A33 and L1 (together) measured at three weeks after the last immunization. 

Both FS30D/PLGA/ProtAg+TLRL p.o. and ProtAg+TLRL i.c.r. groups have significantly 

higher antibody titers than the other groups (P < 0.02). **P < 0.01 and ***P < 0.001 

indicate difference (for both sites) from each of the bars without asterisks. Results from two 

independent experiments (n = 10 per group). (b) Disease course of the mice after challenge 

with WR by the i.c.r. (4×107 PFU) or i.vag. (1×107 PFU) route three weeks after the last 

immunization. **P < 0.02, ***P < 0.001 indicate the differences between the FS30D/

PLGA/ProtAg+TLRL and unimmunized groups in weight loss (n = 10 14 per group). §, 

75% mortality; ¶, 50% mortality.
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