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Abstract
Plant primary metabolism is a highly coordinated, central, and complex network of bio-

chemical processes regulated at both the genetic and post-translational levels. The genetic

basis of this network can be explored by analyzing the metabolic composition of genetically

diverse genotypes in a given plant species. Here, we report an integrative strategy combin-

ing quantitative genetic mapping and metabolite-transcript correlation networks to identify

functional associations between genes and primary metabolites in Arabidopsis thaliana.

Genome-wide association study (GWAS) was used to identify metabolic quantitative trait

loci (mQTL). Correlation networks built using metabolite and transcript data derived from a

previously published time-course stress study yielded metabolite-transcript correlations

identified by covariation. Finally, results obtained in this study were compared with mQTL

previously described. We applied a statistical framework to test and compare the perfor-

mance of different single methods (network approach and quantitative genetics methods,

representing the two orthogonal approaches combined in our strategy) with that of the com-

bined strategy. We show that the combined strategy has improved performance manifested

by increased sensitivity and accuracy. This combined strategy allowed the identification

of 92 candidate associations between structural genes and primary metabolites, which

not only included previously well-characterized gene-metabolite associations, but also

revealed novel associations. Using loss-of-function mutants, we validated two of the novel

associations with genes involved in tyrosine degradation and in β-alanine metabolism. In

conclusion, we demonstrate that applying our integrative strategy to the largely untapped

resource of metabolite–transcript associations can facilitate the discovery of novel metabo-

lite-related genes. This integrative strategy is not limited to A. thaliana, but generally appli-

cable to other plant species.
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Author Summary

Primary metabolites are key elements in plant growth and development. Our partial
understanding of their biosynthesis and regulation derives mostly from biochemical and
genetic modification experiments. The recent generation of large-scale genome-wide data,
along with the advances in mass-spectrometry techniques, allows us to treat metabolite
levels as quantitative traits and to link them to genomic information, resulting in the iden-
tification of so-calledmetabolic quantitative trait loci (mQTL). These mQTL contribute to
the discovery of new biosynthetic and regulatory elements that control the plant's meta-
bolic landscape. Low mapping resolution, however, normally limits discovery to one causal
gene per locus. Here, we utilize a complementary strategy to support the identification
of casual genes by genetic mapping. We measured metabolite levels in 314 A. thaliana
accessions, then used genome-wide association mapping to identify mQTL. We next used
previously published results from a time-course stress study to construct metabolite-tran-
script correlation networks. Integrating data from both approaches enabled us to select
candidate genes linked to specificmetabolites. We finally validated two of the novel gene-
metabolite associations using knockout lines. We demonstrated that by using an integra-
tive strategy, we can validate previously characterized gene–metabolite associations, and
most importantly, identify novel associations betweenmetabolites and genes. The com-
bined quantitative genetics and metabolite-transcript networks that we present here can
be applied to other organisms and fields of research.

Introduction

Plants produce a large array of structurally and biologically diverse metabolites. Largely due to
the missing underlying biochemistry, the genes encodingmetabolite-related enzymes or regu-
latory proteins are known for only a fraction of the metabolites.With the development of meta-
bolomic and genomic tools, alternative approaches have been successfully applied to identify
genes encoding enzymes involved in specific biochemical pathways [1–6].

Metabolite levels can be used as quantitative traits, and quantitative trait locus (QTL) map-
ping of metabolite levels using structured populations facilitates the identification of the geno-
mic regions associated with the metabolic variation [7–9]. However, given the relatively low
resolution reached using this approach [10], the cloning of single causal genes has rarely been
achieved. Genome-wide association studies (GWAS), due to the presence of many more mei-
otic events present in natural populations during historical recombination, allow a more
refined QTL resolution [11, 12]. However, the limitation of GWAS, especially in self-mating
biological systems such as Arabidopsis thaliana, lies not only in the generation of false positive
genotype-phenotype associations because of the confounding effects of population structure
[13, 14], but also in the poor resolution reached if associated SNPs are found in extensive
islands of haplotypes in linkage disequilibrium (LD) [15–17]. Epistasis and lack of natural vari-
ation can also result in a high false-negative rate, wherein loci with previous experimental vali-
dation for specific traits are not found in GWAS [17, 18]. In order to take advantage of both
resources, a growing number of recent reports have successfully combined mQTL from bi-
parental segregating populations and natural populations to elucidate the biochemical nature
of metabolite traits [19–21]. Due to limited segregating allelic diversity in bi-parental segregat-
ing populations such as recombinant inbred lines (RIL) and introgression lines (IL), the valida-
tion of GWAS results is not possible in every case [22]. The combination of both GWAS and
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bi-parental segregating populations, however, is advantageous in reducing the false-positive
associations in GWAS due to the fact that in many cases, even after population structure cor-
rection, some individuals might be more related to each other than individuals are related on
average [23, 24].

Aside from genetic evidence, the integration of additional forms of genome-scale data, such
as metabolite and transcript data, has been applied to detect metabolite-gene correlations and
to largely reduce false-positive correlations [6, 25–27]. To date, network analysis has mainly
focused on correlations between transcripts and transcripts (i.e. co-expression networks) [28],
and correlations betweenmetabolites and metabolites (i.e. metabolic networks) [29]. The study
of metabolite-transcript correlations is yet to be fully explored. Detection and elucidation of
metabolite-transcript correlations can yield important clues regarding the consequences of
altered environmental conditions on metabolite levels in organismal systems [30]. Although a
few pioneering investigations have tried to apply this integrative strategy [6, 19, 31–35], the
power of combined results from the two orthogonal approaches, i.e. quantitative genetics and
metabolite-transcript networks, for the elucidation of the genetic architecture of metabolite
traits has not been fully exploited. Based on first principles, the overlap of results obtained
using these two approaches in parallel should increase their statistical confidence.

In order to test this hypothesis, we analyzed 94 primary metabolites in a densely genotyped
collection of 314 natural A. thaliana accessions, and used these metabolite levels as phenotypic
traits to conduct a GWAS with 200K single nucleotide polymorphisms (SNPs). The resulting
metabolite-gene associations from the GWAS were compared and validated with mQTL which
had been described before using two A. thaliana populations (429 RILs and 97 ILs) [8]. In par-
allel, metabolite-transcript correlation networks were constructed based on reported transcrip-
tome and metabolome levels of A. thaliana as a function of changing environments [36].
Correlations identified betweenmetabolites and transcripts were applied as an additional and
independently derived filtering criterion to further support identifiedmetabolite-gene associa-
tions. Furthermore, we applied a statistical analysis framework to test and compare the perfor-
mance of all single methods (GWAS, RIL, IL, and network analysis) with that of the combined
strategy by using precision, recall and F-measure. The results indicate that the combined strat-
egy (the strategy to predict genes supported by network analysis and at least one mapping
approach) exhibits an overall better performance as compared to the single methods, boasting
increased sensitivity and accuracy. Using this integrative strategy (Fig 1), 92 main metabolite-
gene associations were identified. The validity of the approach was confirmed by analyzing two
loss-of-functionmutants for two novel genes. In conclusion, this study serves as a proof of con-
cept, demonstrating that by integrating two orthogonal approaches, novel metabolite-gene
associations can be obtained with a robust statistical significance.

Results

Metabolic profiling by GC-MS

Information about the A. thaliana accessions used in this study is provided in S1 Table. 94
metabolic features, comprising 26 amino acids, 23 organic acids, 17 sugars, three amines, four
other metabolites with known, and 21 with unknown, chemical structure, were reproducibly
detected in rosette material of 314 A. thaliana accessions. Metabolite ID, name, classification,
and quantification mass used for the following data analysis are shown in S2 Table. Normal-
ized metabolite data across 314 accessions are shown in S1 Dataset. Those metabolites belong-
ing to one functional class were highly correlated, demonstrated by the fact that ten amino
acids, nine sugars, and some organic acids were clustered together, respectively (Fig 2).
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Fig 1. Data integration workflow for the systematic detection of candidate metabolite-transcript associations in primary metabolism in A.

thaliana. We combined high-throughput gas chromatography-mass spectrometry (GC-MS)-based metabolomics and genotyping data [65, 66] in

genome-wide association studies (GWAS). GWAS results were then compared with 157 identified quantitative trait loci (QTL) [8] and metabolite-

transcript correlation information from a time-course experiment that recorded the plants’ responses to changing light and/or temperature [36]. The

obtained hypotheses were then subject to experimental verification by transgenic methods.

doi:10.1371/journal.pgen.1006363.g001
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Fig 2. Correlation pattern among measured primary metabolites. Pairwise Pearson correlations (r2) are calculated between each metabolite

across all 314 accessions. Primary metabolites are ordered using Ward clustering on pairwise dissimilarity. The clustered metabolites are
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Genome-wide association study of the A. thaliana primary metabolome

The metabolic profiles of the accessions revealed that 37.8% of all annotated metabolites were
associated with at least one locus at a genome-wide significance level of p� 5.01 × 10−6

(LOD = 5.3), calculated by a mixed linear model. This model includes principal components as
fixed effects to account for population structure (commonly called the “Q” matrix) [37], and a
kinship matrix (commonly called the “K” matrix) [38]. In order to test how well the model
used in GWAS accounts for population structure and familial relatedness across the accessions,
we generated quantile-quantile (QQ) plots for all 94 metabolite traits. We observed that the
majority of points in the QQ plot lay on the diagonal line for all the metabolite traits, indicating
that spurious associations due to population structure and familial relatedness were largely cor-
rected. The SNPs in the upper right section of the QQ plot deviating from the diagonal were
most likely associated with the metabolite traits in the study. The QQ plots for the metabolite
traits further discussed here are shown in S1 Fig. In total, 117 distinct SNP-trait associations,
resulting in 617 gene-metabolite-trait associations, were identified (S3 and S4 Tables). In the
following, two representative examples of these associations will be described in more detail.

Example 1: GWAS confirms existing annotation of a gene: The

homoserine kinase gene

A strong association (p = 4.11 × 10−6, LOD = 5.39) between SNP m59466 at the AT2G17265
locus and the metabolite trait homoserine was detected. Gene AT2G17265 encodes a homoser-
ine kinase (HSK) that catalyzes the chemical reaction with the substrate L-homoserine to pro-
duceO-phospho-L-homoserine (HserP), a compound at the branching point of methionine
and threonine biosynthesis [39]. A loss-of-functionmutant of this gene results in higher levels
of the amino acid homoserine [40], which is in line with the observation describedhere.

Example 2: Haplotype analysis strongly suggests the tyramine

decarboxylase gene as the causative locus modulating tyramine levels

Tyramine was significantly associated with SNP m154079 (p = 1.28 × 10−9, LOD = 8.89) (Fig
3B). Lead SNP m154079 and other significantly associated SNPs, are located in locusTyrDC
(L-tyrosine decarboxylase 1, AT4G28680), which was reported to encode a stress-induced tyro-
sine decarboxylase [41]. This enzyme catalyzes a dicarboxylic reaction on tyrosine to release
CO2 and produce tyramine (Fig 3A). There are nine SNP markers in this gene identified by
high-throughput genotyping (Fig 3C). Among these nine SNPs, three SNPs leading to changes
in the amino-acid sequence are located in the fifth, tenth, and eleventh exon, respectively. The
first polymorphism variant (T/C, m154077) results in a serine-to-proline substitution, the sec-
ond SNP variant (A/C, m154081) causes a serine-to-arginine exchange, and the third SNP (C/
G, m154082) brings about a more subtle substitution, from serine to threonine (Fig 3C). Link-
age disequilibrium (LD) analysis of the mapped genomic region for the tyramine trait revealed
that the three exonic SNPs (m154077, m154081, and m154082) are highly and significantly
linked with the lead SNP m154079 (r2> 0.75, p< 0.001) (Fig 3D). This finding suggests that
they are likely to constitute the functional variation underlying this association. However, it is
still difficult to completely exclude other variants surrounding this region. Therefore, we took
the nine SNP markers in TyrDC to conduct haplotype analysis for the accessions. These nine
SNPs give rise to 19 possible haplotypes, eight of them being informative haplotypes defined by

highlighted with colors according to the chemical classes of primary metabolites: amino acids, organic acids and sugars are colored red, green and

blue, respectively.

doi:10.1371/journal.pgen.1006363.g002
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more than two accessions within a haplotype. The haplotypes can be further classified into five
main clusters according to the haplotype sequence similarities. Cluster II (H2, H3, H5, H9, and
H18) presents significantly higher levels of tyramine than Cluster I (H1, H6, H12, and H17),

Fig 3. An exemplary association found by GWAS between the metabolite trait tyramine and TyrDC. (a) Decarboxylic reaction that tyramine is

involved in with the candidate gene product TyrDC. (b) Manhattan plot for the metabolite trait tyramine and significant association signals. P values are

shown on a log10 scale, the x-axis shows the physical positions on five chromosomes in A. thaliana. Significantly associated SNPs in TyrDC are

highlighted in the red circle (c) Gene model of TyrDC. Filled black boxes represent coding sequence. The light gray vertical lines mark the polymorphic

sites identified by high-throughput genotyping [65, 66] and the stars represent the proposed functional sites. (d) Linkage disequilibrium (LD) plot for the

locus associated to tyramine levels on a zoomed-in Manhattan plot. The x-axis shows the physical positions in this LD block on chromosome 4, the y-

axis shows the significance levels with p values on a log10 scale. Each gray block denotes a gene in the locus to which tyramine mapped. Each dot

serves as one SNP marker and the lead SNP (with highest LOD) is shown with red diamond. Imputation revealed several closely located SNPs in

strong LD (r2) with the lead SNP. (e) Haplotype analysis for nine SNPs genotyped in candidate gene TyrDC. Haplotypes were further clustered

according to their similarities in five groups based on Ward’s minimum variance method (upper panel). Box-plots show the tyramine intensity for these

5 different clusters (middle panel; box width represents number of accessions in the cluster) and for the various haplotypes (bottom panel; the three

potential functional SNP variations for each haplotype are shown above each box). One-way ANOVA was applied to detect differences between

cluster means, followed by Bonferroni correction for multiple comparisons (p < 0.01).

doi:10.1371/journal.pgen.1006363.g003
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Cluster III (H4, H10 and H18), as well as two other minor clusters (Cluster IV and V) (Fig 3E).
Taken together, both the associated SNPs and the haplotype analysis support TyrDC as a can-
didate gene controlling tyramine levels.

GWAS comparison with metabolic QTL from RIL and IL populations

One of the main aims of this study is to discover true and novel metabolite-gene associations
involved in A. thaliana primary metabolism by integrating various quantitative genetics and
network approaches. To this end, we compared the GWAS obtained in this study with results
reported previously based on the analysis of two A. thaliana bi-parental populations: 429 RIL
and 97 IL derived from accessions Col-0 and C24 [8]. Out of the 40 metabolite traits described
in the RIL dataset, 32 overlap with those of the GWAS, whereas 50 metabolites overlap between
the GWAS and the IL data (cf. S5 and S6 Tables for the mQTL identified in RIL and IL in [8],
respectively). It has been described that in many cases the Bonferroni threshold is too stringent
for quantitative gene identification [42]. We therefore decided to test the performance of the
GWAS when different LOD thresholds were applied based on the four reference gene lists
(RGL1– RGL 4) derived from KEGG metabolic pathways (see Materials and Methods, section
“Procedure setup for determining method performance”; cf. S7 Table). GWAS performance
using various LOD thresholds was evaluated by three statistics: precision, recall and F-measure.
These three parameters, as well as the number of correctly predicted metabolites across all
tested GWAS LOD thresholds (from 2.0 to 5.3) were recorded (S8 Table). The measureable
values for these four statistics increasedwith lower thresholds, but were not changed with LOD
thresholds lower than 3.0 (S8 Table). Additionally, we tested the metabolite-wise precision for
each metabolite when applying LOD thresholds ranging from 3.0 to 5.3. As shown in S2 Fig,
themetabolite-wise precision was very low when applying relatively low LOD thresholds rang-
ing from 3.0 to 4.0, implying that the chance of finding true functional related genes from a rel-
atively large mapped locus is very low. LOD threshold 4.5 was selected for further integration
with other methods, because it can balance well the trade-off between obtaining more correctly
predicted metabolite traits and discovering the causal genes for metabolite traits more pre-
cisely. Comparison between different datasets was conducted using both the significant
LOD threshold after Bonferroni correction (LOD = 5.3) and the suggestive LOD threshold
(LOD = 4.5).

Common loci obtained by comparing QTL results from the GWAS, RIL, and IL datasets
using the two GWAS LOD thresholds mentioned above are listed in Table 1 and S9 Table.
One example we would like to point out is the QTL detected for nicotinic acid, located on chro-
mosome 5, with 41507 bp, supported by GWAS, RIL, and IL results together.

Table 1. Common loci verified by GWAS, RIL, and IL datasets (using GWAS LOD� 5.3)

Trait Chr Left border of the

locus (bp)

Right border of the

locus (bp)

Number of genes in

the locus

Confirmed by

GWAS

Confirmed by

RIL

Confirmed by

IL

Nicotinic acid 5 4746332 4787839 10 T T T

Fructose 2 16970258 17012067 12 T T F

Leucine 4 8231017 8322201 30 T T F

Glutamic acid 1 2743761 2788447 11 T F T

Gluconic acid 3 9052982 9095537 10 T F T

Lysine 3 464279 521747 24 T F T

4-Aminobutyric

acid

5 26854022 26883430 9 T F T

doi:10.1371/journal.pgen.1006363.t001
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Network analysis

Quantitative genetic analysis establishes the association between a locus/gene and a trait (here:
metabolite) by testing the co-occurrencebetween trait variants and genetic markers. As an
orthogonal, albeit still statistics-based approach, we decided to test the associations of metabo-
lites with transcripts resulting from metabolite-transcript correlation networks for their power
to identify candidate genes involved in the synthesis and/or degradation of a given metabolite.
Though this approach has been successfully used in many instances with secondarymetabo-
lites [25–27, 43, 44], the comparable investigation of primary metabolites has not been fully
explored. Metabolite and transcript data were obtained from a previously published study from
our group, in which the metabolomic and transcriptomic responses of A. thaliana towards
eight environmental conditions differing in temperature and light intensity were recorded at a
high kinetic time-resolved resolution [36]. Significantly changed metabolites across 23 time
points in each condition at a significance level of 0.05 after multiple correction, together with
all 15,089 transcripts, were used to construct condition-specificnetworks (eight individual net-
works in total). The numbers of primary metabolites and transcripts, as well as the statistically
significant Pearson Correlation Coefficient (PCC) thresholds derived from permutation test
for the individual networks, are shown in S10 Table. Multiple metabolite-transcript correla-
tions shared across different conditions were detected, suggesting conserved associations, 219
of them being maintained across all eight conditions (S11 Table). These highly robust correla-
tions found between transcripts and primary metabolites indicate conserved/tight regulation in
A. thaliana.

In order to test the likelihood of these correlations to be functionally significant, all metabo-
lite-transcript correlations detected by network analysis were compared with the GWAS. The
common associations supported by both GWAS and network analysis under the two GWAS
LOD thresholds are presented in S12 and S13 Tables, respectively. In the following, we will
describe some exemplary results in more detail. Temperature- and light-stress treatments were
abbreviated as follows: (i) 4°C and darkness (4-D), (ii) 21°C and darkness (21-D), (iii) 32°C
and darkness (32-D), (iv) 4°C and normal light (4-L), (v) 21°C and low light (21-LL), (vi) 21°C
and normal light (21-L), (vii) 21°C and high light (21-HL), and (viii) 32°C and normal light
(32-L).

Network data revealed a conserved and significant correlation between SPMS (spermidine
synthase 3, AT5G53120) and β-alanine. For six conditions, high PCCs were observed (21-L, –
0.61; 21-D, –0.75; 4-L, –0.78; 4-D, –0.87; 32-D, –0.64; 21-LL, –0.86). Furthermore, this associa-
tion is in agreement with the GWAS data. SPMS is annotated as encoding a novel spermine
synthase and is a paralog of previously characterized spermidine synthases, SPDS1 and SPDS2
[45, 46]. The protein that SPMS encodes can catalyze the reaction from spermine to spermi-
dine, and thus fuel the subsequent two steps in β-alanine biosynthesis.

A robust link between tyrosine and TAT7 (tyrosine aminotransferase 7, AT5G53970) was
observed in five out of eight condition-specific networks (the PCCs observedwere: 4-L, 0.68;
21-LL, –0.65; 21-L, –0.69; 21-HL, –0.57; 32-D, 0.67). TAT7 encodes a tyrosine aminotransfer-
ase as proven by both loss-of-functionmutants and an in vitro recombinant protein assay,
whereby it was suggested that TAT7 is a tyrosine-specific aminotransferase not involved in
tyrosine biosynthesis, but rather in the utilization of tyrosine for other metabolic pathways, e.g.
tocopherol biosynthesis [47]. Levels of tyrosine, as a central primary metabolite, can be influ-
enced by many factors. Its profiles observed for the five environmental conditions indicated
that temperature may be the more influential element for tyrosine content rather than light
intensity (S3 Fig). The correlation between tyrosine and TAT7 is also supported by the RIL
dataset.

Integrative Strategy Unravels Primary Metabolism Regulation in Arabidopsis
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Another strong correlation discovered by the network analysis was between tyrosine and
HGO (homogentisate 1, 2-dioxygenase, AT5G54080), displaying high positive correlations in
three darkness conditions independent of temperature, and in another low-light stress condi-
tion: 4-D, 0.85; 21-D, 0.78; 21-LL, 0.74; 32-D, 0.73. The profiles of tyrosine and HGO across 23
time points in these four conditions are shown in Fig 4A.HGO is reported to encode a homo-
gentisate 1,2-dioxygenase that can convert homogentisate to malylacetoacetate, and is likely to
be involved in tyrosine degradation [48]. A merged network was constructed by combining the
four condition-specificnetworks in 4-D, 21-D, 21-LL and 32-D stress conditions (Fig 4B). In
order to represent the most robust correlations with tyrosine, only transcripts that are con-
nected with tyrosine in all four conditions and metabolites that are connectedwithHGO in at
least two conditions are displayed in this zoom-in merged metabolite-transcript correlation
network (Fig 4B). The merged network shows that the majority of associated transcripts
belong to functional groups encoding amino-acid metabolism and protein degradation/post-
translation/transport/targeting proteins, which is in line with the metabolic pathway for tyro-
sine. Again, the link between tyrosine and HGO is also supported by the RIL dataset.

Comparison of the performance of individual and combined methods

A major goal of this study was to test the power of integrating results obtained by various quan-
titative genetics and network approaches for increased robustness and sensitivity. The perfor-
mance of each single method and of the combined strategy (network analysis and at least one
mapping approach) was tested by calculating precision, recall and F-measure, widely applied as
scoring metrics in pattern recognition and information retrieval [49], based on different LOD
thresholds ranging from 3.0 to 5.3. As a comparison set, we built four reference gene lists
(RGL1, RGL 2, RGL 3, and RGL 4) for all the metabolites shown in the different datasets based
on KEGG metabolic pathway [50] (see Materials and Methods, section “Procedure setup for
determiningmethod performance”; cf. S7 Table). As shown in S4 Fig for precision, S5 Fig for
recall, and Fig 5 for F-measure, the combined strategy performs better than any other single
method based on RGL2 (LOD ranging from 4.5 to 5.3), RGL3 (LOD ranging from 3.5 to 5.3)
and RGL4 (LOD ranging from 3.8 to 5.3), except in the case of RGL1, in which the network
approach performs better than the combined strategy (LOD ranging from 3.4 to 5.3), indicat-
ing that the network approach is superior to the combined strategy with regard to providing
information about genes directly linked to the metabolite (neighbor transcripts). It is however
important to note that the combined strategy performed better when applying the two selected
LOD thresholds (significant threshold 5.3 and suggestive threshold 4.5) in this study based on
RGL2 to RGL4.

In order to test whether the combined strategy has a better prediction ability of true associa-
tions as compared to random methods, we applied a randomization test in which we shuffled
the related genes for all the annotated metabolites in the combined dataset, and obtained the
permuted F-measure by comparing the shuffled related gene list with the four reference gene
lists. After 10,000 iterations, the actual F-measure was compared with the permuted F-measure
10,000 times and an empirical p-value was estimated. Table 2 shows the actual F-measure, per-
muted F-measure, and p-values when applying LOD thresholds 5.3 and 4.5. The results suggest
that all the actual F-measures are significantly higher than the permuted ones, which means
that the combined strategy using both significant and suggestive LOD thresholds performs sig-
nificantly better than the randomized method.

The metabolite-wise precision is another important determinant parameter allowing us to
compare the performance of different methods. Therefore, themetabolite-wise precision was
calculated and compared across all the individual methods and the combined strategy. The
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Fig 4. Association between tyrosine and HGO. (a) Profiles of tyrosine and HGO across 23 time points in four conditions (4-D, 21-D, 21-LL, and

32-D). Red and blue lines represent metabolite intensity and gene expression, respectively. (b) Merged network by combining the four condition-
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specific networks (4-D, 21-D, 21-LL, and 32-D). Node colors in the network stand for the functional classes to which transcripts belong. The width of

edge in the network represents the number of conditions that a certain association between two nodes (corresponding metabolite and transcript)

shares. In order to represent the most robust associations with tyrosine, only transcripts that are connected with tyrosine in all four conditions, and

metabolites that are connected with HGO in at least two conditions, are displayed in this zoom-in merged transcript-metabolite correlation network. (c)

Box-plot of tyrosine intensity in wide-type (Col-0) plants and HGO mutant plants under normal and stress conditions (32-D). Tyrosine intensity is log2

transformed.

doi:10.1371/journal.pgen.1006363.g004

Fig 5. F-measure comparison between the single methods (GWAS, RIL, IL, and network analysis) and the combined strategy using

different LOD thresholds based on the four reference gene lists.

doi:10.1371/journal.pgen.1006363.g005
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comparison betweenmethods for metabolite-wise precision based on all four reference gene
lists and applying both significant and suggestive LOD thresholds (5.3 and 4.5) is shown in S6
and S7 Figs.When applying LOD threshold 4.5, the metabolite-wise precision of the combined
strategy is significantly higher than that of any other single methods based on RGL3 and RGL4
(combined strategy and network analysis: p-values are 0.029 and 0.050 based on RGL3 and
RGL4, respectively), and showing the highest trend in the combined strategy based on RGL2.
When using LOD threshold 5.3, themetabolite-wise precision of the combined strategy shows a
trend higher than any other single method's based on RGL3 and RGL4. Overall, the results
indicate that the combined strategy of integrating quantitative genetics and network analysis
can largely improve the power of detection of true metabolite-gene associations involved in A.
thaliana primary metabolism.

Candidate gene identification

All associations between genes and primary metabolites detected by GWAS were cross-vali-
dated with the results from network analysis and from metabolic QTL results from RIL and IL
populations using the two GWAS LOD thresholds described above. All associations supported
by the four datasets are summarized in S14 and S15 Tables, showing the overall comparison
based on the two GWAS LOD thresholds evaluated. Fig 6 represents the overall chromosomal
distribution of 76 selected candidate genes in 92 main associations resulting from this study.
Among them, 86 associations are supported by at least two of the approaches. One chromo-
somal hotspot supported by GWAS, network analysis, and QTL from IL population becomes
immediately evident. It is located on chromosome 4, from 8231017 bp to 8366653 bp, and was
previously reported to be related to biomass, resistance to a broad range of pathogens from dif-
ferent phyla [51], and to general metabolic activity [8]. Additional detailed information for
candidate associations discussed in the text is listed in Table 3.

Experimental validation

Validation of all associations disclosed is beyond the scope of this study. As a proof of concept,
we focused on two promising candidate genes to experimentally validate our strategy and
results. The first candidate gene is HGO (AT5G54080), associated with tyrosine in our analysis
(Fig 4A and 4B). Although the function of HGO was partly elucidated [48], genetic evidence
based on mutant analysis to explore its metabolic roles in A. thaliana is still lacking. Therefore,
a knockout line (SALK_027807) for HGO was grown in parallel with wild-typeCol-0 plants
under control (21-L) and stress (32-D) conditions (due to tyrosine showing dramatic accumu-
lation in 32-D, the latter was chosen as the representative stress condition; see S8 Fig), where-
upon both lines were subjected to GC-MS metabolomic analysis. As evident from Fig 4C,
tyrosine increased in both Col-0 and hgo plants under 32-D condition as compared to normal
condition, in agreement with our previous report [36]. More importantly, however, we
observed that tyrosine levels in the hgo mutant were significantly higher as compared to wild-

Table 2. Permutation test of F-measure for the combined strategy with 10,000 iterations

Reference Gene List LOD = 5.3 LOD = 4.5

Actual F-measure Permuted F-measure P-value Actual F-measure Permuted F-measure P-value

RGL1 0.494 0.301 ± 0.055 5.00E-04 0.433 0.272±0.049 0.0007

RGL2 0.682 0.494 ± 0.052 3.00E-04 0.619 0.448±0.047 2.00E-04

RGL3 0.776 0.606 ± 0.048 4.00E-04 0.722 0.551±0.043 1.00E-04

RGL4 0.85 0.758 ± 0.039 0.008 0.788 0.678±0.036 0.002

doi:10.1371/journal.pgen.1006363.t002
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type plants under normal condition (p = 0.002), and had increasing trends in the hgo mutant
plants under stress conditions (32-D) (Fig 4C). These results are in line with the involvement
of HGO in tyrosine degradation and confirm the usefulness of integrating information from
network analysis and quantitative genetics approaches.

The second example concerns the gene AGT2 (alanine:glyoxylate aminotransferase 2,
AT4G39660). The association betweenAGT2 and β-alanine is supported by both GWAS and
network analysis. In the networks, this association displays high positive correlations under
four conditions (21-D, 0.818; 21-LL, 0.649; 21-L, 0.849; 32-D, 0.613), representing very robust
correlations betweenAGT2 and β-alanine. In the GWAS, β-alanine mapped to a locus span-
ning 41 kb on chromosome 4. We considered three candidate genes encodingmetabolic
enzymes enclosed in this locus (AT4G39640, gamma-glutamyl transpeptidase 1, GGT1;
AT4G39650, gamma-glutamyl transpeptidase 2, GGT2; AT4G39660, AGT2). AGT2 is the only
one supported also by network analysis, for which reason we selected it as the most promising
candidate gene related to β-alanine. There are seven SNP markers in AGT2, five of them show-
ing significant associations with β-alanine. Notably, one of the SNPs (m160527, position
18406944 bp on chromosome 4) can result in amino-acid substitution from proline (non-
polar) to serine (polar) with the nucleotide variant from cytosine (C) to thymine (T). This

Fig 6. Chromosomal distribution of key metabolism-related candidate genes. Colored circles after each AGI code represent the approaches

supporting each gene-metabolite association (red, blue, green and purple represent GWAS, network analysis, RIL, and IL, respectively). Asterisks with

numbers after circles mean that the certain gene is associated with more than one specific metabolite. *1: associated with leucine,isoleucine, trehalose; *2

and *3: leucine, isoleucine, trehalose, phenylalanine and malic acid; *4: leucine, isoleucine, trehalose and phenylalanine; *5: galactinol and trehalose; *6:

valine, leucine and isoleucine.

doi:10.1371/journal.pgen.1006363.g006
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suggests that SNP m160527 could be the causative SNP in AGT2. Based on sequence homol-
ogy, AGT2 was annotated as a putative alanine:glyoxylate aminotransferase. An attempt to
functionally characterizeAGT2, using an in vitro enzymatic assay, did not identify the enzyme
as an alanine aminotransferase [55]. To date, the function of AGT2 still remains unknown.
Recently, Wen et al [34] also found that the close homolog of AGT2 in maize (ZM01G05170)
strongly mapped to β-alanine; this finding was further validated by their linkage analysis and
eQTL (expression QTL) results. Therefore, we conducted a phylogenetic analysis on AGT2 and
its homologs from A. thaliana and from other plant species to explore the evolutionary history
of this gene in plant taxa (S9 Fig). The first feature detected is the presence of at least two clus-
ters, including sequences from both monocots and dicots, confirming that AGT2 belongs to a
multigene family. Interestingly, AGT2 clustered together with the maize sequence
ZM01G05170 reported by Wen et al [34], indicating that AGT2 is the strict ortholog to the
characterized enzyme in maize. In order to test for the role of AGT2 in β-alanine metabolism,
two independent loss-of-function lines (SALK_003381 and SALK_035035) for AGT2, plus
wild-type plants, were grown under normal (21-L) and stress (32-D) conditions (32-D was
selected as a representative stress condition because β-alanine strongly accumulated under this
stress; see S10 Fig). β-alanine significantly increased in Col-0 plants under stress condition
comparing with plants grown under control condition (p = 8.15E-13) (Fig 7), in agreement
with previous observations [36]. More importantly, however, both KO plants displayed a very
strong increase in β-alanine independent of the growth condition (Fig 7) (statistical signifi-
cance levels by pair-wise comparison: SALK_003381_N & Col-0_N: 8.15E-13;
SALK_035035_N & Col-0_N: 8.15E-13; SALK_003381_S & Col-0_S: 1.50E-12;
SALK_035035_S & Col-0_S: 1.60E-12). These results thus suggest that AGT2 is involved in β-
alanine metabolism, reinforcing the utility in combining network and quantitative genetics
analyses.

Discussion

Metabolites are the terminal products of cellular regulatory processes, and their levels can be
regarded as the ultimate responses of biological systems to environmental changes in a given
genetic background, and thus serve as a link between subtle genotypes and visible phenotypes
[56]. The genetic regulation of primary metabolites (essential for the viability of the cell) and
secondarymetabolites (required for the viability of the organism in the environment) is differ-
ent. This derives from the fact that secondarymetabolites are highly specific for particular
genotypes, while primary metabolites are synthesized through common pathways and influ-
enced by multiple and complicated factors [57]. Here, a GWAS strongly suggests polygenic
regulation of primary metabolism in A. thaliana, owing to the fact that the individual metabo-
lite traits mapped to multiple loci (each primary metabolite was mapped to 1.4 and 3.3 loci on
average when applying the significant/suggestiveLOD thresholds 5.3 and 4.5, respectively),
which is in agreement with previous studies [32, 58]. The centrality and complexity of primary
metabolism in A. thaliana makes it difficult to detect the true genetic-metabolic relationships
by a single method [6].

Within this study, we integrated GWAS based on a collection panel of 314 natural A. thali-
ana ecotypes,metabolite–transcript correlation network analysis for eight different environ-
mental conditions based on data in [36], and mQTL results from two structured populations
(RIL and IL; [8]). In order to test the validity of the combination of the two orthogonal
approaches (quantitative genetics and network analysis) in comparison to each single method,
we generated a statistical framework using four reference gene lists based on KEGG metabolic
pathways (Materials and Methods, section “Procedure setup for determiningmethod
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performance”). The performance of the different methods was evaluated and compared by pre-
cision, recall and F-measure, widely applied in pattern recognition and information retrieval
[49]. We observed improved performance of the combined strategy (the strategy to predict
genes supported by at least one mapping approach and network analysis) based on three out of
four reference gene lists we applied (S4 and S5 Figs and Fig 5). Although the combined strat-
egy did not perform better than network approach based on RGL1, this indicates that network
analysis outperforms the quantitative genetics methods in detecting enzymes directly linked to
a given metabolite. Still, the combined strategy exhibited an overall better performance. Fur-
thermore, the performance of the combined strategy was confirmed by permutation test
(Table 2). Taken together, the statistical framework that we applied here illustrates that the
combined strategy increases the sensitivity and robustness of candidate gene discovery.

Using the resulting metabolite–transcript associations, we identified connections between
primary metabolites and structural genes that were previously reported to take part in the

Fig 7. Functional assignment for candidate association between β-alanine and AGT2. Box-plot of β-alanine intensity in control plants

(Col-0) and two independent knockout plants under normal (represented with “N”) and 32˚C + darkness stress (represented with “S”)

conditions. Significance levels among groups are evaluated by ANOVA followed by Bonferroni correction. Subsequent pair-wise

comparison was conducted by Tukey HSD tests.

doi:10.1371/journal.pgen.1006363.g007
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biosynthesis of the respectivemetabolites. For instance, the association betweenhomoserine and
AT2G17265 (HSK) supported by GWAS per se [40]; nicotinic acid and AT5G14760 (L-aspartate
oxidase,AO) supported by GWAS, RIL, and IL results [54]; glycine and AT1G62800 (aspartate
aminotransferase 4,Asp4) [52], nicotinic acid and AT5G14780 (formate dehydrogenase, FDH)
[53] supported by all four datasets, illustrating the validity and feasibility of our combined strategy.

Our integrative strategy offers a valuable tool not only for addressing previously reported
primary metabolite-gene associations, but also for discovering novel and under-explored can-
didate associations/genes involved in the regulation of A. thaliana primary metabolism.We
found a strong association between tyramine and TyrDC (AT4G28680) in GWAS (Fig 3B).
Analysis of SNPs leading to amino-acid substitution (Fig 3C), LD analysis (Fig 3D), and hap-
lotype analysis (Fig 3E) supported TyrDC as the most prominent candidate gene for the meta-
bolic trait tyramine. TyrDC was previously shown by enzymatic assay to encode a protein that
catalyzes the conversion of tyrosine to tyramine [41]; our GWAS further provides genetic evi-
dence for the gene annotation. Another two candidate genes that are also involved in tyrosine
metabolism were discovered by network analysis, both of them being supported by the RIL
dataset as well (Fig 8A). TAT7 (AT5G53970), encoding a tyrosine aminotransferase whose
products are 4-hydroxyphenylpyruvate (4-HPP) and L-glutamate [47], is linked to tyrosine in
five conditions from the network analysis. HGO, previously shown to convert homogentisate
to malylacetoacetate using in vitro enzymatic assays [48], is connectedwith tyrosine in four
conditions from our network analysis. Using knockout lines, we further verified the function of
HGO (Fig 4C) in tyrosine degradation.With the current knowledge on tyrosine synthesis and
catabolism pathway, we could simultaneously identify three key genes in tyrosine degradation
(Fig 8A). The detection of all these three critical genes manifests the strength of the integrative
strategy based on the guilt-by-association principle [59].

We observed the strong correlation between tyrosine and TAT7 in five conditions, showing
negative correlations in three of them (21-LL, 21-L, and 21-HL; the common feature is 21°C),
and two positive correlations in the stress conditions 4-L and 32-D (S3 Fig). One of the possi-
ble explanations for the flip of correlations for the same metabolite–transcript pair is that meta-
bolic reactions, especially in primary metabolism, are regulated on different levels, and the
metabolic fluxes are constantly changing when plants are exposed to various environmental
stresses. It seems that a feedback loop regulation might control TAT7 expression in a tempera-
ture-dependent manner. This is not always reflected in the actual tyrosine levels under different
physiological conditions.

In the present study, we could identify two candidate genes (SPMS, AT5G53120 and AGT2,
AT4G39660) involved in the β-alanine metabolic pathway, both supported by GWAS and net-
work analysis (Fig 8B). In plants, three predicted pathways for β-alanine biosynthesis have
been reported, including uracil degradation, polyamine oxidation, and propionate catabolism,
but only the last enzyme in the uracil degradation pathway was studied in detail [60], leaving
β-alanine metabolism in plants largely unexplored. The first candidate gene we identified is
SPMS, reported to catalyze the conversion from spermine to spermidine by elongation of the
polyamine chain [45, 61]. Notably, β-alanine can be produced by spermidinewithin the subse-
quent two reaction steps. Although SPMS has already been well characterized before, this
example clearly demonstrates the power of the integrative strategy for detecting biochemically
relevant associations between genes and metabolites that are not directly linked in a pathway
(Fig 8B). We also identified a strong association between β-alanine and AGT2. Based on
sequence homology, AGT2 was annotated as a putative alanine:glyoxylate aminotransferase.
Plant leaf peroxisomes are hypothesized to contain at least four aminotransferase activities,
including Ser:glyoxylate aminotransferase (SGT), Glu:glyoxylate aminotransferase (GGT), Ala:
glyoxylate aminotransferase (AGT), and Asp:glyoxylate aminotransferase (AspAT) [62, 63].
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Animals possess two structurally distinct types of AGTs: AGT1 and AGT2. Previous kinetic
analysis of A. thaliana AGT1 suggested that this protein mainly uses the substrates Ser and
glyoxylate with SGT activity, while the function of AGT2 remained obscure [55, 64]. We fur-
ther tested this association using two independent knockout lines of AGT2. Both lines showed
remarkable accumulation of β-alanine in comparison with wide-type plants, both in control
and in stress conditions (Fig 7), supporting the association between β-alanine and AGT2. In A.
thaliana, AGT2 shows sequence homology to AGT3 (AT2G38400) and PYD4 (AT3G08860).
Interestingly, PYD4 is predicted to have β-alanine aminotransferase activity. Additionally, in
maize, β-alanine mapped to a genetic locus harboring the homolog gene (ZM01G05170) of
AGT2, which was further supported by linkage analysis and eQTL results [34]. In our phyloge-
netic analysis (S9 Fig), AGT2 clustered together with its maize homolog ZM01G05170
reported by Wen et al [34], suggesting that both genes maintain the same function.PYD4
(AT3G08860) clustered in a separate branch among sequences from other dicots before the

Fig 8. Exemplary candidate associations detected by the integrative strategy with GWAS, network analysis and mQTL from RIL and IL

datasets. (a) Illustrated candidate genes and related discovery approaches in tyrosine synthesis and utilization pathway. (b) Illustrated candidate genes

and related discovery approaches in β-alanine metabolism. TyrDC: tyrosine decarboxylase; TAT: tyrosine aminotransferase; HGO: homogentisate

1,2-dioxygenase; SPMS: spermine synthase.

doi:10.1371/journal.pgen.1006363.g008
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speciation event (S9 Fig). Taking all the above evidence together with our findings using net-
work analysis, GWAS and analysis of knockout lines, we can conclude that AGT2 might be
involved in β-alanine metabolism, but its decisive role as a β-alanine aminotransferase still
needs to be confirmed by biochemical assays. It seems that AGT2, PYD4 and AGT3, together
with the maize homolog (ZM01G05170), are part of a large gene family of β-alanine amino-
transferases, conserved both in monocot and dicot plants (S9 Fig).

Nowadays, GWAS is steadily becoming a common practice to identify the underlying genetic
loci determining a plethora of phenotypic traits, but causal-gene identification still remains an
obstacle. To overcome this, we present here a strategy based on the combined use of GWAS,
metabolite–transcript correlation network analysis, and linkage mapping using structured popu-
lations, facilitating candidate association selection and providing functional and biological insight
into A. thaliana primarymetabolism.We demonstrate, using statistical analysis, that the com-
bined strategy outperforms the single methods. Based on hypotheses generated by this compre-
hensive strategy, the functions of two novel genes were validated by transgenic methods. Our
results illustrate that the integrative strategy describedhere offers an invaluable tool for advanc-
ing our knowledge of A. thaliana primarymetabolism, a tool that can be applied to other plant
species for functional elucidation of unknown genes. To our best knowledge, it is the first report
to apply this combined strategy with all the above potent sources to cross-validate and prioritize
candidate associations involved in A. thaliana primarymetabolism.

Materials and Methods

Plant materials

Natural population and growth condition. A previously describedcollection of 314 natural
A. thaliana accessions was used to measure primarymetabolites for GWAS with existing SNP
data [65, 66]. Seedswere sown on filter paper with demineralizedwater and stratified at 4°C in
darkness for five days to break dormancy. Seedswere then transferred to a culture room (16 h
LD, 24°C) for 42 h to induce seed germination. Each accession was transplanted onto wet Rock-
wool blocks of 4×4 cm in a climate chamber. All plants were watered daily for 5 min with 1/1000
Hyponex solution (Hyponex, Osaka, Japan). At 37 days post-germination, plants were harvested
within 2 hours from the end of the light period, in random order to minimize any variation due
to harvest order. Samples were stored dry at –80°C before GC-MS metabolomic profiling.

Time-course stress experiment. Time-resolved stress experiments using different light
and temperature conditions were conducted in a previous study [36]. In brief, wild-typeA.
thaliana Col-0 was grown in soil (potting compost) in short days (8 h light) for 4 weeks, then
transferred to long days (16 h light) at light/night temperature of 21/18°C for two weeks. Tem-
perature- and light-stress treatments were conducted as follows: aside from the control condi-
tion (21°C and 150 μE m–2 sec–1, abbreviated as 21-L), the plants were exposed to seven
different environmental conditions: (i) 4°C and darkness; (4-D), (ii) 21°C and darkness (21-D),
(iii) 32°C and darkness (32-D), (iv) 4°C and 85 μE m–2 sec–1 (normal light; 4-L), (v) 21°C and
75 μE m–2 sec–1 (low light; 21-LL), (vi) 21°C and 300 μE m–2 sec–1 (high light; 21-HL), and (vii)
32°C and 150 μE m–2 sec–1 (normal light; 32-L). It should be noted that a reduced light inten-
sity of 85 μE m–2 sec–1 was used in conjunction with the 4°C treatment in order to prevent a
secondary stress caused by excess light [67]. The 4°C condition can therefore not be regarded
as merely different in temperature compared to the 21-L or the 32-L conditions.

Plant material was sampled at 20 min intervals for a total of 360 min to yield a 19 data-point
linear series (including 0 min). Additional samples were taken after 5, 10, 640, and 1280 min to
obtain 10 data points (including 0 min) in a logarithmic time series. For each condition and each
time point, three independent plants were sampled and analyzed for metabolites and transcripts.
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Knockout mutant lines: selection, genotyping and growth conditions. A. thaliana Col-0
(wild-type) plants were used as control throughout the experiment.We obtained three SALK
lines from the Arabidopsis Stock Center [68], with T-DNA insertions in theAGT2 (AT4G39660;
SALK_003381 and SALK_035035) and HGO (AT5G54080; SALK_027807) genes. Knockout
lines were selected on plates supplemented with kanamycin, and non-segregating homozygous
lines were genotyped. The following left primer (LP), right primer (RP) and border primer (BP)
were designed using the Primer Design Tool provided by the Salk Institute Genomic Analysis
Laboratory (http://signal.salk.edu/tdnaprimers.2.html) and used for the PCR analysis checking the
presence of the T-DNA and zygosity in the offspring of the delivered seeds. For SALK_003381,
LP (5’-TTTTGCTCTTGCATTAGTGGG-3’), RP (5’- CCTTCAACGATGTTAAGCTGC-3’),
BP (5’-ATTTTGCCGATTTCGGAAC-3’); for SALK_035035, LP (5’-TACAGTGTCACTGTC
GGTTGC-3’), RP (5’- CCTGCATCCAAATCATAGA GC-3’), BP (5’-ATTTTGCCGATTTCG
GAAC-3’); for SALK_027807, LP (5’-GACAGGTGCTAATGGTCTTGC-3’), RP (5’- CAGCT
TGGGTATTGAAAGTGG-3’) , BP (5’-ATTTTGCCGATTTCGGAAC-3’) primers were used
to test the lines. Quantitative PCR analysis of the mutant lines was performedwith gene-spe-
cific primers (primer sequences: F 5’-AGTCACAATGGCAAAGGGAATTGG-3’ and R 5’-AG
TCCACCAGCTGAACAAACCG-3’) for AGT2, and both of the T-DNA insertionmutants
were shown to have complete knock-out of the gene. Regarding the AT5G54080 gene, we re-
peated the same RT-PCR analysis as previously described for analysis of the hgo mutant [69].
Two-week-old seedlings grown in MS were harvested. The HGO was amplified with primers
(Forward: 5’- CGGTGAACTCTTTACTGCTA-3’ and Reverse: 5’-ATCTAAACCAACACCG
TTAT-3’). PCR amplification conditions were as follows: 95°C for 2 min; 25 cycles of 94°C for
30 s, 51°C to 55°C for 30 s, and 72°C for 1 min; then 72°C for 10 min.

Knockout lines and control plants (Col-0) were grown, 12 biological replicates from each
lines, in short-day condition for four weeks, then transferred to long-day condition for another
two weeks. Next, we randomly divided the plants into two equal groups, one remaining in con-
trol untreated condition and the other exposed to stress (32-D) for continuous 1280 minutes,
which mimics the stress condition in the time-course stress experiment. The rosettes of all
plants in normal and stress conditions were harvested and frozen in liquid nitrogen, then
stored at –80°C until subsequent GC-MS measurement.

Primary metabolite profiling by gas chromatography-mass spectrometry

Metabolite extraction and derivatization fromA. thaliana leaves using GC-MS were performed as
describedby Lisec et al [70]. The GC-MS data were obtained using an Agilent 7683 series auto-
sample (Agilent Technologies, http://www.home.agilent.com), coupled to an Agilent 6890 gas-
chromatograph-Leco Pegasus two time-of-flightmass spectrometer (Leco; http://www.leco.com/).
Identical chromatogram acquisition parameters were applied to those previously used [36]. Chro-
matograms were exported from LECO CHROMATOF software (version 3.34) to R software. Ion
extraction, peak detection, retention time alignment and library searching were obtained using
the TargetSearch package from Bioconductor [71]. Day-normalization and sample median-nor-
malization were conducted; the resulting data matrix was used for further analysis.

Genome-wide associations

Data acquisition for GWAS andmapping. 200K SNP data for 314 A. thaliana accessions,
obtained using AffymetrixGeneChip Array 6.0, were taken from previous publications [65,
66]. Metabolic profiling was performed using GC-MS as described above. In order to avoid
spurious false positive associations due to small sample sizes, only metabolic traits with non-
missing values across at least 40% of the accession samples were included in the data
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preprocessing. Following this initial quality control, 94 primary metabolites were detected.
Metabolite concentrations were log-transformed since a test of normality showed that in most
cases the log-transformed concentrations were closer to a normal distribution than the non-
transformed values [72]. Genome-wide association analysis for metabolite traits was performed
using 199,455 SNPs with minor allele frequency> 1% across 314 accessions to investigate the
associations betweenmetabolite traits and SNPs. At each of these SNPs, a compressed mixed
linear model [73] was fitted for each trait in the Genome Association and Prediction Integrated
Tool (GAPIT) R package [74]. This model includes principal components as fixed effects to
account for population structure (commonly called the “Q” matrix) [37], and a kinship matrix
(commonly called the “K” matrix) [38] to account for family relatedness across the accessions.
The SNP fraction parameter was set to 0.1 to avoid excessive computation, as recommended by
the GAPIT user manual. Other parameters were set as default values.

Locus identification. The following procedure was applied to identify genomic regions
associated with the metabolite traits. First, we extracted all SNPs displaying a Bonferroni cor-
rected p-value< 0.05 in any of the 94 primary metabolites. Then all the SNPs with logarithm
of odds (LOD) value>–log10 (1/N) (N is the number of SNPs used in the study) were extracted
as describedpreviously [20]. LOD threshold was set as 5.3 by using this method. The resulting
SNPs were assigned to the same group if the genomic distance between them was less than 10
kb. For each SNP group, we kept those that had at least one SNP with Bonferroni corrected p-
value< 0.05, and the rest of the groups were discarded. Finally, all the genes around or within
the resulting groups were taken into account as putative candidates.

Network analysis

Transcript and metabolite data acquisition from time-course stress experiments. Tran-
script and metabolite data from time-course stress experiments were derived from previous
work [36], resulting in 15,089 transcripts and 92 primary metabolites (including 27 unknown
primary metabolites) for further analysis. Significantly changed primary metabolites across 23
time points in each condition were selected by ANOVA using “aov” function in R (http://www.
r-project.org/) at a significance level of 0.05 with a multiple correction test using false discovery
rate (FDR) estimation [75] by comparing three replicates at all time points. All 15,089 tran-
scripts and the metabolites that changed significantly in each condition were used for the con-
struction of condition-specificnetworks.

Condition-specificnetwork construction. Based on transcript and metabolite data from
the dense time-course experiment under eight conditions, Pearson correlation coefficient
(PCC) betweenmetabolite and transcript features was calculated in R. We chose PCC as corre-
lation measure in this study for two reasons: (1) PCC is the most widely used correlation mea-
sure [76], and it provides more accurate results because it is a parametric measure [77]; (2) it
was found that the statistical significances of correlation coefficients obtained though paramet-
ric and non-parametric methods were compatible in 95% of the cases when combining meta-
bolomics and transcriptomics data [77]. PCC thresholds for building edges between features
(metabolites and transcripts) in networks in each condition were obtained based on a permuta-
tion test (FDR< 0.05). Undirected networks for each condition were constructedwith nodes
representing metabolite and transcript features and edges connecting the nodes between fea-
tures with a PCC passing the threshold using the igraph package [78] in R.

Comparison of the performance of individual and combined methods

Procedure setup for determiningmethod performance. The performance of each single
method (GWAS, RIL, IL, and network analysis) and of the combined strategy (network
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analysis and at least one quantitative genetics approach) was tested by precision, recall and F-
measure.

Reference Gene List (RGL) generation: we first built four reference gene lists (RGL1, RGL2,
RGL3 and RGL4; S7 Table) for all the metabolites shown in the different datasets based on
KEGG metabolic pathway [50]. The reference gene lists are classified according to the layers of
enzymes in chemical reactions surrounding a given metabolite in an increasing order as follow:

1. RGL1: enzymes involved in the direct catalytic reactions of a given metabolite (step = 1)

2. RGL2: enzymes at a distance of two (or less) steps of catalytic reactions from a given metab-
olite (step� 2)

3. RGL3: enzymes at a distance of three (or less) steps of catalytic reactions from a given
metabolite (step� 3)

4. RGL4: all the enzymes in the pathways that a given metabolite is involved in

Actual gene list generation: next, we generated the actual gene lists for each metabolite in
each dataset. Separate lists of all the genes identified in the mQTL for each metabolite trait in
each of the mapping populations (GWAS, RIL, and IL) were generated; in parallel, lists of
genes based on neighbor transcripts in the networks for each metabolite were extracted. For
the combined strategy, we set up a combined gene list comprising the genes that are shared
between the network approach and at least one of the quantitative genetics approaches for each
metabolite.

Precision, recall and F-measure calculation: all the above-mentioned actual gene lists for
each metabolite were compared with the four reference gene lists (RGL1–RGL4).We consid-
ered the metabolites to be correctly predicted if at least one gene could be matched between the
actual gene list and the reference gene lists. The parameter precision represents the positive pre-
dictive value of the method; recall is equivalent to sensitivity. The two metrics are often com-
bined as their harmonic mean, known as the F-measure. The performance of the different
methods can be assessed by the above-mentioned three statistics:

precision ¼
Ncp

Np

recall ¼
Ncp

Na

F � measure ¼
2� precision � recall
precision þ recall

Where Na is the number of all annotated metabolites in each dataset,Np is the number of
relevant metabolites that have mQTL in mapping approaches or neighbor transcripts in net-
work analysis, and Ncp is the number of annotated metabolites that can be correctly predicted
when comparing with the reference gene lists.

Metabolite-wise precision calculation: another parameter, metabolite-wise precision [for a
certain metabolite: the number of correctly predicted genes is divided by the number of all the
genes in the respective mQTL (in mapping approaches) or is divided by the number of all the
neighbor transcripts around this metabolite (in network analysis)], was also calculated in order
to show the percentage of true positively discovered genes for each metabolite.

Testing GWAS performance based on different LOD thresholds and LOD threshold
optimization for data integration. To determine the optimal GWAS LOD threshold for
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integration with other methods, precision, recall and F-measure were calculated for the GWAS
dataset based on different GWAS LOD thresholds ranging from Bonferroni corrected significant
threshold 5.3 to 2.0 (cf. S8 Table). In addition, for each annotated metabolite in the GWAS data-
set, themetabolite-wise precision was calculated using various LOD thresholds (cf. S2 Fig).

Performance comparison for different methods. In order to compare the performance
of the different methods, precision, recall and F-measure were calculated for each individual
method and for the combined strategy based on LOD thresholds ranging from 3.0 to 5.3 (cf. S4
and S5 Figs and Fig 5).

Additionally, themetabolite-wise precision was compared between every single method and
the combined strategy based on both LOD thresholds (5.3 and 4.5) by using ANOVA. Subse-
quently, pair-wise comparison was conducted by the Tukey HSD tests using the “TukeyHSD”
function in R (cf. S6 and S7 Figs).

Permutation test for the combined strategy. The performance of the combined strategy
was further evaluated by permutation test using the same number of randomly selected genes
for each metabolite. To estimate a p-value empirically, we shuffled the related genes for all the
annotated metabolites in the combined dataset, then compared with the four reference gene
lists to obtain the permuted F-measure value. We then compared the true F-measure (x) and
permuted F-measure (yk) in k permutations (k = 10,000):

p ¼
1

n

Xn

k¼1

Fðx; ykÞ

Fðx; yÞ ¼
0 for x > yk
1 else

(

Hence, if the true F-measure is higher than the permuted F-measure for 950 of the 1000 per-
mutations, we obtain a p-value estimate of 0.05.

Statistics for knockout validation experiment

Metabolite intensity data after transformation and normalization were used for ANOVA to
test the significance levels of metabolite changes in knockout and Col-0 plants under normal
and stress conditions, following by correction for multiple comparisons using the “p.adjust”
function in R (http://www.r-project.org/). Subsequently, pair-wise comparison was conducted
by the Tukey HSD tests using the “TukeyHSD” function in R.

Phylogenetic analysis

Target A. thaliana protein sequences in this study were extracted from The Arabidopsis Infor-
mation Resource (TAIR, https://www.arabidopsis.org/). The sequences of all biochemically
characterized alanine aminotransferases and AGT-like proteins from other species were
extracted from NCBI (http://www.ncbi.nlm.nih.gov/) and PLAZA 3.0 (http://bioinformatics.
psb.ugent.be/plaza/). Amino-acid sequences were aligned using the CLUSTALW (version
1.83) program. A maximum likelihood tree was constructed using MEGA 7.0 software with all
default parameters.

Supporting Information

S1 Dataset. Normalized intensities of 94 primarymetabolites in 314 accessions of A. thali-
ana germplasms.
(XLSX)
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S1 Fig. Quantile–quantile (QQ) plots of p-value for elevenmetabolite traits.The Y-axis is
the observednegative base 10 logarithm of the p-values; the X-axis is the expected observed
negative base 10 logarithm of the p-values under the assumption that the p-values follow a uni-
form [0, 1] distribution. The dotted lines show the 95% confidence interval for the QQ plot
under the null hypothesis of no association between the SNP and the trait.
(TIF)

S2 Fig. Metabolite-wise precision test for different LOD thresholds ranging from 3.0 to 5.3
based on the four reference gene lists. The X-axis shows the different LOD thresholds ranging
from 3.0 to 5.3; the Y-axis shows metabolite-wise precision values.
(TIF)

S3 Fig. Tyrosine and TAT7 in an association detectedby network analysis and RILmap-
ping. The reaction catalyzed by the tyrosine aminotransferase TAT7 (AT5G53970) (upper
panel). Time-resolved profiles of tyrosine and L-glutamate levels and TAT7 expression levels
under five different conditions (bottom panel). Data adapted from [36].
(TIF)

S4 Fig. Precision comparison between the singlemethods (GWAS, RIL, IL, and network
analysis) and the combined strategy using different LOD thresholds based on the four ref-
erence gene lists.
(TIF)

S5 Fig. Recall comparison between the singlemethods (GWAS, RIL, IL, and network analy-
sis) and the combined strategy using different LOD thresholds based on the four reference
gene lists.
(TIF)

S6 Fig. Metabolite-wise precision comparison between the singlemethods (GWAS, RIL, IL,
and network analysis) and the combined strategy using LOD threshold 5.3 based on the
four reference gene lists.
(TIF)

S7 Fig. Metabolite-wise precision comparison between the singlemethods (GWAS, RIL, IL,
and network analysis) and the combined strategy using LOD threshold 4.5 based on the
four reference gene lists.
(TIF)

S8 Fig. Tyrosine profiles in eight conditions based on the time-course stress experiment
previously described in [36].
(TIF)

S9 Fig. Phylogenetic analysis of theAGT2 gene family in A. thaliana and in ten other species.
The maximum likelihood tree was constructed using aligned full-length amino-acid sequences.
Bootstrap values from 1,000 replicates are indicated at each node. Bar = 0.1 amino-acid substitu-
tions per site. The following gene sequenceswere used for the analysis: AT2G38400, AT3G08860,
AT4G39660 (A. thaliana); AL3G08940, AL4G24720, AL7G01820 (A. lyrata); BR01G00590,
BR03G19080, BR03G31870, BR08G19740 (Brassica rapa); GM18G02440, GM05G31630,
GM08G14850 (Glycine max); GR05G00650, GR06G23360, GR11G13020 (Gossypium raimondii);
MT3G465800, MT7G072420, MT8G091660 (Medicago truncatula); OS03G07570, OS03G21960,
OS05G39770 (Oryza Sativa ssp. japonica); SL04G054310, SL10G076250 (Solanum lycopersicum);
ST04G022360, ST10G018540 (S. tuberosum); VV06G00800, VV08G06170, VV07G06090 (Vitis
vinifera); ZM01G05170, ZM06G26480, ZM06G26540 (Zea mays). The target gene (AT4G39660)
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in this study is highlightedwith a red box, and the homolog in maize (ZM01G05170) is
highlightedwith a blue diamond.
(TIF)

S10 Fig. β-alanine profiles in eight conditions based on the time-course stress experiment
previously described in [36].
(TIF)

S1 Table. List of 314 A. thaliana accessions and related information.
(XLSX)

S2 Table. Summary of metabolite information includingmetabolite ID, metabolite name,
metabolite class, and mass used for quantification in the genome-wide association study.
(XLSX)

S3 Table. Full list of significantassociationsbetweenSNPs and primarymetaboliteswith p-
value< 1/N (N is the number of SNPmarkers used in this study).MAF: minor allele frequency.
(XLSX)

S4 Table. Full list of significant associations between genes and primarymetabolites with
p-value< 1/N (N is the number of SNP markers used in this study).
(XLSX)

S5 Table. Metabolite traits in the RIL dataset and 32 commonmetabolite traits in compari-
son with the GWAS dataset.
(XLSX)

S6 Table. SummarizedQTL results for introgression line dataset.
(XLSX)

S7 Table. Four reference gene lists (RGL1, RGL2, RGL3, and RGL4) for all the metabolites
shown in the different datasets based on KEGGmetabolic pathway.
(XLSX)

S8 Table. GWAS performance based on different LOD thresholds ranging from 2.0 to 5.3.
(XLSX)

S9 Table. Common loci verified by GWAS, RIL and IL datasets using the suggested LOD
threshold of 4.4.
(XLSX)

S10 Table. Numbers of metabolites and transcripts, and related PCC thresholds obtained
by permutation test (p = 0.05) for network analysis.
(XLSX)

S11 Table. Information of metabolites, transcripts, correlation values in 219 conserved
associations shared in all 8 conditions.
(XLSX)

S12 Table. List of commonmetabolite-transcriptassociations betweenGWAS and network
analysis using the strict LOD threshold (LOD = 5.3).
(XLSX)

S13 Table. List of common transcript-metaboliteassociations betweenGWAS and network
analysis using the suggested LOD threshold (LOD = 4.5).
(XLSX)
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S14 Table. Information on the associations supported by GWAS, network analysis, RIL
and IL datasets based on the strict LOD threshold 5.3.
(XLSX)

S15 Table. Information on the associations supported by GWAS, network analysis, RIL
and IL datasets based on the suggested LOD threshold 4.5.
(XLSX)
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